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Abstract—This paper present an effective method to accurately 

reconstruct and measure the 3D curve edges of small industrial parts 
based on stereo vision. To effectively fit the curve of the measured 
parts using a series of line segments in the images, a strategy from 
coarse to fine is employed based on multi-scale curve fitting. After 
reconstructing the 3D curve of a hole through a curved surface, its axis 
is adjusted so that it is parallel to the Z axis with least squares error 
and the dimensions of the hole can be calculated on the XY plane 
easily. Experimental results show that the presented method can 
accurately measure the dimensions of round holes through a curved 
surface. 
 

Keywords—Stereo Vision, 3D Round Hole Measurement, Curve 
Fitting, 3D Curve Reconstruction, Least Squares Error. 

I. INTRODUCTION 

CCURATE measurement plays an extremely important role 
in modern manufacturing processes. Due to the inherent 
manufacturing errors of industrial parts, a high level of 

the measurement accuracy should be adopted at the important 
stages of a manufacturing process to guarantee strict 
dimensional tolerances. Traditional precise measurement 
methods are often based on high-skilled personnel who 
perform a series of measurements using special measurement 
instruments such as gauges, micrometers, etc. However, 
manual measurement methods often have a number of 
drawbacks like prone to human errors, low efficiency and high 
cost. Therefore, to develop automatic precise 3D measurement 
methods is becoming a challenging research topic[1] . 

Most industrial parts can be represented by line frames, 
including line segments, circles, arcs, ellipses and general 
curves. However, linear distances, angles and diameters of 
round holes are always the most measured dimensions in most 
industrial measurements of accurate parts. Although much 
investigation has been carried out on the automatic 
measurement of circles or ellipses on a plane[2], the 
measurement of round holes through curved surfaces is often a 
challenging issue.  

Typical 3D measurement technologies mainly include 
contact measurement methods like coordinate measuring 
machines (CMMs)[3], and non-contact measurement methods 
such as laser scanning[4, 5], structured light[6], and 
photogrammetry methods[7]. 
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Although these automatic 3D measurement methods have 
been applied in industrial manufacturing processes, there are 
still several obstacles associated with these methods. Special 
3D round holes often appear in complicated small industrial 
parts, and most of these methods, such as CMMs, laser 
scanning and structured light, can not be directly adopted, 
especial for some small parts. However, stereo vision may be a 
feasible technique for the 3D measurement of these small parts, 
and the method has been widely applied to 3D measurement. 

To effectively reach automatic measurement, prior 
knowledge of the measured parts by means of CAD models is 
often exploited. In automatic measurement, the initial 
estimation of the measured features can be determined by the 
CAD model and the calibration of a stereo vision system. 
Curve feature extraction is a difficult task in image processing 
and stereo vision. For some special curves, such as circles and 
ellipses, which can be represented by a set of parameters, the 
standard HT (Hough Transform) method is often adopted [8]. 
For some projections of complicated 3D curves, they are often 
difficult to represent using simple parameters. In fact, these 
curves can be represented by a series of pieces of conics [2, 
9-12]. However, although these methods using conic pieces 
can accurately represent various curves, they are often 
complicated and involve a large amount computation. 
Alternatively, many techniques have been proposed by using 
short linear segments to approximately represent various 
curves in investigation [13, 14]. 

Line fitting is an important method in detecting linear features 
in images. By estimating and canceling noise, some line fitting 
methods can exactly extract the desired linear features [15, 16]. 
In addition, least squares linear template matching has also 
been used in linear feature extraction [17]. Some of these linear 
feature extraction methods have been applied in practical 
measurements of general artificial objects. However, in real 
automatic measurement processes, the measured small parts 
often can not be located accurately in a product line due to the 
errors of the fixture. That will lead to large errors of the initial 
estimation of the position and pose of the measured parts. Thus, 
even with the prior knowledge of the CAD models, these linear 
feature extraction methods often fail to extract the exact line 
pieces to represent the desired curves. 

