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The Panpositionable Hamiltonicity of k-ary n-cubes
Chia-Jung Tsai and Shin-Shin Kao

Abstract—The hypercube Qn is one of the most well-known
and popular interconnection networks and the k-ary n-cube Qk

n is
an enlarged family from Qn that keeps many pleasing properties
from hypercubes. In this article, we study the panpositionable
hamiltonicity of Qk

n for k ≥ 3 and n ≥ 2. Let x, y of V (Qk
n)

be two arbitrary vertices and C be a hamiltonian cycle of Qk
n.

We use dC(x, y) to denote the distance between x and y on the
hamiltonian cycle C. Define l as an integer satisfying d(x, y) ≤
l ≤ 1

2
|V (Qk

n)|. We prove the followings:
• When k = 3 and n ≥ 2, there exists a hamiltonian cycle C

of Qk
n such that dC(x, y) = l.

• When k ≥ 5 is odd and n ≥ 2, we request that l /∈ S
where S is a set of specific integers. Then there exists a
hamiltonian cycle C of Qk

n such that dC(x, y) = l.
• When k ≥ 4 is even and n ≥ 2, we request l− d(x, y) to be

even. Then there exists a hamiltonian cycle C of Qk
n such

that dC(x, y) = l.
The result is optimal since the restrictions on l is due to the

structure of Qk
n by definition.

Index Terms—Hamiltonian, panpositionable, bipanposition-
able, k-ary n-cube.

I. INTRODUCTION

THE n-dimensional hypercube Qn is one of the most well-
known and popular interconnection networks due to its

excellent properties as the following: it is vertex-symmetric
and edge-symmetric; it is hamiltonian; it allows cycle/path
embedding when faults occur and so on. (See [1], [2] for these
results and their references). Therefore, numerous studies have
been devoted to the hypercube family [3]–[6], [11], [12].

The k-ary n-cube Qk
n is an enlarged family from Qn

that keeps many pleasing properties from hypercubes. More
precisely, each vertex of Qk

n is labeled by a n-bit finite
sequence (u0, u1, ..., un−1), where 0 ≤ ui ≤ k − 1 for
0 ≤ i ≤ n − 1, and every two vertices u and v are adjacent
if and only if |ui − vi| = 1 or k − 1 for some i and uj = vj

for any 0 ≤ j ≤ n − 1 with j �= i. It is obviously that the
hypercube Qn is indeed a subclass of the k-ary n-cube when
k = 2. Some properties of Qk

n mentioned in [6] are listed here:
it is known that Qk

n is vertex-symmetric and edge-symmetric
[3]; it is hamiltonian [4], [5]; it has diameter n�k

2 � [4], [5];
it has a recursive structure; and it contains many important
interconnection networks such as cycles (of certain lengths)
[3], meshes (of certain dimensions) [4], and even hypercubes
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(of certain dimensions) [5]. However, as opposed to Qn, Qk
n

has not received enough attention. In this article, we want to
prove the panpositionability of Qk

n. Readers can refer to [7]
for the concept of panpositionability. A hamiltonian graph G
is panpositionable if for any two different vertices u and v of
G and any integer l with dG(u, v) ≤ l ≤ |V (G)|

2 , there exists
a hamiltonian cycle C of G with dC(u, v) = l. Similar to
the hamiltonicity for the communication between processors
in an interconnection network, panpositionable hamiltonicity
allows more flexible communication in a hamiltonian network.
It is easy to see that the panpositionable hamiltonian property
inherits the hamiltonian property and advances it further [8].

The article is organized as follows. In Section 2, we
introduce the graph terminologies and notations used in this
paper, the precise definition of Qk

n, and two lemmas. In Section
3, we study the panpositionability of Qk

n, where k ≥ 3 is an
odd integer and n ≥ 2 is an integer. In Section 4, we study the
panpositionability in the bipartite version of Qk

n, where k ≥ 4
is an even integer and n ≥ 2 is an integer. Our conclusion is
given in the last section.

II. PRELIMINARIES

For the graph definitions and notations we follow [9].
G = (V,E) is a graph if V is a finite set and E is a
subset of {{u, v}|{u, v} is an unordered pair of V }. We say
that V is the vertex set and E is the edge set of G. Two
vertices u and v are adjacent if {u, v} ∈ E. A path is
represented by a finite sequence of vertices 〈v0, v1, v2, ..., vn〉,
where every two consecutive vertices are adjacent. If P
is a path represented by 〈v0, v1, v2, ..., vn〉, then we define
inv(P ) = 〈vn, vn−1, vn−2, ..., v0〉. The length of a path P is
the number of edges in P . We write the path 〈v0, v1, ..., vn〉
as 〈v0, v1, ..., vs−1, P1, vi+1, ..., vj−1, P2, vt+1, ..., vn〉, where
P1 = 〈vs, vs+1, ..., vi〉 and P2 = 〈vj , vj+1, ..., vt〉. We use
dG(u, v) to denote the distance between u and v in G, i.e.,
the length of the shortest path between u and v in G. A cycle
is a path of at least three vertices such that the first vertex is
the same as the last vertex. A hamiltonian cycle of G is a cycle
that visits every vertex of G exactly once. We use dC(u, v)
to denote the distance between u and v in a cycle C of G,
i.e., the length of the shorter path between u and v in C. A
hamiltonian graph is a graph with a hamiltonian cycle.

