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 Abstract—This work is an attempt to use the standard Smoothed 
Particle Hydrodynamics methodology for the simulation of the 
complex unsteady, free-surface flow in a rotating Turgo impulse 
water turbine. A comparison of two different geometries was 
conducted. The SPH method due to its mesh-less nature is capable of 
capturing the flow features appearing in the turbine, without 
diffusion at the water/air interface. Furthermore results are compared 
with a commercial CFD package (Fluent®) and the SPH algorithm 
proves to be capable of providing similar results, in much less time 
than the mesh based CFD program. A parametric study was also 
performed regarding the turbine inlet angle. 

 
Keywords—Smoothed Particle Hydrodynamics, Mesh-less 

methods, Impulse turbines, Turgo turbine.  

I. INTRODUCTION 
MPULSE water turbines operation is based on the 
interaction of a high velocity water jet with the rotating 
turbine runner. The turbine runner changes the direction of 

the flow and torque develops on its blades due to the change 
of water jet’s angular momentum. The static pressure does not 
change before and after the turbine runner. This enables the 
operation of the turbine in atmospheric environment, without 
the need of a sealed casing. The water jet is formed at the 
turbine nozzle, where the water hydraulic head is transformed 
into kinetic energy. An impulse turbine may have more than 
one nozzles, at the turbine casing around the turbine, directing 
the jet tangentially at the runner blades (Turgo turbine), or 
buckets (Pelton turbine). The nozzles are equipped with a 
needle, which is used to adjust the water flow rate through the 
nozzle to match the requested power at the generator coupled 
to the water turbine. Apart from the needle the nozzles often 
have a deflector, used to deflect the water jet from the runner, 
in case of an emergency to quickly reject load from the 
turbine. The most well known impulse turbines are the Pelton 
and Turgo turbines. Turgo turbines are designed for medium 
head applications. They have a flat efficiency curve and 
provide excellent part load efficiency, thus they can be used as 
an alternative of other turbine types, especially if there are 
large flow rate variations. The simplest Turgo turbine runner 
looks like a Pelton runner split in half at the plane of 
symmetry. The water jet enters from the one side of the runner 
and exits from the other (Fig. 1). Because of that, the escape 
of the water does not interfere with the incoming jet, or the 
other turbine blades, enabling the turbine to handle larger flow 
rates and jet diameters than a Pelton runner of the same runner 
diameter. As a result the Turgo turbine has higher specific 
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speed and smaller size than a Pelton turbine of the same 
power. The smaller diameter allows the operation at higher 
angular velocities, which in turn, makes the coupling between 
the turbine and the generator easier, avoiding the use of a 
mechanical transmission system decreasing costs and 
increasing the mechanical reliability of the system [1]. 

 

 
Fig.  1 Sketch of the flow in a Turgo turbine (up) and Turgo runner 

(down) 
 

 In impulse water turbines the developing flow of the 
impinging jet on the runner is unsteady, free-surface with 
moving boundaries, due to the runner rotation. Simulation 
with Eulerian methods is difficult [2], since special treatments 
are required for capturing the underlying phenomena. To be 
more specific, the treatments required are the Volume Of 
Fluid (VOF) method, combined with mesh refinement, for 
tracking the free-surface, and sliding meshes, for the 
connection between the moving and stationary meshes. The 
above treatments increase the computational cost and 
requirements of the simulation considerably. 

An alternative way of simulating the flow would be by 
adopting a Lagrangian point of view, using and tracking 
particles which represent the water jet and interact with the 
turbine runner. Several attempts of using Lagrangian 
framework exist in literature, with Lagrangian particle 
tracking [3] or with a Moving Particle Semi-Implicit method 
[4]. A relatively new and promising method is the Smoothed 
Particle Hydrodynamics (SPH) method which will be used in 
the present work for the simulations.  

