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Bifurcation Analysis for a Physiological Control
System with Delay

Kejun Zhuang

Abstract—In this paper, a delayed physiological control system
is investigated. The sufficient conditions for stability of positive
equilibrium and existence of local Hopf bifurcation are derived.
Furthermore, global existence of periodic solutions is established by
using the global Hopf bifurcation theory. Finally, numerical examples
are given to support the theoretical analysis.
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I. INTRODUCTION

IN order to describe some physiological control systems,
Mackey and Glass proposed the following three first order

nonlinear delay differential equations as their appropriate
models in [1]:

dN(t)
dt

= λ− αVmN(t)Nk(t− τ)
θk +Nk(t− τ)

, (1)

dN(t)
dt

=
Vmθ

k

θk +Nk(t− τ)
− δN(t), (2)

dN(t)
dt

=
Vmθ

kN(t− τ)
θk +Nk(t− τ)

− δN(t). (3)

Here, all the coefficients are positive constants. Details for
the derivation of these equations can be found in [1]. Subse-
quently, many results from various angles have been obtained,
such as the main theorems in [2–5]. Local and global Hopf
bifurcations for system (1) and (2) were studied by regarding
τ as the bifurcation parameter in [2–3]. For system (3), bound-
edness of solutions and global stability of positive equilibrium
were considered. Besides, existences of periodic and chaotic
solutions were derived by regarding τ and k as bifurcation
parameters in [1] and [5], respectively.

The aim of this paper is to investigate the stability of
positive equilibrium and existences of local and global Hopf
bifurcation for system (3) with the help of bifurcation theory
[6–7]. Detailed mathematical analysis and numerical examples
will be given.

II. STABILITY OF POSITIVE EQUILIBRIUM

Obviously, system (3) has the unique positive equilibrium
N∗ when Vm > δ. The linear part of system (3) at N∗ is

Ṅ(t) = δ

(
1 +

kδ

Vm
− k

)
N(t− τ) − δN(t),
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then the characteristic equation is

λ+ δ + δ

(
k − 1 − kδ

Vm

)
e−λτ = 0. (4)

When τ = 0, we have λ = kδ
(

δ
Vm

− 1
)
< 0. Next, we will

discuss the distribution of characteristic roots when τ > 0. Let
λ = iω(ω > 0) be a root of equation (4), then

iω = −δ + δ

(
1 +

kδ

Vm
− k

)
(cosωτ − i sinωτ).

Separating the real and imaginary parts, we have⎧⎨
⎩

δ = δ
(
1 + kδ

Vm
− k

)
cosωτ,

ω = −δ
(
1 + kδ

Vm
− k

)
sinωτ,

and

ω2 = δ2
(

1 +
kδ

Vm
− k

)2

− δ2.

Thus, equation (4) has a pair of purely imaginary roots ±iω0

when k
(
1 − δ

Vm

)
> 2, where

ω0 = δ

√
k

(
δ

Vm
− 1

)(
2 +

kδ

Vm
− k

)
.

Denote

τj =
1
ω0

[
arccos

1
1 + kδ

Vm
− k

+ 2jπ

]
, j = 0, 1, 2 . . . .

Differentiating both sides of (4) with respect to τ , we can get

dλ

dτ
=

δ
(
k − 1 − kδ

Vm

)
λ

eλτ − δ
(
k − 1 − kδ

Vm

)
τ
.

Hence,

Re
{
dλ

dτ

}∣∣∣∣
λ=iω0,τ=τj

=
ω2

0

A2 + sin2 ω0τj
> 0,

where A = cosω0τj − δ
(
k − 1 − kδ

Vm

)
τj .

According to the Corollary 2.4 in [7], the sum of the orders
of zeros on the open right half plane can change only if a zero
appears on or crosses the imaginary axis. We can conclude the
following lemma.
Lemma 1 (i) If k

(
1 − δ

Vm

)
≤ 2, then all roots of (4) have

strictly negative real parts.
(ii) If k

(
1 − δ

Vm

)
> 2, then all roots of (4) have strictly
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negative real parts only when τ ∈ [0, τ0); equation (4) has a
pair of purely imaginary roots when τ = τ0; equation (4) has
2(j + 1) roots with positive real parts when τ ∈ (τj , τj+1].

Moreover, we can establish the stability of positive equi-
librium of system (3) from the Hopf bifurcation theorem in
[7].
Theorem 1 (i) If Vm > δ and k

(
1 − δ

Vm

)
≤ 2, then N∗ is

absolutely stable.
(ii) If Vm > δ and k

(
1 − δ

Vm

)
> 2, then N∗ is asymptotically

stable when τ ∈ [0, τ0) and unstable when τ > τ0.
(iii) τ = τj(j = 0, 1, 2, . . .) are the critical values and Hopf
bifurcation occurs.