A hamiltonian path in a graph G is a path joining two
distinct vertices u and v of G that visits every vertex of G
exactly once. A graph G is hamiltonian-connected if there is a
hamiltonian path joining any two distinct vertices of G. Note
that any (nontrivial) bipartite graph cannot be hamiltonian-
connected, whereas a bipartite graph is hamiltonian laceable
if there exists a hamiltonian path joining every two vertices
which are in distinct partite [10].
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The concept of hamiltonian panpositionability was first
proposed by S. Kao etc. [7]. A hamiltonian graph G is
panpositionable if for any two different vertices u and v of G
and any integer l with dG(u, v) ≤ l ≤ |V (G)|

2 , there exists
a hamiltonian cycle C of G with dC(u, v) = l. A graph
G = (V0∪V1, E) is bipartite if V (G) = V0∪V1 and E(G) is
a subset of {{u, v}|u ∈ V0, v ∈ V1}. A hamiltonian bipartite
graph G is bipanpositionable if for any two different vertices
u and v of G and any integer l with dG(u, v) ≤ l ≤ |V (G)|

2
and (l− dG(u, v)) is even, there exists a hamiltonian cycle C
of G with dC(u, v) = l.

The k-ary n-cube, Qk
n, is defined for all integers k ≥ 2 and

n ≥ 1. The subclass Q2
n is the well-studied hypercube family.

The subclass Qk
1 with k ≥ 3 is defined as the cycle of length

k. The k-ary n-cube, Qk
n, for k ≥ 3 and n ≥ 2 is defined as

follows. Let u ∈ V (Qk
n) be represented by (u0, u1, ..., un−1),

where 0 ≤ ui ≤ k − 1. u and v are adjacent if and only
if |ui − vi| = 1 or k − 1 for some i and uj = vj for any
0 ≤ j ≤ n − 1 with j �= i. It is shown that Qk

n is bipartite if
k is even [11]. Here we mention some properties of Qk

n that
will be used in this article.

It is known that Qk
n is vertex-symmetric and edge-symmetric.

Moreover, given any two distinct vertices (u1, u2) and (v1, v2)
of Qk

2 , there is an automorphism of Qk
2 mapping (u1, u2)

and (v1, v2) to (m, 0) and (0, n). Each vertex of Qk
n is

represented by a n-bit tuple, and we will call the dth-bit
the dth dimension. We can partition Qk

n over dimension d
by fixing the dth element of any vertex tuple at some value
a, for every a ∈ {0, 1, ..., k − 1}. This results in k copies
Qk,0

d,n−1, Q
k,1
d,n−1, ..., Q

k,k−1
d,n−1 of Qk

n−1, with corresponding ver-
tices in Qk,0

d,n−1, Q
k,1
d,n−1, ..., Q

k,k−1
d,n−1 joined in a cycle of length

k (in dimension d) [6]. It is proven in [11], [12] that Qk
n

is hamiltonian connected for odd k and Qk
n is hamiltonian

laceable for even k.
Note that the length of a path between u and v in Qk

n, where
k ≥ 5 is an odd integer, can not be arbitrary. For example,
in Q5

2, for any two vertices u and v and d(u, v) = 1, there
exists no path P between u and v with |P | = 2. In fact,
we have the following observation. Given two vertices u =
(u0, u1, ..., un−1) and v = (v0, v1, ..., vn−1) of Qk

n. Define the
number mi = min{|ui−vi|, k−|ui−vi|}, where 0 ≤ i ≤ n−1.
Let s = max{mi : 0 ≤ i ≤ n − 1}. Then there exists no path
between u and v with length r = d(u, v) − s + k − s − 2l =
d(u, v)+k−2s−2l, where l is an integer and 1 ≤ l ≤ k

2 −s.
Consequently, we modify the concept of panpositionability of
Qk

n by saying that Qk
n is nearly-panpositionable if for any

two distinct vertices x and y of Qk
n and for any integer l′ with

d(x, y) ≤ l′ ≤ |V (Qk
n)|

2 and l′ /∈ {r : r = d(u, v)+ k− 2s− 2l
for 1 ≤ l ≤ k

2 − s}, there exists a hamiltonian cycle C of
Qk

n with dC(x, y) = l′. Therefore, in this article, we want to
prove that Q3

n is panpositionable, Qk
n is nearly-panpositionable

if k ≥ 5 is an odd integer, and is bipanpositionable if k ≥ 4
is an even integer. First of all, we prove the following two
lemmas.

Lemma 1. Let k be an integer with k ≥ 3. For any path P
with length 2 in Qk

2 , there exists a hamiltonian cycle of Qk
2

that contains P .
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(0,0)

Q 72

(0,3)
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(0,5)
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(3,4)

(4,3)

(3,1)

Fig. 1. (a) f2
−3(1, 4) and (b) h4

−2(0, 5).
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(0,0)

Q 72

(0,6)

(6,6)

(1,5)

(2,4)

(3,4)

(5,5)

(3,2)

(1,1)

Fig. 2. H�a
�b,3

(1, 1), where �a = (4,−2,−1) and �b = (4,−3, 2).