The SPH method was initially developed by Lucy, Gingold 
and Monaghan (1977) and has been used for modeling 
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astrophysical problems in three dimensional open space [5]. 
Today SPH is extended beyond its initial purpose of 
astrophysical phenomena, for modelling the behaviour of 
solids and fluids. The application of SPH to a wide range of 
scientific areas has led to significant extensions and 
improvements of the original method [6]. SPH is a 
Lagrangian, particle, mesh-less method and has the 
advantages of tracing and resolving the free-surface without 
any special treatment [7] and describing moving/deforming 
boundaries easily.   

II. STANDARD SPH FORMALISM 
The SPH formalism relies on the use of kernel 

approximation of field functions for the calculation of the 
operators appearing in the discretization of the flow equations, 
instead of using a computational grid. In this way it is able to 
approximate derivatives or functions from unconnected and 
randomly scattered computation points. The basis of the SPH 
approximations originates from the following identity:  

 
( )∫

Ω

= ')( dxx-x'f(x')δxf
 

(1) 

where )(xf  is a function of a three dimensional position 

vector x, ( )x-x'δ  is the Dirac delta function and Ω is the 
volume of the integral that contains x. The above relation can 
be approximated using a smoothing kernel function 

( )x-x',hW :  

 ∫
Ω

−= '),'()( dxhxxf(x')Wxf
 

(2) 

A similar equation can be derived for the gradient of a 
function: 

 ∫
Ω

−∇⋅−=∇ '),'()( dxhxxWf(x')xf  
(3) 

In order the above approximations to be valid, the kernel 
function ),'( hxxW −  has to fulfil certain requirements, such 
as: 

• Unity or normalization condition : 1),'( =−∫
Ω

dxhxxW  

• Dirac function property : )'(),'(lim
0

xxhxxW
h

−=−
→

δ  

• Compact condition : 0),'( =− hxxW , for 

hkxx ⋅>− ' , where  k.h is the kernel’s support domain 

• Also the kernel function has to be even, positive and 
monotonically decreasing function.  

There are many types of kernel functions. In the present work 
the fourth–order kernel is used [8] for reasons which will be 
explained later.  

In the kernel formulation (eq. 4) q=|r|/h, with |r| the 
distance between two computational points and h a 
characteristic smoothing length. Subscript d denotes the 
dimension of the problem and the constant term α is 

π20
1  for 

3-D cases, in order to fulfil the normalization condition.   
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In the SPH method the entire system is represented with a 
finite number of particles that carry individual mass, occupy 
individual space and the characteristic quantities of the flow 
(e.g. velocity, density, pressure etc.).  Thus the continuous 
integral relations can be written in the following form of 
discretized particle approximation: 

 ∑
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In the above equations ),( hxxWW jiij −= , mj  is the j 

particle’s mass and ρj is the j particle’s density. Apart from the 
above relation for the derivative, there are the following 
alternative formulations [6], which tend to give better 
approximations than equation 6 [9]:  
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Considering the above procedure for the derivation of the 
SPH flow equations, one can notice two approximations. The 
first approximation has to do with the approximation of the 
Dirac delta with the kernel function W (equations 1, 2). As it 
was proved by Monaghan this interpolation is of, at least, 
second order of accuracy [10], due to the requirement of the 
kernel function being even. The second approximation has to 
do with the summation representation of the integral 
(equations 5, 6, 7, 8). It is proved [10] that, provided that the 
kernel function is smooth enough and particles are equi-
spaced, the error of the summation approximation is nearly 
negligible. Particle disorder and kernel inconsistency tends to 
degrade the accuracy of the method. On the other hand, 
smooth kernel functions give better approximations and are 
less sensitive to particle disorder [6, 10]. This is the main 
reason for using the specific kernel (equation 4), since higher 
order functions are smoother than lower order ones.  

Choice of the smoothing length h is also crucial for the SPH 
method, since it directly affects the support domain of the 
kernel approximation for each particle and the accuracy of the 
approximations. A small smoothing length would result in low 
accuracy due to very few particles in the support domain. On 
the other hand a large smoothing length would smooth out 
local properties. We have found that a smoothing length of 
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dx⋅3  is able to give satisfactory results for 3D simulations 
(dx is the inter-particle distance, or the particle discretization). 