To reconstruct a 3D curve by using the extracted curves in 
two images is another key task. The epipolar method is one of 
the most important methods of 3D reconstruction based on 
stereo vision. It describes the inherent geometric relationships 
between 3D points of a scene and their projections in the 
images acquired by two or more cameras. This method has 
been investigated and applied widely [18], and is feasible to be 
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adopted to reconstruct the measured 3D curve. 
In this paper, an effective method to reconstruct and measure 

the dimensions of 3D round holes through curved surfaces is 
proposed. Using a strategy from coarse to fine, the desired 
curves can be accurately fitted by a series of line segments in a 
complicated background. Furthermore, according to the 
obtained curve features, the 3D curve of the hole can be 
reconstructed by using the epipolar line method. Then, the 
desired dimensions of the 3D holes can be accurately 
calculated by adjusting its axis so that it is parallel to the Z axis. 
Our experimental results show that the presented method can 
accurately measure the diameters of 3D round holes through 
curved surfaces in small parts. 

The paper is organized as follows. Section 2 introduces the 
representation of 2D curves. Section 3 presents an effective 
method for curve fitting. In Sections 4, after introducing the 3D 
reconstruction method, a method for round hole measurement is 
represented. Section 5 reports the experimental results to verify 
the proposed method. The last section summarizes the method 
and offer the conclusions. 

II. CURVE REPRESENTATION 

As some real curves are difficult to be represented by using 
simple parameters, they are often represented by a series of 
circular arcs, conic sections, or short straight lines. However, 
using a series of connected line segments to represent a curve is 
a simple and effective method. Fig. 1 shows a curve that can be 
represented by a series of line segments, P1P2, P2P3, …, 
PiP(i+1). 

 
(a) 

 
(b) 

Fig. 1 Represent a curve using a series of line segments, (a) using a 
series of long line segments; (b) using a series of short line segments. 
 

In 2D images, a curve can be fitted by a series of connected 
line segments, and every line segment fits a section of the 
curve. Generally, a long line segment can fit a section of curve 
with strong robustness but gives larger errors. On the other 
hand, a short line segment can fit a section of the curve with a 
high accuracy, but is sensitive to the noise in the background. 
Therefore, a multi-scale representation method to fit the 

desired curves from coarse to fine in images is proposed. 

III. CURVE FITTING USING VIRTUAL BEAM CHAINS AT 
MULTI-SCALES 

To effectively extract the desired curve features in an image, 
a method combining the local gradient information and the 
global topological structure of the desired curve features from 
coarse to fine is proposed. Based on a virtual system, the 
problem of how to extract the curve feature in an image can be 
transformed into a virtual motion process. The virtual system is 
composed of a virtual beam chain at different scales, and a 
virtual attraction field. In the virtual attraction field, all the 
beams can be attracted, and move towards the strong attraction 
source. When the resultant force on the virtual beam chain is 
zero, it will stop moving. Thus, the beam chains will effectively 
fit the desired curve. 

Depending on the CAD model of the measured part and the 
calibration of the stereo vision, the initial estimation of the 
projection of the 3D curve can be calculated. As the curve is 
represented by a series of line pieces, the line pieces can be 
considered as a virtual beam chain that is built by a series of 
virtual beams connected by virtual joints (shown in Fig. 2). In 
the virtual beam chain, every beam represents a fitting line for a 
section of the curve. All the virtual joints can be notated by Pi 

( i = 1,2,...,n ). Each beam has two joint holes at its ends, and 
is connected with adjoining beams. When these beams are 
subjected to an external force, an assumption that they can be 
stretched or compressed without bending can be made. 

 
Fig. 2 A virtual beam chain 

 
Using the gradient along the direction perpendicular to the 

corresponding virtual beam, a virtual attraction field in which 
every pixel is a virtual attraction source can be built. The 
intensity of the virtual attraction source is defined by 

( , ) ( , )sin[ ( , ) ]A X Y I X Y X Yγ β= ∇ − ,              (1) 

where ( , )I X Y∇ denotes the gradient modulus in the gray 
image ( , )I X Y . ( , )X Yγ  is the angle of the gradient 
direction in (X,Y), and β  is the angle of the direction of the 
corresponding virtual beam. 

When the virtual beam chain is put into the virtual attraction 
field according to the initial position estimation, all the beams 
will be attracted by the virtual attraction sources. To ensure the 
effectiveness of the virtual system, the attraction sources are 
limited in a valid range beside each beam, in which the 
perpendicular distance from the valid attraction source to the 
beam is limited by W. 
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In the virtual system, it is required that the attraction is 
perpendicular to the beams and is in direct proportion to the 
intensity of the virtual attraction source described in equation 
(1). This rule ensures that the beams can converge to the desired 
curve in which there is a strong intensity of attraction. In 
addition, it is assumed that the attraction is in direct proportion 
to the perpendicular distance from the attraction source to the 
beam like a spring system. This assumed rule can drive the 
beams to quickly move towards objects in remote positions. 