Proof: Let c, r, i be nonzero integers, c
|c| = s, r

|r| = t,
�a = (a1, a2, ..., ai) and �b = (b1, b2, ..., bi). If c = 0, then
s = 0. Similarly, if r = 0, then t = 0. To construct the
required hamiltonian cycles, we define some path patterns in
the following.

f c
r (x, y) = 〈(x, y), (x + s · 1, y), (x + s · 2, y), ..., (x +

c, y), (x + c, y + t · 1), (x + c, y + t · 2), ..., (x + c, y + r)〉;
hc

r(x, y) = 〈f0
r (x, y), fc

0 (x, y + r)〉;
H�a

�b,i
(x, y) = 〈ha1

b1
(x, y), ha2

b2
(x + a1, y + b1), ha3

b3
(x + a1 +

a2, y + b1 + b2), ..., hai

bi
(x +

∑i−1
n=1 an, y +

∑i−1
n=1 bn)〉.

Please see Fig. 1 and Fig. 2 for an illustration. Fig. 1 is
examples of f2

−3(1, 4) and h4
−2(0, 5). Note that f2

−3(1, 4) =
〈(1, 4), (2, 4), (3, 4), (3, 3), (3, 2), (3, 1)〉 and h4

−2(0, 5) =
〈f0

−2(0, 5), f4
0 (0, 3)〉 = 〈(0, 5), (0, 4), (0, 3), (1, 3), (2, 3), (3, 3),

(4, 3)〉. Fig. 2 is an example of H�a
�b,3

(1, 1), where �a = (4,−2,

− 1) and �b = (4,−3, 2). Note that
H�a

�b,3
(1, 1) = 〈h4

4(1, 1), h−2
−3(5, 5), h−1

2 (3, 2)〉
= 〈f0

4 (1, 1), f4
0 (1, 5), f0

−3(5, 5), f−2
0 (5, 2), f0

2 (3, 2), f−1
0 (3, 4)〉

= 〈(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5),
(5, 4), (5, 3), (5, 2), (4, 2), (3, 2), (3, 3), (3, 4), (2, 4)〉.

Let P = 〈u, x, v〉, where u = (u1, u2) and v = (v1, v2) in
Qk

2 . We have following cases.

Case 1. k is odd.
Case 1.1. Either u1 = v1 or u2 = v2. W.L.O.G., let
u = (0, 0), v = (2, 0) and P = 〈u, (1, 0), v〉.
Let ai = (−1)i(2 − k), for i ≤ k − 1 and ak = 0;
�b = (0,−1,−1, ...,−1). There exists a hamiltonian
cycle C = 〈(0, 0), P, (2, 0), fk−3

k−1 (2, 0), H�a
�b,k

(0, k −
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b3

a 6

(6,0)

(0,0)

(2,0)

Q 72

a1 5

(1,1)

(0,6)

(6,6)

Fig. 3. Examples of Case 1.1 and Case 1.2.1 for k = 7.

b2

a 2

b3

(6,0)

(0,0)

(1,0)

Q 72

a1 5

(1,1)

(0,6)

(6,6)

a 6 3
a 74

Fig. 4. An Example of Case 1.2.2 for k = 7.

1), (0, 0)〉. Please see Fig. 3 for an illustration.
The hamiltonian cycle in Fig. 3 is C =
〈(0, 0), P, (2, 0), f4

6 (2, 0), H�a
�b,7

(0, 6), (0, 0)〉 and H�a
�b,7

(0, 6) =
〈h5

0(0, 6), h−5
−1(5, 6), h5

−1(0, 5), h−5
−1(5, 4), h5

−1(0, 3), h−5
−1(5, 2),

h0
−1(0, 1)〉.

Case 1.2. u1 �= v1, u2 �= v2. W.L.O.G., let u = (0, 0) and
v = (1, 1).
Case 1.2.1. P = 〈u, (0, 1), v〉, where k ≥ 3.
The hamiltonian cycle is the same as in Case 1.1. Please see
Fig. 3 for an illustration.
Case 1.2.2. P = 〈u, (1, 0), v〉, where k = 3.
The hamiltonian cycle is C =
〈(0, 0), P, (1, 1), f−1

1 (1, 1), f2
−2(0, 2), (2, 0), (0, 0)〉.

Case 1.2.3. P = 〈u, (1, 0), v〉, where k ≥ 5.
Let ai = (−1)i(2 − k), for i ≤ k − 2, ak−1 = 4 − k
and ak = k − 3; �b = (0,−1,−1, ...,−1). There exists
a hamiltonian cycle C = 〈(0, 0), P, (0, 1), f0

k−2(k −
1, 1), H�a

�b,k
(0, k − 1), (0, 0)〉. Please see Fig. 4 for an

illustration. The hamiltonian cycle in Fig. 4 is C =
〈(0, 0), P, (0, 1), f0

5 (6, 1), H�a
�b,7

(0, 6), (0, 0)〉 and H�a
�b,7

(0, 6) =
〈h5

0(0, 6), h−5
−1(5, 6), h5

−1(0, 5), h−5
−1(5, 4), h5

−1(0, 3), h−3
−1(5, 2),

h4
−1(2, 1)〉.

Case 2. k is even.
Case 2.1. Either u1 = v1 or u2 = v2. W.L.O.G., let u = (0, 0)
and v = (2, 0) and P = 〈u, (1, 0), v〉.
Let ai = (−1)i(2 − k), for 3 ≤ i ≤ k,
a1 = k − 3, a2 = 1 − k and ak+1 = 0;

b2 5(5,0)

(0,0)

(2,0)

Q 62

(1,1)

(0,5)

(5,5)

a13

a 6 3

Fig. 5. Examples of Case 2.1 and Case 2.2.1 for k = 6.

b1 4

b6

(5,0)

(0,0)

(1,0)

Q 62

(1,1)

(0,5)

(5,5)

a 5 2
a 63

a1 5

Fig. 6. An Example of Case 2.2.2 for k = 6.