Using the above approximations for a function and the 
derivative of a function, one can derive the SPH flow 
equations [8]:  
Continuity equation: 

 ijiij
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j
i m

dt
d Wu ∇⋅= ∑ρ

 
(9) 

Momentum equation:  
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where ijΠ , is a viscosity term suggested by Morris [11]. This 
term will be omitted in the rest simulations since they will be 
considered inviscid.  

An obvious consequence of the above formulations is that 
SPH approximations are symmetric. This means that the 
contribution of particle i to j in the momentum equation is 
equal and opposite to the contribution of particle j to i. This 
enables SPH to conserve both linear and angular momentum 
of the system of particles under consideration.  

III. IMPLEMENTATION DETAILS 
Pressure is calculated from an equation of state, thus the 

method is weakly compressible. The Tait equation of state is 
commonly used for modelling incompressible flows.  
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In the above equation ρ0 is the reference density and c0 is an 
artificial speed of sound, since the real speed of sound would 
require a very small timestep. In order to keep density 
variations less than 1%, the value of c0 is chosen ~10 maxV⋅ , 
according to Monaghan [10]. SPH is known to produce 
unphysical pressure oscillations due to the stiffness of the 
equation of state [12]. In order to reduce the large pressure 
oscillations at the pressure field of particles, a density re-
initialization technique [12] is adopted, and for moving the 
particles, the XSPH variant [6] is used, in which the velocities 
of the nearby particles are taken into account:  

 
ab
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(12) 

where ε is a parameter set at 0.3 for incompressible flows.  
Since in the SPH method there is no connectivity between 

individual calculation points, a static matrix neighbor list [13] 
is used to find neighboring particles. For the time integration 
of the equations the fourth–order Runge–Kutta method is 
used. Also to speed up calculations and to utilize properly 
multi-core hardware, OpenMP is used for parallelization. Due 
to the nature of SPH, calculation of continuity and momentum 
terms can be done independently for each particle. Thus SPH 
algorithm is easily parallelized, achieving great speed – up.   

IV. BOUNDARY CONDITIONS 
There are various ways to define solid boundaries in SPH, 

such as fictitious particles, ghost particles or boundary 
particles ([6], [8], [10]). In the present work, the method of 
boundary forces will be used [14], [15]. The boundary is 
described with one layer of particles which exerts Lennard-
Jones forces when fluid particles come close enough to the 
boundary.  
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for  10 ≤r
r

 
In the above formula r0 represents the range of influence of 

the Lennard-Jones forces and is considered to be equal to the 
fluid particle spacing dx. Also r  represents the inter-particle 

distance and D is a problem dependent parameter, usually set 
in the same scale as the maximum velocity in the simulation 
[6]. Apart from the boundary force, the boundary particles do 
not interact with the fluid particles in any other way. 

The bucket geometry is represented using layers of force 
particles that exert the boundary forces prescribed by the 
above formula. The boundary particles on the bucket are 
positioned at a closer inter-particle distance than the fluid 
particles in order to ensure no penetration of the boundary and 
also to make the boundary force as smooth as possible. This is 
due to the overlapping influence areas of the boundary 
particles which, for fine boundary resolution, approximate the 
actual boundary surface. 

The force that the fluid exerts on the solid boundary will be 
calculated from the reaction of the boundary forces on the 
wall. Since the forces during particle interactions are 
symmetric, the total force on a wall can be calculated by 
summing the reaction force on all wall particles. Furthermore, 
torque on each boundary particle can be calculated from the 
definition: iii FrT

rrr
×= . 