III. GLOBAL EXISTENCE OF HOPF BIFURCATION

In this section, we mainly focus on the global existence
of periodic solutions bifurcating from positive equilibrium.
Throughout this section, we closely follow the notation in [6]
and define
X = C([−τ, 0],R),
Σ = Cl{(x, τ, p) : x is p−periodic solution of system

(3)} ⊂ X × R+ × R+,
N = {(x̂, τ, p) : Vmθ

k − δθk − δx̂k = 0},
Δ = λ+ δ + δ

(
k − 1 − kδ

Vm

)
e−λτ .

Let C(N∗, τj , 2π
ω0

) denote the connected component of
(N∗, τj , 2π

ω0
) in Σ. By the Lemma 3 in [4], we have the

following lemma.
Lemma 2 If kδ

k−1 < Vmθ < δ k+1
k−1 , then all the periodic

solutions of (3) are uniformly bounded.
Lemma 3 System (3) has no nontrivial τ− periodic solutions
when k is a positive integer.
Proof The nontrivial τ−periodic solution of system (3)
is also the nonconstant periodic solution of the following
ordinary differential equation,

Ṅ(t) = N(t)
(

Vmθ
k

θk +Nk(t)
− δ

)
. (5)

On one hand, when N(t) > 0, we have Ṅ(t) < 0 with N(t) >
N∗ and Ṅ(t) > 0 with N(t) < N∗. On the other hand, when
N(t) < 0, we can obtain that Ṅ(t) is definitely positive or
definitely negative when k is an integer. Therefore, system
(5) has no nonconstant periodic solution. This completes the
proof.
Theorem 2 If Vm > δk

(
1 − δ

Vm

)
> 2, kδ

k−1 < Vmθ <

δ k+1
k−1 and k is a positive integer, then periodic solutions of

system (3) still exist when τ > τj .
Proof First of all, define F (xt, τ, p) = VmθkN(t−τ)

θk+Nk(t−τ)
−δN(t).

The assumptions (A1)–(A3) in [8] hold. Let (x̂0, α0, p) =(
N∗, τj , 2π

ω0

)
and it is easy to verify that (N∗, τj , 2π/ω0) is

the only isolated center. There exist ε > 0, δ > 0 and a smooth
function λ : (τj − δ, τj + δ) → C, such that

Δ(λ(τ)) = 0, |λ(τ) − iω0| < ε

for any τ ∈ [τj − δ, τj + δ], and

λ(τj) = iω0,
dRe(λ(τ))

dτ
> 0.

Define pj = 2π/ω0 and Ωε,pj = {(0, p) : 0 < u < ε, |p −
pj | < ε}. Obviously, if |τ − τj | ≤ δ and (u, p) ∈ ∂Ωε, then
Δ(N∗,τ,p)(u + 2πi/p) = 0 if and only if τ = τj , u = 0,
p = pj . Thus the assumptions (A4) in [8] holds.

Putting

H±(N∗, τj , 2π/ω0)(u, p) = Δ(N∗,τj±δ,p)(u+ i2π/p),

then we can calculate the crossing number as follows

γ(N∗, τj , 2π/ω0) = degB(H−(N∗, τj , 2π/ω0),Ωε,pj )
−degB(H+(N∗, τj , 2π/ω0),Ωε,pj )

= −1.

By Lemma 2, the projection of C(N∗, τj , 2π/ω0) onto
the x−space is bounded. When j > 0, we have 0 <
2π/ω0 < τj . Thus, the projection of C(N∗, τj , 2π/ω0) onto
the p−space is bounded. Lemma 3 reveals that the projection
of C(N∗, τj , 2π/ω0) onto τ−space must be positive and has
no upperbound. As a result, system (3) still has nontrivial
periodic solutions when τ > τj .

IV. NUMERICAL SIMULATION

Consider the following system

dN(t)
dt

=
4 · 0.453N(t− τ)
0.453 +N3(t− τ)

−N(t), (6)

system (6) has the unique positive equilibrium N∗ = 0.6490.
By direct computation, we can get ω0 = 0.75, τ0 = 3.3308,
τ1 = 11.7084, τ2 = 20.0859, τ3 = 28.4635, τ4 = 36.8411 · · · .
The equilibrium is stable when τ is small as shown in Fig.1.
and periodic solution exists when τ passes through the first
critical value τ0 as shown in Fig.2. When τ is sufficiently
large, periodic solutions still exist as shown in Fig.3–4.
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Fig. 1. Numerical solutions of system (6) with τ = 2.5.
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Fig. 2. Numerical solutions of system (6) with τ = 4.
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Fig. 3. Numerical solutions of system (6) with τ = 12.
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Fig. 4. Numerical solutions of system (6) with τ = 38.

V. CONCLUSIONS

In this paper, existences of local and global Hopf bifurca-
tions for a physiological control system are established. When
the time delay τ varies, the positive equilibrium loses its
stability and Hopf bifurcation occurs at that equilibrium. The
results show the existence of periodic solutions for τ far away
from the local Hopf bifurcation values.

Thus, the bifurcating periodic solutions of three delayed
models proposed by Mackey and Glass all have been investi-
gated.
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