�b = (0, k − 1,−1,−1, ...,−1). There exists a hamiltonian
cycle C = 〈(0, 0), P, (2, 0), H�a

�b,k+1
(2, 0), (0, 0)〉. Please see

Fig. 5 for an illustration. The hamiltonian cycle in Fig. 5
is C = 〈(0, 0), P, (2, 0), H�a

�b,7
(2, 0), (0, 0)〉 and H�a

�b,7
(2, 0) =

〈h3
0(2, 0), h−5

5 (5, 0), h4
−1(0, 5), h−4

−1(4, 4), h4
−1(0, 3), h−4

−1(4, 2),
h0
−1(0, 1)〉.

Case 2.2. u1 �= v1, u2 �= v2. W.L.O.G., let u = (0, 0) and
v = (1, 1).
Case 2.2.1. P = 〈u, (0, 1), v〉
The hamiltonian cycle is the same as in Case 2.1. Please see
Fig. 5 for an illustration.
Case 2.2.2. P = 〈u, (1, 0), v〉
Let ai = (−1)i(k − 2), for 2 ≤ i ≤ k − 2,
a1 = 1 − k, ak−1 = 4 − k and ak = k − 3; �b =
(k−2,−1,−1, ...,−1). There exists a hamiltonian cycle C =
〈(0, 0), P, (1, 1), (0, 1), H�a

�b,k
(k−1, 1), (0, 0)〉. Please see Fig. 6

for an illustration. The hamiltonian cycle in Fig. 6 is C =
〈(0, 0), P, (1, 1), (0, 1), H�a

�b,6
(5, 1), (0, 0)〉 and H�a

�b,6
(5, 1) =

〈h−5
4 (5, 1), h4

−1(0, 5), h−4
−1(4, 4), h4

−1(0, 3), h−2
−1(4, 2), h3

−1(2, 1)〉.
The lemma is proved.
To facilitate our derivation in the following, we define

some path patterns. We shall use xi
0, x

i
1, x

i
2, ..., x

i
kn−1−1

to denote the kn−1 vertices of Qk,i
d,n−1 for some d.

For simplicity, denote Qk,i
d,n−1 as Qk,i

n−1. Let the path
p(xi

a, xi
b) = 〈xi

a, xi
a1

, xi
a2

, ..., xi
b〉 and ai = (a + i mod

kn−1). For example, if kn−1 = 64, then p(xi
60, x

i
2) =

〈xi
60, x

i
61, x

i
62, x

i
63, x

i
0, x

i
1, x

i
2〉. It is known that there exists a

hamiltonian cycle in Qk
n−1 [4]. Thus xi

a and xi
a+1 are adjacent

and so are xi
a and xi+1

a .

Lemma 2. Let k be an integer with k ≥ 3. For any path P
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p x x1 1
4 2( ( , )) p x x4 4

4 2( , )

x 44x 04 x14 x 24 x 34

x 43x 03 x13 x 23 x 33

x 02

x 01

x 00

x 42x 32x 22x12

nQ
5,0
1 nQ

5,3
1nQ

5,2
1nQ

5,1
1 nQ

5,4
1

P
p x x2 2
4 2( , ) p x x3 3

4 2( ( , ))

Fig. 7. An Example of Case 1 with k = 5.

with length 2 in Qk
n, there exists a hamiltonian cycle of Qk

n

that contains P .

Proof: The lemma will be proved by mathematical
induction. By Lemma 1, the statement holds for Qk

2 . Using
the induction hypothesis, we assume that the statement holds
for Qk

n−1,where n ≥ 3. Now we want to prove that the
lemma is true for Qk

n. There are three cases.

Case 1. P is in Qk,i
n−1. W.L.O.G., let i = 0.

By the induction hypothesis, there exists a hamiltonian cycle
C0 of Qk,0

n−1 that contains P . Let P = 〈x0
0, x

0
1, x

0
2〉 and

C0 = 〈x0
0, P, x0

2, x
0
3, ..., x

0
kn−1−1, x

0
0〉. Since Qk

n−1 is hamil-
tonian [4], let the hamiltonian cycles in Qk

n−1 be Ci =
〈xi

0, x
i
1, x

i
2, x

i
3, ..., x

i
kn−1−1, x

i
0〉.

1) k is odd. Then the hamiltonian cycle is
C = 〈x0

0, P, x0
2, x

0
3, x

1
3, x

2
3, ..., x

k−1
3 , p(xk−1

4 , xk−1
2 ),

inv(p(xk−2
4 , xk−2

2 )), p(xk−3
4 , xk−3

2 ), inv(p(xk−4
4 , xk−4

2 )),
..., p(x2

4, x
2
2), inv(p(x1

4, x
1
2)), p(x0

4, x
0
0), x

0
0〉.

