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Abstract—A zero-field ferromagnetic Ising model is utilized to 

simulate the propagation of infection in a population that assumes a 
square lattice structure. The rate of infection increases with 
temperature. The disease spreads faster among individuals with low J 
values. Such effect, however, diminishes at higher temperatures. 
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I. INTRODUCTION 
NE of the simplest models in epidemiology separates the 
population into two discrete states: S for susceptible and 

I for infected or infective [1]. In the SI model, the time rate of 
change in number of susceptible and infected individuals 
varies is given by the following equations: 
 

SI
dt
dS β−=  (1) 

 
and 
 

SI
dt
dI β= . (2) 

 
where  β is the infection rate. To consider a closed system, we 
consider a constant population size. Thus at any given time, 
the sum of susceptibles and infectives is equal to some 
constant, say N. That is, S(t) + I(t) = N. In which case, the 
above equations yield the following solutions: 
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= β  (3) 

 
and 
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ctte
NtI −−+

= β . (4) 

 
Eq. 3 and 4 are logistic or S-curves. The point of inflection 
occurs at the critical time tc.  
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Fig. 1 A square lattice containing suceptible spin down and infected 

spin down individuals 
 
In this work, we adapt the Ising model [2] framework to 

study dynamics of disease spread. Similar to [3], we confine 
our investigation to a square lattice and impose periodic 
boundary conditions. We observe the infection rate, β, varies 
with parameters such as temperature T and neighbor 
interactions.  

II. THE MODEL 
Consider a closed community described by the square 

lattice in Fig. 1. Each site is occupied by one individual which 
can either be susceptible (spin down,  σ = -1) or infective 
(spin up, σ = +1).  The edges of the lattice are connected, thus 
forming a torus or a donut. Associate with each lattice 
configuration is a Hamiltonian which takes the form  
 

∑ ∑−=
ji yx

xyijJH
, ,

σσ , (5) 

 
Where (x,y)   {(i+1, j), (i-1, j), (i, j+1), (i, j-1)} describes the 
Von Neumann neighborhood and J is the interaction 
parameter whiich described the (coupling) strength between 
spins. 

Initially, the lattice is filled with susceptibles (all spin 
down). A random site is then selected and the corresponding 
spin flipped (from down to up). This is the first infective. For 
succeeding iterations, a randomly chosen site changes state if 
the change in energy, ΔH = Hnew - Hprevious, is less than or 
equal to zero. If ΔH > 0, the flip is accepted according to the 
probability 

THep /Δ−= , (6) 
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where T is the scaled temperature. Flipping is allowed only in 
one direction (up  down, S  I). Whenever a site is 
infected, it remains that way until the end of the simulation. 
Data presented in the next section correspond to the mean of 
10 independent trials for a population size N=100 (10 × 10 
lattice). 

III. RESULTS AND DISCUSSION 
Simulation results reveal a logistic type of behavior, which 

is characteristic of the standard SI model. Fig. 2 shows the 
propagation of infection when T=2.20 and J=1.00. At the 
onset, the spread of the disease approximates an exponential 
growth. But as time progresses, the growth slows down and 
saturates at the value of N. Since there is no recovery (flipping 
is one way), the entire community eventually becomes 
infected. The point of inflection, tc, corresponds to the time 
when 50% of the population is already affected by the disease.   

 

 
Fig. 2 Infection curve associated with T=2.2 and J=1.0 

 
Fig. 3 Critical time, tc, as a function of temperature, T 

 
Fig. 4 Temperature dependence of the infection rate 

 
Estimates of the critical time, tc, and infection rate, β, are 

obtained by using Eqn. 4 as a fitting function. Fig. 3 reveal a 
sudden drop in tc associated with a slight rise in temperature 
(from 6000 to <1000 when T was changed from 1.0 to 2.0). 
But as T is increased further, the variation in critical times 
becomes minimal. The point of inflection occurs at an earlier 
time at larger T values. Thus, the disease spreads more rapidly 
at higher temperatures. Calculated values of the rates, β, are 
plotted in Fig. 4. As T increases, β approaches a constant 
value. In our Ising-based SI model, the concept of temperature 
may be related to the level of aggression of a particular virus 
or associated to external parameters like ambient temperature 
and humidity. The concept of temperature may also be 
perceived with a broader scope to include the effects of 
cultural and socio-economic risk factors.  

Next, we present the effect of varying interaction parameter, 
J, on the infection curves. In Fig. 5(a), saturation (100% 
infective) is achieved fastest when J=0.25. The rate of spread 
of infection decreases with increasing J. This parameter may 
be interpreted as the inverse of the contact time. Lower J 
values can mean prolonged exposure to the agent or 
contagion. The effect of the parameter J on the spread of the 
disease, however, vanishes at higher temperatures. Fig. 5(b) 
shows overlapping plots, independent of the J value.  

IV. SUMMARY AND CONCLUSION 
The dynamics of the spread of infection on a two-

dimensional square lattice with periodic boundary conditions 
was analyzed using an Ising-based SI model. Beginning from 
a single infective, the disease was able to propagate faster at 
higher temperatures. Increasing the value of the interaction 
parameter, J, slowed down the infection spread. These effects, 
however, became less evident as the temperature is increased 
further. 
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Fig. 5 Effect of varying J: (a) T=2.2 and (b) T=10.0 
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