V. GEOMETRY DESCRIPTION 
The Turgo runner geometry was created using specialized 

software (Tools for Turbomachinery – T4T [16]), which uses 
as input the blade angles at each edge of the blade and the 
distance between the edges. The geometry generator forms a 
quadrilateral surface grid of points which represents the 
surface of the blade, using NURBS (fig. 2). Each quadrilateral 
element is filled up with boundary particles with inter-particle 
distance equal to dx/3 (where dx is the inter-particle distance 
for fluid particles). Apart from filling the grid with particles, 
the algorithm extrudes the surface grid in the normal direction, 
at a prescribed depth, in order to form a full 3D body, if 
required.   
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Fig. 2 Two indicative Turgo blade geometries created with the 

software T4T 

 
Fig. 3 Turgo runner geometries for the above blade geometries 

(viewed from the outlet)  

VI. CASE SET- UP 
At first two different geometries were tested and compared 

with the results of Fluent in order to determine the 
performance and the accuracy of the SPH method. The two 
geometries modeled are those presented in fig. 2. The two 
geometries differ both at the inlet and the edges and, 
consequently, at the respective angles. In order to keep 
simulation cost at a minimum, only the space between two 
turbine blades was modeled, assuming periodic flow 
conditions. Also, since the geometry used in Fluent had no 
wall thickness, the blade was modeled with only a wall layer 
with the SPH method.  

The runner hub was at 260mm radius and the tip at 500mm 
radius from the center of rotation. The nominal diameter of the 
runner was at 770mm. Also the runner consisted of 22 blades. 
The water jet had a diameter of 154mm and velocity 32m/s 
(discharge 596m3/s) and entered the runner at 25° degrees 
from the runner rotation plane. The rotational speed of the 
runner was set to 44.8rad/s. Initially the two blades were 
positioned at -32° from the Y-axis (fig. 5), just before the 
impact of the water jet on the runner. The simulation duration 
was 42ms, in which the runner performs a rotation of 107°, 
enough to cover the whole interaction between the jet and the 
runner.  

The particle size used in SPH was 5mm, which proved fine 
enough after a particle dependence study [15]. The numerical 
speed of sound was set to 350m/s, larger than 10.Vjet in order 
to ensure the incompressibility of the simulated water. The 

computational mesh used in the Fluent program had a 
discretization size of 7.5mm, but refined to 5mm in areas of 
interest, such as the wall where pressure gradients appear, or 
the interface, consisting of ~500000 elements totally. Also the 
mesh consisted of two different areas (one rotating and one 
static), connected with an interface region. The VOF method 
was used to track the interfaces and second order 
discretization was used, to limit numerical viscosity.   

 

 
Fig. 4 The initial set – up for the simulated cases using SPH and 

Fluent 
 
In the following figures indicative results of the simulations 

are shown. Figures 5 and 6 show a general view of the free 
surface flow developing between the blades at a time instance 
at the middle of the water jet and turbine blade interaction. By 
comparing the respective figures one can notice some 
differences, especially at the area of jet impingement, but 
generally both the velocity distribution and the free surface 
shapes are similar. As it is expected the velocity at the turbine 
runner outlet is much lower comparing to the water jet 
velocity, due to the energy transfer of kinetic energy from the 
jet to the turbine runner. Another important remark, regarding 
the behavior of the flow, is that a portion of the water jet leaks 
out from the inlet edge of the turbine blade (fig. 5, 6). This 
detail could not be effectively captured with Fluent, since the 
mesh did not extend beyond the blade (fig. 4).  
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Fig. 5 Simulation results for geometry (a) using SPH (left) and Fluent (right), at time 21ms. SPH: Fluid particles are coloured according to 

velocity magnitude, wall particles are translucent to allow visualization of the flow between blades. Fluent: Isosurface is colored according to 
velocity magnitude.  

 

 
Fig. 6 Simulation results for geometry (b) using SPH (left) and Fluent (right), at time 21ms. SPH: Fluid particles are coloured according to 

velocity magnitude, wall particles are translucent to allow visualization of the flow between blades. Fluent: Isosurface is colored according to 
velocity magnitude. 

 
In figures 7 and 8 the area of the blade, for geometry (b), 

covered by water is shown at two different time instances. 
Again results by both programs are very close. Similar results 
are obtained for geometry (a) too. The sharpness of the SPH 

results is attributed to the coarseness of the interpolation grid 
used to obtain the respective data, note though that this mesh 
was not involved in the flow field calculations.  