2) k is even. Then the hamiltonian cycle is
C = 〈x0

0, P, x0
2, x

0
3, x

1
3, x

2
3, ..., x

k−1
3 , inv(p(xk−1

4 , xk−1
2 )),

p(xk−2
4 , xk−2

2 ), inv(p(xk−3
4 , xk−3

2 )), p(xk−4
4 , xk−4

2 ), ...,
p(x2

4, x
2
2), inv(p(x1

4, x
1
2)), p(x0

4, x
0
0), x

0
0〉.

Please see Fig. 7 for an illustration, where the hamiltonian
cycle in Fig. 7 is C = 〈x0

0, P, x0
2, x

0
3, x

1
3, x

2
3, x

3
3, x

4
3, p(x4

4, x
4
2),

inv(p(x3
4, x

3
2)), p(x2

4, x
2
2), inv(p(x1

4, x
1
2)), p(x0

4, x
0
0), x

0
0〉.

Case 2. P passes through two Qk,i
n−1. W.L.O.G., those two are

Qk,0
n−1 and Qk,1

n−1.
Let P = 〈x0

0, x
0
1, x

1
1〉. In [11], [12], it has been shown that

there exists a hamiltonian path 〈xi
1, p(xi

1, x
i
0), x

i
0〉 in Qk,i

n−1.
1) k is odd. Then the hamiltonian cycle is

C = 〈x0
0, P, x1

1, x
2
1, x

3
1, x

4
1, ..., x

k−1
1 , p(xk−1

2 , xk−1
0 ),

inv(p(xk−2
2 , xk−2

0 )), p(xk−3
2 , xk−3

0 ), inv(p(xk−4
2 , xk−4

0 )),
..., p(x2

2, x
2
0), inv(p(x1

2, x
1
0)), p(x0

2, x
0
0), x

0
0〉.

2) k is even. Then the hamiltonian cycle is
C = 〈x0

0, P, x1
1, x

2
1, x

3
1, x

4
1, ..., x

k−1
1 , inv(p(xk−1

2 , xk−1
0 )),

p(xk−2
2 , xk−2

0 ), inv(p(xk−3
2 , xk−3

0 )), p(xk−4
2 , xk−4

0 ), ...,
p(x2

2, x
2
0), inv(p(x1

2, x
1
0)), p(x0

2, x
0
0), x

0
0〉.

Please see Fig. 8 for an illustration, where the hamiltonian
cycle in Fig. 8 is C = 〈x0

0, P, x1
1, x

2
1, x

3
1, inv(p(x3

2, x
3
0)),

p(x2
2, x

2
0), inv(p(x1

2, x
1
0)), p(x0

2, x
0
0), x

0
0〉.

Case 3. P passes through three Qk,i
n−1.

It is known that we can partition Qk
n over dimension d by

fixing the dth element of any vertex tuple at some value a, for

p x x2 2
02( , )p x x0 0

02( , )

x 02 x12 x22 x 32

p x x1 1
02( ( , )) p x x3 3

02( ( , ))

x 00 x10 x 20

x 01 x11 x 21 x 31P
nQ
5,0
1 nQ

5,3
1nQ

5,2
1nQ

5,1
1

Fig. 8. An Example of Case 2 with k = 4.

v

u

v

u

v

u

v

u

v

u

v

u

v

u

Fig. 9. Illustrations of Lemma 3.

every a ∈ {0, 1, ..., k − 1}. In this case, P = 〈u, x, v〉 passes
through three Qk,i

n−1, i.e., u, x and v have the same value in at
least one element of vertex tuple. Hence this case is equivalent
to Case 1.

By the mathematical induction, the lemma is proved.

III. THE PANPOSITIONABILITY OF Qk
n , WHERE k ≥ 3 IS AN

ODD INTEGER AND n ≥ 2 IS AN INTEGER.

Lemma 3. Q3
2 is a panpositionable hamiltonian graph.

Proof: There are two cases: Case 1. u = (0, 0) and v =
(1, 0); Case 2. u = (1, 0) and v = (0, 1). By brute force, we
construct the required hamiltonian cycles. Please see Fig. 9.

Theorem 1. Q3
n is a panpositionable hamiltonian graph.

Proof: The theorem is proved by mathematical induction
using Lemma 3 as base case. The detailed derivation is
skipped.

Lemma 4. Let k be an odd integer with k ≥ 5. Then Qk
2 is

nearly-panpositionable.

Proof: The proof is by brute force and hence is skipped.

Theorem 2. Let k be an odd integer with k ≥ 5. Qk
n is nearly-

panpositionable hamiltonian.

Proof: We will prove the theorem using the mathematical
induction. By Lemma 4, Qk

2 is nearly-panpositionable
hamiltonian. With the induction hypothesis, we assume
that Qk

n−1 is nearly-panpositionable hamiltonian for some
n ≥ 3. We need to show that Qk

n is nearly-panpositionable
hamiltonian. Let u, v ∈ Qk

n and l be an integer with
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p h h2 2
50( , )

p t t3 3
02( , )

z10

z19
z110

L19

k
nQ
,1
1

k
nQ
,2
1

k
nQ
,3
1

U 3

Fig. 10. U3 for r = 3 and l′ = 9.

d ≤ l ≤ |Qk
n|

2 , where d = dQk
n
(u, v).

Case 1. u, v ∈ Qk,i
n−1. W.L.O.G., let i = 0.

Obviously, dQk
n−1

(u, v) = d.

Case 1.1. d ≤ l ≤ kn−1−1
2 .