In the virtual model, a local frame, oxy, on a virtual beam 
(shown in Fig. 3) is built. Then, the subjected attraction 
distribution on every beam is represented by 

( ) ( , ) ( , )i j j j jx A x y x y=f D ,                     (2) 

where ( , )x yD  denotes the perpendicular vector from the 
attraction source in ( , )i ix y  to the beam.  A schematic 

depicting of the attraction distribution on a beam ( ( 1),  i iP P + ) 

is shown in Fig. 3. 

 
Fig. 3. Schematic attraction distribution on a beam 

 
According to the principle of structural mechanics, the 

distribution of attraction on each beam can be transformed into 
a couple of equivalent forces on the two end points of the 
beam by 
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where L is the length of the beam. Using the same method, 
each couple of equivalent forces on the end points of all the 
beams can be calculated. 

As in the local frame, the value of ( , )x yD can be represented 
by y, the equivalent forces on the two end points of the beam 
are finally represented by 
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If a virtual joint (Pi) has a small displacement [ , ]i iX YΔ Δ  
from (P’

i) in the world coordinate system, shown in Fig. 4, the 
equivalent forces at the end points of the beam can be 
calculated according to equation (4). Ignoring the high-order 
terms and the change of the length of the beam, the equivalent 

force at the end point (Pj) of the beam ( ( 1),  i iP P + ) is 

represented by 

1

1 ( , )( )( )
n

i
j

L xA x y y y L x
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=
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According to the coordinate transformation from the local 
frame to the world coordinate system, the following 
relationship can be gotten. 

sin cosi ij i ijy X Yβ βΔ = −Δ + Δ ,                 (6) 

where ijβ is the angle of the direction of the beam. Combining 

equation and (6), the equation (5) can be rewritten as 
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Using the same method, the equivalent force on every end point 
of the beams connected by the virtual joint (Pi) can be 
calculated. 

 
Fig. 4. The schematic force status on joint (Pi) 

 
Since a virtual joint usually connects two adjoining beams, 

the resultant force on the virtual joint (Pi) can be calculated by 
( 1)i i i+ + −= +F F F ,                                 (8) 

where i+F  and ( 1)i+ −F are the equivalent forces on each end 

point of the adjoining beams. 
When the joint (Pi) reaches a force balance, according to 

equation (8), it can be described by 
( 1) 0i i+ + −+ =F F .                (9) 

By resolving the vector equation, the solutions of the 
displacement [ , ]i iX YΔ Δ in equation (7) can be figured out. 
Furthermore, using the same method, the desired displacement 
on every joint can be obtained. When the force on every joint 
reaches zero, the beam chain can fit the desired curve. 

As there are often large errors in the initial estimated 
positions of the beam chain due to the inaccurate fixture and 
installation of the measured parts, the original beam 
chain, 1 2 3, , ,..., NP P P P , (with longer beams) is first used to fit 

the curve. Then, the beam chain is decomposed into 1/ 2 scale 
by splitting every virtual beam into two equal halves, and all 
the virtual joints can be represented 
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by 1 2 3 1 2, , ,..., , ,...,N N NP P P P P P+ . Inheriting the previous 
fitting results and using the obtained beam chain at a smaller 
scale, the desired curve can be continuously fitted with a higher 
accuracy. Repeating the beam decomposition and fitting 
process, the desired curve can be extracted from coarse to fine 
at different scales, such as1/ 2 ,1/ 4 ,…,1/ 2S , where S is the 
scale index. 

IV. THREE-DIMENSIONAL CURVE RECONSTRUCTION AND 
MEASUREMENT 

Using the features of the curves in two images acquired by 
our stereo vision system, one of the effective methods to 
reconstruct the 3D curve is the epipolar line method. Fig. 5 
shows the principle. S1 and S2 are the projection points of the 
left and right CCDs, respectively. P is an arbitrary point of a 3D 
curve, C, in the space, and its two corresponding projection 
points in the two images are denoted by p and p’. According to 
the projection relationship in the vision system, the points, P, p, 
p’, S1 and S2 are coplanar. The coplane can be denoted by Π. 
Thus, for the given point p in the left image, the corresponding 
p’ in the right image is constrained to lie on the epipolar line of 
P, which is the intersection of plane Π and the right image plane, 
denoted by ' 'p e . In addition, 'e denotes the intersection of 

line 1 2S S  and the right image plane 2I , called the epipole, and 

it is the common point of all the epipolar lines in the plane 2I . 

