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Mechanical Structure Design Optimization by Blind
Number Theory: Time-dependent Reliability

Zakari Yaou, Lirong Cui

Abstract—In a product development process, understanding the
functional behavior of the system, the role of components in achiev-
ing functions and failure modes if components/subsystem fails its
required function will help develop appropriate design validation
and verification program for reliability assessment. The integration
of these three issues will help design and reliability engineers in
identifying weak spots in design and planning future actions and
testing program.
This case study demonstrate the advantage of unascertained theory
described in the subjective cognition uncertainty, and then applies
blind number (BN) theory in describing the uncertainty of the
mechanical system failure process and the same time used the
same theory in bringing out another mechanical reliability system
model. The practical calculations shows the BN Model embodied
the characters of simply, small account of calculation but better
forecasting capability, which had the value of macroscopic discussion
to some extent.

Keywords—Mechanical structure Design, time-dependent stochas-
tic process, unascertained information, blind number theory.

I. INTRODUCTION

THE development of mechanical design reliability

theory, the reliability of design optimization and the

stochastic time-dependent characteristics of mechanical

system reliability is gaining more attention. In that theory,

load process on the mechanical structure was considered to

Poisson Process while the actual process is much complex

and unpredictable [1-2]. The machine lifetime and the

resistance of mechanical structure degenerate with the course

of time [3-4], which is difficult to predict precisely due to the

degradation of component characteristics. A more advanced

stochastic process is employed in describing these mechanical

load and resistance.

Due to several design, state and constraint variables, the

reliability design optimization is difficult to achieve. While

applying also the advanced stochastic process in describing

time-dependent uncertain information in mechanical structure

design, this complicates further the problem as it exist

many distribution types of random variables including

complex operations among them, in every single reliability

optimization design model. The traditional stochastic method

for the complex reliability optimization model is also

very cumbersome and inadequate in solving the problem.

Therefore, it is believed the mechanical design process is
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a kind of unascertained system, which the concern/research

subject of unascertained mathematical theory.

Different from other kinds of uncertainties such as random,

fuzzy, grey and so on, the blind number theory which

is discrete and numerical tool for expressing all sorts of

uncertainty variables from the perspective of microcosm will

provide an effective solution to the above stated problem.

Up to now the unascertained mathematical theories have

been successfully applied to several research fields [6-

7]. Therefore, the blind number, as the expansion of the

unascertained mathematics, has more general description on

unascertained problems [5]. The statistic values of uncertainty

variables used by BN come from fitting special distribution

and data of the actual measurement. The practical calculation

shows that the BN model embodied the characters of simply,

small account of calculation but better forecasting capability,

which has the value microscopic discussion to some extent.

II. BN DESCRIPTION

A. Unascertained Number and Unascertained Rational Num-
ber

When decision makers are faced with information that

are certain and not to certain degree i.e. unascertained, then

this information is called as unascertained information [8].

Unascertained mathematics and grey number prove consistent

in dealing with this case and the main difference between

the two is the certain amount of unascertained number is

larger than the grey number. The most basic and simplest

unascertained number is unascertained rational number [9]

which is the expansion of real number. The blind number

theory and its application were developed on the basis of

unascertained mathematics [10-11]. It adopts the expression

type of grey variable and unascertained variable to express un-

certainty variables and thus unifying the two expression types.

The BN describes objectively the unascertained information

in details; avoid flaw of information omission and distortion

which is produced by the single real number in expressing

these amounts. Liu et al [11] have derived the mean and the

variance of BN to describe the center point and the distribution

characteristics of BN.

Let for arbitrary closed interval [a, b] so that a = x1 < x2 <
· · · < xn = b, and if function φ(x) satisfy

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩
αi, x = xi where i = 1, 2, ..., n

0, otherwise.

(1)
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and
n∑

i=1

αi = α (2)

with 0 < α ≤ 1 [a, b] and φ(x) are called unascertained

rational number with n order where {[a, b], φ(x)};

α, [a, b]; and φ(x) represent the total confidence degree;

distribution interval and confidence distribution density

function respectively.

B. BN Concept

Let R be a set of real number,and R a is the set of

unascertained rational number, g(I) is the set of grey interval

number, and let suppose that xi ∈ g(I), αi ∈ [a, b];
i = 1, 2, . . . , n and if f(x) represents a grey interval number

defined on the g(I),we get

f(x) =

⎧⎪⎪⎨
⎪⎪⎩
αi, x = xi with i = 1, 2, ..., n

0, otherwise.

(3)

when i �= j, xi �= xj and

n∑
i=1

αi = α, 0 < α ≤ 1 the function

f(x) is said to be blind number, αi is the confidence degree

of f(x) for x to be xi and α represents the overall confidence

degree of f(x).
Let a, b be real numbers so that a ≤ b, and �[a, b] = 1

2 (a+b),
and let assumed that 1

2 (a + b) is the ”core” value of grey

interval number [a, b]. The mean value of BN is given as

follow:

E(f(x)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
αi, x =

1

α

(
�

n∑
i=1

αixi

)

0, otherwise.

(4)

C. Processing unascertained information by BN

As the random variable represents usually a distribution of

probability density on a certain open interval in mathematics,

but in engineering practice the BN expression is to take the

aggregate of probabilities on limited numbers of great-narrow

interval (GNIs) as random variable’s probability density

distribution approximate [12]. Let consider X as a random

variable in normal distribution for example, its probability of

falling within [μ − 6σ, μ + 6σ] reach 100% substantially.