By the induction hypothesis, there exist a hamiltonian cycle
Ci

l = 〈xi
0, x

i
1, ..., x

i
l, ..., x

i
kn−1−1, x

i
0〉 in Qk,i

n−1 for u = x0
0

and v = x0
l . Then we have the hamiltonian cycle C =

〈x0
0, p(x0

0, x
0
l ), x

1
l , x

2
l , ..., x

k−1
l , p(xk−1

l+1 , xk−1
l−1 ), inv(p(xk−2

l+1 ,

xk−2
l−1 )), p(xk−3

l+1 , xk−3
l−1 ), inv(p(xk−4

l+1 , xk−4
l−1 )), ..., p(x2

l+1, x
2
l−1),

inv(p(x1
l+1, x

1
l−1)), p(x0

l+1, x
0
kn−1−1), x

0
0〉.

Case 1.2. kn−1−1
2 + 1 ≤ l ≤ |Qk

n|
2 .

By the induction hypothesis, for any two vertices x, y ∈
V (Qk

n−1) and 1 ≤ l′ ≤ kn−1−1 there exists a hamiltonian cy-
cle C of Qk,i

n−1 with dC(x, y) = l′. We set x = zi
0 and y = zi

l′ ,
then the hamiltonian cycle will be 〈zi

0, p(zi
0, z

i
kn−1−1), z

i
0〉.

Split the hamiltonian cycle into two pathes Li
l′ and Li

l′ by
letting Li

l′ = p(zi
0, z

i
l′) and Li

l′ = p(zi
l′+1, z

i
kn−1−1).

In [12], it is shown that for all x, y ∈ Qk,i
n−1, there exists

a hamiltonian path Hi of Qk,i
n−1 between x and y. Define

Hi = p(hi
0, h

i
kn−1−1) with x = hi

0 and y = hi
kn−1−1. By

Lemma 2, for any path with length 2 denoted by 〈ti0, ti1, ti2〉,
there exists a hamiltonian cycle T i = 〈ti0, p(ti0, t

i
kn−1−1), t

i
0〉

of Qk,i
n−1. Let ti0 = hi

j+1, ti1 = hi
j , zi

l′+1 = hi
kn−1−1,

hi
0 = zi

kn−1−1 and . Then there is a unique path U i =
〈ti2, p(ti2, t

i
0), h

i−1
j+1, p(hi−1

j+1, h
i−1
kn−1−1), z

i−2
l′+1, L

i−2
l′ , zi−2

kn−1−1,

hi−1
0 , p(hi−1

0 , hi−1
j ), ti1〉. For example, let r = 3 and l′ = 9,

then U3 = 〈t32, p(t32, t
3
0), h

2
6, p(h2

6, h
2
kn−1−1), z

1
10, L

1
9,

z1
kn−1−1, h

2
0, p(h2

0, h
2
5), t

3
1〉. Please see Fig. 10 for an illustra-

tion.

Let m and r be integers and 0 ≤ r ≤ k−1
2 such that

kn−1−1
2 − m + r · kn−1 + l′ + 1 = l. W.L.O.G., let u = x0

0

and v = x0
kn−1−1

2 −m
. For simplicity, denote xi

kn−1−1
2 −m

as

vi, xi
kn−1−1

2 −m−1
as vi

0 and xi
kn−1−1

2 −m+1
as vi

1. If r is even,

let ti1 = vi
0, ti2 = vi, z1+r

0 = x1+r
0 and z1+r

l′ = x1+r
1 . There is

x 80

nx 1
2
9 1nx 1

7
9 1 nx 1

8
9 1 nx 1

0
9 1 nx 1

1
9 1

nx 1
6
9 1

3 3
8 1z x

x 90 x 00 x10 x20

x 30

x 01 x 21
x11

nQ9

v

jh
4
1

nh 1
4
10 1

jh
4

h40
jt h5 5

1

t52 t
5
0

nh z 1
3 3
0 9 1

z x3 3
0 0

nz h 1
3 3
9 9 1

L38

L38

U 5

v01v81

v80
v8

v71

v70
v7

v61

v60

v t6 6
2

Fig. 11. An Example of Case 1.2 with k = 9 and l = 5·9n−1−17
2

.

a hamiltonian cycle

C = 〈x0
0, x

1
0, ..., x

r
0, L

r+1
l′ , p(xr

1, x
r
kn−1−1), inv(p(xr−1

1 ,

xr−1
kn−1−1)), p(xr−2

1 , xr−2
kn−1−1), inv(p(xr−3

1 , xr−3
kn−1−1)),

..., p(x2
1, x

2
kn−1−1), inv(p(x1

1, x
1
kn−1−1)), p(x0

1, v
0
0), v,

vk−1, vk−2, ..., vr+4, Ur+3, vr+4
0 , inv(p(vr+4

1 , vr+4
0 )),

p(vr+5
1 , vr+5

0 ), inv(p(vr+6
1 , vr+6

0 )), p(vr+7
1 , vr+7

0 ), ...,
p(vk−2

1 , vk−2
0 ), inv(p(vk−1

1 , vk−1
0 )), v0

1 , p(x0
kn−1−1

2 −m+2
,

x0
kn−1−1), x

0
0〉.