As P is a point in the 3D curve, C, the point 'p must be on the 

extracted curve, 'C , in the right image. That means that the 
corresponding point of p in the left image should be the 
intersection of epipolar line ' 'p e  and curve 'C in the right 
image. Using this method, the corresponding points of the two 
corresponding curves in the two images can be calculated. 

 
Fig. 5. Schematic principle of the epipolar line method 

 
Furthermore, according to the calibration of the stereo vision, 

the coordinates of the 3D points on the reconstructed 3D curve 
can be obtained by using the triangular method.  

After reconstructing the 3D curve, an effective method to find 

the accurate diameter of the hole is presented. When the axis of 
the 3D round hole is parallel to the Z axis, the projection on the 
XY plane of the reconstructed 3D curve should be a circle. Fig. 
6 shows the projection on the XY plane of a 3D curve. 1 2PP  is 
the axis of the 3D round hole. C is the intersection curve of the 
hole and a curved surface. 'C  is the projection on the XY 
plane of the 3D curve C. 

 
 

Fig. 6 The projection of a 3D curve on a curved surface 
 

According to the angle relationship between the axis 

1 2PP and Z axis, which is determined by the fixture, the 
reconstructed 3D curve can be rotated to make its axis parallel 
to the Z axis by 
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where ( , , )i i ix y z are the coordinates of the ith reconstructed 

3D point.θ  is the pitch angle between the axis 1 2q q of the 3D 

hole and Y axis. ϕ  is the yaw angle between the axis 1 2q q  
and X axis. These angle parameters can be obtained according 
to the configuration of the clamping apparatus, CAD model of 
the parts and calibration of the stereo vision.  

However, the errors of the provided anglesθ andϕ  are often 
very large due to inaccurate fixation. Thus, an effective method 
to accurately adjust the pose of the 3D curve is presented to 
make its axis accurately parallel to the Z axis. It can be 
described by 
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i i

i i

x x
y Rot X Rot Y y
z z

ϕ θ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Δ Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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where ϕΔ  and θΔ are the angle errors of ϕ  and θ , 
respectively. Ignoring the high-order error terms, the 
transformation in equation (12) can be described by 
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Furthermore, an estimation function can be defined by 
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Combining equations (13, 14) and ignoring the insignificant 
error terms, the estimation function can be described by 
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As the conditions for function A to be minimum 
are / 0A θ∂ ∂Δ = and / 0A ϕ∂ ∂Δ = , according to equation 
(15), they can be described by 
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Then, the angle error ϕΔ  and θΔ  can be easily obtained. 
Furthermore, adjusted by equation (13), the diameter of the 3D 
round hole can be calculated by 

2 2

1
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n
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i

R x y
n =

= +∑ ,                       (18) 

V. EXPERIMENTAL RESULTS 

Fig. 7 shows the developed image acquisition system, which 
includes a co-axis light source, two CCDs, and a personal 
computer. The angle between the two lenses is 22° . The 
maximum resolution of the CCD is 1200 1600×  pixels. The 
stereo vision system is calibrated by a precise raster. 

 

 
Fig. 7. The developed image acquisition system 

 

To verify the effectiveness of the proposed method, the 
necessary experiments are conducted to measure a round hole 
in a cylindrical part. The main steps of the experiment are 
described as fellows. 

Step 1: Acquire the image of the measured part using the 
developed stereo vision system; 

Step 2: Calculate the gradient of the image, and build a virtual 
attraction field; 

Step 3: Use a right octagon as the initial estimation of the 
desired curve in the image, and build a virtual beam chain; 

Step 4: Calculate the displacement of all the virtual joints, 
and get the fitting beam chain at a certain scale; 

Step 5: Decompose the obtained beam chain using 
1/ 2S scale, 2,3,...,S N= ; 

Step 6: Repeating step 4 and 5 for several times; 
Step 7: Reconstruct the 3D curve using the epipolar line 

method and triangular method; 
Step 8: Adjust the axis of the 3D round hole so that it is 

parallel to the Z axis, and calculate the average diameter of the 
curve projection on the XY plane; 

In the following, the main experimental results of every step 
in the proposed method is given.  