 

  
Fig. 7 Free surface evolution on the wall using SPH and Fluent, at time 12.6ms. Water is represented with blue, air with red 
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Fig. 8 Free surface evolution on the wall using SPH and Fluent, at 

time 21ms. Water is represented with blue, air with red 
 

In figure 9 the developing torque (in respect to the angle of 
the blade from the Y-axis) on the turbine blade is shown for 
the two geometries tested with both programs. The torque 
calculated using SPH exhibits some oscillations, but the 
general trends are similar. For each geometry, the work of the 
torque, calculated by SPH and Fluent, on the blade is 
approximately the same (~0.5% difference). Also by 
comparing the work of the torque for the two geometries, it 
was found that blade (b) performs better, approximately by 
~4%. Torque on geometry (a) develops earlier due to the 
shape of the inlet edge; the inlet edge in this case is more 
curved and cuts the water jet earlier.   

 
Fig. 9 Torque developed on the blade surface for the two geometries 

Finally in fig. 10 the average torque distribution on the 
turbine blade is shown for the two geometries tested. In both 
cases maximum torque develops in curved areas where the 
direction of the flow changes. Geometry (b) has a smoother 
torque distribution at a larger area due to its design.           
 

 
Fig. 10 Average torque distribution through the water jet – bucket 

interaction  
 

Considering the time needed for the execution of the two 
programs, the SPH method is much faster than fluent, due to 
the ‘embarrassingly parallel’ nature of the SPH algorithm. The 
SPH algorithm only needed 10hrs on a 2xQuad – Core Xeon 
2.Ghz computer (80 CPUhrs), for each simulation. On the 
other hand Fluent needed ~10days using 4 parallel processes 
on a i7 2.97Ghz computer (960 CPUhrs).    

VII. INLET ANGLE DEPENDENCE 
From the previous results it has been shown that the 

geometry (b) performs better than geometry (a). For that 
reason geometry (b) was used to perform a further design test 
regarding the water jet inlet angle. Simulation conditions will 
be the same with those mentioned at part 6 of the current 
paper, apart from the jet inlet angle. The inlet angles which 
were tested are 20°, 30°, 35° and 40°.    

In figure 11 a comparison between the torque graphs for the 
different water jet impingement angles is made; from this 
figure it is shown that, by increasing the water jet impact 
angle, the developing torque curve becomes narrower and 
exhibits a higher peak value. This is further illustrated in 
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figure 12, where the average torque distribution is shown; 
again for larger impact angle the peak value is higher and the 
peak torque value is moved towards the center of the blade. 
By calculating the integral of the torque curve it was found 
that the maximum efficiency is achieved for the intermediate 
inlet angle of 30°, as shown in figure 11 in the respective 

graph of normalized efficiency (efficiency is normalized by 
the maximum value, i.e. the efficiency of the turbine for 30° 
inlet angle). A similar trend has been observed with our in-
house Fast Lagrangian Simulation algorithm [1], used to 
estimate the efficiency for the same conditions.   

 
 

 

 
Fig. 11 Comparative torque (left) and normalized efficiency (right) graphs depending on the water jet inlet angle 

 
 

 

 
Fig. 12 Comparative torque distribution on the turbine blade. Red corresponds to higher torque values, blue to lower 

 
 
 

VIII. CONCLUSION 
In this work the SPH method was used to assess the 

performance of two different Turgo turbine runners, in 
comparison to a commercial CFD solver. The SPH method 

proves to be able to produce similar results in much less time 
than the mesh based program. For this reason it is an attractive 
alternative for parametric studies or even design optimization 
in the complex flows appearing in Turgo and other impulse 
turbines.  
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An important advantage of SPH algorithm is that its 
inherent structure permits the easy parallelisation and adaption 
to run in GPU technology, which can dramatically enhance 
execution speed. This work is currently underway in our 
laboratory.  
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