Please see Fig. 11 for an illustration, where m = 0, r = 2,
l′ = 8 and the hamiltonian cycle is

C = 〈x0
0, x

1
0, x

2
0, L

3
8, p(x2

1, x
2
9n−1−1), inv(p(x1

1, x
1
9n−1−1)),

p(x0
1, v

0
0), v, v8, v7, v6, U5, v6

0 , inv(p(v6
1 , v6

0)),
p(v7

1 , v7
0), inv(p(v8

1 , v8
0)), v0

1 , p(x0
9n−1−1

2 +2
, x0

9n−1−1),

x0
0〉.

If r is odd, let ti1 = vi
1, ti2 = vi, x1+r

0 = z1+r
0 and x1+r

kn−1−1 =
z1+r
l′ . There is a hamiltonian cycle

C = 〈x0
0, x

1
0, ..., x

r
0, L

r+1
l′ , inv(p(xr

1, x
r
kn−1−1)), p(xr−1

1 ,

xr−1
kn−1−1), inv(p(xr−2

1 , xr−2
kn−1−1)), p(xr−3

1 , xr−3
kn−1−1),

..., inv(p(x3
1, x

3
kn−1−1)), p(x2

1, x
2
kn−1−1), inv(p(x1

1,

x1
kn−1−1)), p(x0

1, v
0
0), v, vkn−1−1, vkn−1−2, ..., vr+4,

Ur+3, vr+4
0 , p(vr+4

1 , vr+4
0 ), inv(p(vr+5

1 , vr+5
0 )),

p(vr+6
1 , vr+6

0 ), inv(p(vr+7
1 , vr+7

0 )), ...,

p(vkn−1−2
1 , vkn−1−2

0 ), inv(p(vkn−1−1
1 , vkn−1−1

0 )),
v0
1 , p(x0

kn−1−1
2 −m+2

, x0
kn−1−1), x

0
0〉.

Case 2. u ∈ Qk,i
n−1, v ∈ Qk,j

n−1 and i �= j. W.L.O.G., let i = 0.
For any vertex xj

a in Qk,j
n−1, there exists a corresponding

vertex x0
a. Set u = x0

0 and v = xj
d′ , where d′ is the length
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Fig. 12. An Example of Case 2.1 with k = 7 and l = 3 · 7n−1 + 11.

of the shortest path between x0
0 and v = x0

d′ in Qk,0
n−1.

Note that for all i ≤ k − 1, there is a hamiltonian cycle
Ci = 〈xi

0, x
i
1, ..., x

i
d′ , ..., xi

kn−1〉 in Qk,i
n−1.

Case 2.1. l − d is even.
Let 0 ≤ r ≤ k−1

2 be an integer, d + 2(t − d′) + r · kn−1 = l,
d′ ≤ t ≤ kn−1 − 1 and e = k − 1 − r.
Let r be an odd integer. We have the hamiltonian cycle C =
〈x0

0, x
k−1
0 , xk−2

0 , ..., xk−r
0 , inv(p(xk−r

1 , xk−r
kn−1−1)), p(xk−r+1

1 ,

xk−r+1
kn−1−1), inv(p(xk−r+2

1 , xk−r+2
kn−1−1)), p(xk−r+3

1 , xk−r+3
kn−1−1), ...,

inv(p(xk−3
1 , xk−3

kn−1−1)), p(xk−2
1 , xk−2

kn−1−1), inv(p(xk−1
1 ,

x−1
kn−1−1)), x

0
1, p(x0

2, x
0
d′−1), p(x0

d′ , x0
t ), inv(p(x1

d′ , x1
t )), x

2
d′ ,

..., xj
d′ , ..., xe

d′ , inv(p(xe
d′+1, x

e
d′−1)), p(xe−1

d′+1, x
e−1
d′−1),

inv(p(xe−2
d′+1, x

e−2
d′−1)), p(xe−3

d′+1, x
e−3
d′−1), ..., inv(p(x3

d′+1, x
3
d′−1)),

p(x2
d′+1, x

2
d′−1), inv(p(x1

t+1, x
1
d′−1)), p(x0

t+1, x
0
0), x

0
0〉.

Please see Fig. 12 for an illustration, where r = 3,
d′ = 5, t = 7 and the hamiltonian cycle is C =
〈x0

0, x
6
0, x

5
0, x

4
0, inv(p(x4

1, x
4
7n−1−1)), p(x5

1, x
5
7n−1−1), inv(p(x6

1,
x6

7n−1−1)), x
0
1, p(x0

2, x
0
7), inv(p(x1

5, x
1
7)), x

2
5, x

3
5, inv(p(x3

6, x
3
4)),

p(x2
6, x

2
4), inv(p(x1

8, x
1
4)), p(x0

8, x
0
0), x

0
0〉.

Let r be an even integer. We have the hamiltonian cycle C =
〈x0

0, x
k−1
0 , xk−2

0 , ..., xk−r
0 , p(xk−r

1 , xk−r
kn−1−1), inv(p(xk−r+1

1 ,

xk−r+1
kn−1−1)), p(xk−r+2

1 , xk−r+2
kn−1−1), inv(p(xk−r+3

1 , xk−r+3
kn−1−1)), ...,

p(xk−2
1 , xk−2

kn−1−1), inv(p(xk−1
1 , x−1

kn−1−1)), x
0
1, p(x0

2, x
0
d′−1),

p(x0
d′ , x0

t ), inv(p(x1
d′ , x1

t )), x
2
d′ , ..., x

j
d′ , ..., xe

d′ , p(xe
d′+1, x

e
d′−1),

inv(p(xe−1
d′+1, x

e−1
d′−1)), p(xe−2

d′+1, x
e−2
d′−1), inv(p(xe−3

d′+1, x
e−3
d′−1)), ...,

p(x2
d′+1, x

2
d′−1), inv(p(x1

t+1, x
1
d′−1)), p(x0

t+1, x
0
0), x

0
0〉.