Fig. 8 shows the acquired gray images of a cylindrical part 
with a round hole. The first image (a) is acquired by the left 
CCD, and the second image (b) is acquired by the right CCD. In 
addition, every group of results is shown in the same order in 
Figs. 8-13. 

Fig. 9 shows the initial positions of the virtual beam chains 
using right octagons in the gradient modulus of the two images, 
and the red arrows represent the virtual resultant force on the 
virtual joints. It also shows that there are large errors between 
the beam chains and the desired curve. Due to the surface 
texture of the part, the uneven light intensity, the background is 
complicated and the noise is large. 

Fig. 10 shows the curve fitting results using the original beam 
chain at scale 1. Clearly, the proposed method can effectively 
drive the beam chain to fit the desired curves. 

Repeating steps 5 and 4, the obtained virtual beam chains can 
be decomposed at smaller scales, and the desired curve can be 
re-fitted at a smaller scale by inheriting the fitting results of the 
previous scale. Fig. 11, 12 show the results of the virtual beam 
chains at scale 1/ 2  and 31/ 2 , respectively. In the experiment, 
the fitting process at scale 21/ 2 is skipped. 

Fig. 13 shows the obtained final results of curve fitting at 
scale 31/ 2  in the original gray images. The results prove that 
the virtual beam chains can exactly fit the desired curves. 

Fig. 14 shows the reconstruction of the 3D points of the 3D 
curve. Some of these points on which the tangent is 
approximately parallel to the epipolar lines are ignored due to 
the large reconstruction errors. 

According to equations (10-18), the diameter of the measured 
hole can be calculated with least squares error. The real average 
diameter of the hole is 4.024mm strictly measured by 
micrometer, and the measurement result using the presented 
method is 4.031 mm. The absolute measurement error is only 
0.007mm, which meets most requirements of industrial 
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measurement for the parts. 
 

  
         (a)                  (b) 

Fig. 8 Acquired gray images of a cylindrical part 
 

  
         (a)                  (b) 
Fig. 9 Initial positions of the virtual beam chains and the virtual 
resultant force on the virtual joints 
 

  
         (a)                  (b) 

Fig. 10 Fitting results of the virtual beam chains at scale 1 
 

  
         (a)                  (b) 

Fig. 11 Fitting results of the virtual beam chains at scale 1/ 2  
 

  
         (a)                  (b) 

Fig. 12 Fitting results of the virtual beam chains at scale 31/ 2  

  
         (a)                  (b) 

Fig. 13 The final results of the curve fitting 
 

 
Fig. 15 The reconstructed points of the 3D curve 

VI. CONCLUSION 

This paper presents a method to reconstruct and measure 3D 
curves based on stereo vision. In this method, the curves in 
images can be represented by using a series of connected line 
segments, and every line segment can fit a section of the curve. 
To fit the desired curves in images, a virtual system including 
a virtual beam chain and a virtual attraction field is built. 
When the virtual beam chain is placed in the virtual attraction 
field, the beams can move towards the desired curve. When 
the equivalent resultant forces on the virtual joints reach zero, 
the curve can be fitted by the beam chain. 

Due to the large errors in the installation of the measured 
part, the initial estimated positions of the beam chains are 
often far away from the desired curves. Therefore, a large 
scale of the beam chain can be used to fit the curve first. Then, 
the obtained beam chains are decomposed into smaller scales, 
and the curves are re-fitted by using the updated beam chains 
with the fitting results of the previous scale. Thus, the curve 
can be fitted with a high robustness at larger scales, and with a 
high accuracy at smaller scales. Furthermore, depending on 
the final positions of the beam chains in the two images, the 
measured 3D curve can be accurately reconstructed by using 
the epipolar line method. At last, using the proposed method, 
the axis of the 3D hole can be accurately adjusted so that it is 
parallel to Z axis, and the average diameter also can be 
accurately calculated. 

In the experiments, a 3D round hole through a small 
cylindrical part is measured. The results show that the 
proposed method can effectively fit the desired curves in 
complicated backgrounds from coarse to fine, and the 3D 
curve can also be accurately reconstructed and measured. The 
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experimental results demonstrated that the presented method 
can reconstruct and measure 3D curves with acceptable errors, 
and can meet the industrial requirements of measurement. 
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