Case 2.2. l − d is odd.
By the induction hypothesis, there exists a hamiltonian cycle
Di = 〈yi

0, y
i
1, ..., y

i
kn−1〉 in Qk,i

n−1 such that xi
0 = yi

0, xi
d′ = yi

l′

and the length l′ of the path joining yi
0 to yi

l′ in Qk,i
n−1 is the

smallest integer when l′ − d′ is odd. Let 0 ≤ r ≤ k−1
2 be an

integer, d+ l′−d′+2(t− l′)+r ·kn−1 = l, d′ ≤ t ≤ kn−1−1
and e = k − 1 − r.
Let r be an odd integer. We have the hamiltonian cycle C =
〈y0

0 , yk−1
0 , yk−2

0 , ..., yk−r
0 , inv(p(yk−r

1 , yk−r
kn−1−1)), p(yk−r+1

1 ,

yk−r+1
kn−1−1), inv(p(yk−r+2

1 , yk−r+2
kn−1−1)), p(yk−r+3

1 , yk−r+3
kn−1−1), ...,

inv(p(yk−3
1 , yk−3

kn−1−1)), p(yk−2
1 , yk−2

kn−1−1), inv(p(yk−1
1 , yk−1

kn−1−1)),
y0
1 , p(y0

2 , y0
l′−1), p(y0

l′ , y
0
t ), inv(p(y1

l′ , y
1
t )), y2

l′ , ..., y
j
l′ , ..., y

e
l′ ,

inv(p(ye
l′+1, y

e
l′−1)), p(ye−1

l′+1, y
e−1
l′−1), inv(p(ye−2

l′+1, y
e−2
l′−1)),

p(ye−3
l′+1, y

e−3
l′−1), ..., inv(p(y3

l′+1, y
3
l′−1)), p(y2

l′+1, y
2
l′−1),

inv(p(y1
t+1, y

1
l′−1)), p(y0

t+1, y
0
0), y0

0〉.

Let r be an even integer. We have the hamiltonian cycle C =
〈y0

0 , yk−1
0 , yk−2

0 , ..., yk−r
0 , p(yk−r

1 , yk−r
kn−1−1), inv(p(yk−r+1

1 ,

yk−r+1
kn−1−1)), p(yk−r+2

1 , yk−r+2
kn−1−1), inv(p(yk−r+3

1 , yk−r+3
kn−1−1)), ...,

p(yk−2
1 , yk−2

kn−1−1), inv(p(yk−1
1 , y−1

kn−1−1)), y
0
1 , p(y0

2 , y0
l′−1),

p(y0
l′ , y

0
t ), inv(p(y1

l′ , y
1
t )), y2

l′ , ..., y
j
l′ , ..., y

e
l′ , p(ye

l′+1, y
e
l′−1),

inv(p(ye−1
l′+1, y

e−1
l′−1)), p(ye−2

l′+1, y
e−2
l′−1), inv(p(ye−3

l′+1, y
e−3
l′−1)), ...,

p(y2
l′+1, y

2
l′−1), inv(p(y1

t+1, y
1
l′−1)), p(y0

t+1, y
0
0), y0

0〉.
By the mathematical induction, the theorem is proved.

IV. Qk
n IS BIPANPOSITIONABLE, WHERE k ≥ 4 IS AN EVEN

INTEGER AND n ≥ 2 IS AN INTEGER.

Lemma 5. Let k be an even integer with k ≥ 4. Then Qk
2 is

bipanpositionable.

Proof: The proof is by brute force and hence is skipped.

Theorem 3. Let k be an even integer with k ≥ 4. Qk
n is

bipanpositionable hamiltonian.

Proof: We will prove the theorem using the mathematical
induction. By Lemma 5, Qk

2 is bipanpositionable hamiltonian.
With the induction hypothesis, we assume that Qk

n−1 is
bipanpositionable hamiltonian for some n ≥ 4. We need to
show that Qk

n is bipanpositionable hamiltonian. Note that Q2
n

is bipanpositionable [7]. Therefore, Q4
n = Q2

2n is bipanposi-
tionable. It suffices to prove the cases for k ≥ 6.

The proof is similar to Theorem 2, so we’ll skip it. Readers
can follow the similar techniques in Theorem 2 to construct
the required hamiltonian cycles.

V. CONCLUSIONS

In this paper, we prove that the k-ary n-cube Q3
n is

panpositionable hamiltonian and Qk
n is nearly-papositionable

for any odd integer k ≥ 5. Moreover, we prove that Qk
n is

bipanpositionable hamiltonian for any even integer k ≥ 4. It
is known that the hypercube, Q2

n, is bipanpositionable [7].
Thus Qk

n is bipanpositionable for all even integers k ≥ 2.
The panpositionability of any k-ary n-cube has been com-

pletely studied and the result is optimal in the sense that given
any two vertices u and v, there exists no more hamiltonian
cycle on which dC(u, v) equals any of the numbers we miss
in the nearly-panpositionable Qk

n when k is odd.
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