By dividing this interval into several GNIs (e.g. 200),

each X distribution can be considered as certain typical

distribution (usually equal distribution). Summing up those

GNIs’ probabilities can be view as random variable X’s

probability density distribution. The uncertainty of random

variable is strictly limited to a ”defined” range. Transferring

strong uncertainty to weak uncertainty on the GNI by the

result of dispersing method on the extensive interval, the

random variable then can be numerically expressed and

calculated easily. Under this principle, any uncertainty

variable (e.g random variable or fuzzy variable) whose

distribution type and parameters are known can be expressed

by BN, the narrower the GNIs, the more approximate to

original distribution function will be.

When the distribution type or parameters of uncertainty

variable are not known, the uncertainty variable can also be

expressed by BN based on statistical analysis of the known

data, and to reduce the data fitting error experts engineering

practice experience is used.

III. TIME-DEPENDENT CHARACTERISTIC OF

MECHANICAL STRUCTURE BASED ON STOCHASTIC

PROCESS

Material properties, manufacturing processes, operation

conditions, physical environment and maintenance practices

are some of the main factors determining the lifetime of

mechanical structures or machines resulting to uncertainties

in load on the mechanical structure and its structural strength.

Through out their lifetime, the load and the strength of

structure follow a stochastic process.

Let consider a probability space (Ω,F,P) and let {z(t), t ≥
0} be a standard 1-dimensional Brownian motion defined on

this probability space. Assuming {F, t ≥ 0} to be the natural

filtration generated by Brownian motion: {z(t), t ≥ 0} , i.e.

F = σ{z(t), t ≥ 0}.

Let stochastic process S satisfy Itō lemma drift-diffusion

process

dS = μSdt+ ωSdz (5)

And assuming that G = lnS, then

dG =

(
∂G

∂t
+ μ

∂G

∂S
S+

ω2

2

∂2G

∂S2 S
2

)
dt+ ω

∂G

∂S
Sdz (6)

dG =
(
μ− ω2

)
dt+ ωdz (7)

Where G, (GT − Gt), (μ − ω2)(T − t) and ω
√

(T − t)
represent a Generalized Wiener Process, a mean of normal

distribution, and a standard deviation respectively.

lnST ∼ φ

[
lnSt +

(
μ− ω2

)
(T − t), ω

√
(T − t)

]
(8)

ST and St are stochastic values of the future period (T )and

the present period (t) respectively. μ is drift rate and measure

of certainty while ω is a volatility and measure of uncertainty.

They are estimated as follow from the historical data [13]

μ = η =
1

n

n∑
i=1

ln
Si

Si−1
(9)

ω =

[
1

n− 1

n∑
i=1

(ηi − η)2

] 1
2

(10)

where ηi = ln(Si/Si−1) and ηi is the mean value of ηi
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IV. TIME-DEPENDENT DESIGN OPTIMIZATION MODEL

WITH BN

As it was assumed that the load on and the reaction of me-

chanical structures and the mechanical strength are subjected

to the stochastic process described above (8). According to

the same analysis e.g. at time t = 0, the logarithm of the load

WT and the strength δT are normally distributed to the next

time T. We get:

lnWT ∼ φ

[
lnW0 +

(
μ+ ω2

)
T, ωW

√
T

]

ln δT ∼ φ

[
ln δ0 +

(
μ+ ω2

)
T, ωδ

√
T

]

V. THE MECHANICAL RELIABILITY DESIGN MODEL

BASED ON BN THEORY

A. Model Assumptions

In the model, let a BN xi represents the time interval

variable from (i− 1)th time to ith failure time, which means

the average failure time interval t is E(xi) where t is a random

time between (i − 1)th and ith failure time. As the early

failure data does play any important role in forecasting the

future behavior of the mechanical structure, the current failure

interval can be better in forecasting the future behavior than

the early data. Therefore, E(xi) can be obtained by a constant

number A (in accordance with specific circumstances) from

(i−A)th to (i− 1)th failure time.

The followings basics can be assumed for the model

1) The test and run environment of the procedure are

identical.

2) The failure rate of the procedure within each failure

interval is a constant λ whose value is 1/E(xi), where

xi is the time variable from (i−1)th to ith failure time.

B. Model Formula

As the mathematical expectation of xi; E(xi) is mean time

between failures at t, where t is random time between (i−1)th

failure time and ith failure time. From the above assumption

(2) we get:

E(xi) = MTBF = 1/λ (11)

where E(xi) is the mathematical expectation of BN

VI. MODEL VALIDATION AND SIMULATION

Certainties and uncertainties that may result from variations

in material properties, manufacture quality, operating condi-

tions, inspection procedures and maintenance practices always

exist during machine or mechanical structure lifetime. Such

factors give rise to uncertainties in load (or reaction) on the

mechanical structure and the structural strength. Throughout

service life of machine, load and strength each is obedient

to a stochastic process. Its evolution can be simulated by the

follow stochastic process.

For example, the tensile strength of a batch of steel is tested

50 times. The yield limits is between say a = 398.5 and

b = 412.3 MPa, the number of times that the yielding points

(in MPa) arise at every interval [xi, xi+1.5] is shown in table

I.

The number of the intervals is determined as required, and the

reliability that the yielding limit value arises in each interval

can be given in accordance with the number of times that the

yielding limit value arise at the interval and with engineering

experience. Thus, subjective engineering experience can be

brought into the expression of the uncertain variables

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.007, [398, 399.5]

0.028, [399.5, 401]

0.079, [401, 402.5]

0.159, [402.5, 404]

0.226, [404, 405.5]

0.226, [405.5, 407]

0.159, [407, 408.5]

0.079, [408.5, 410]

0.028, [410, 411.5]

0.007, [411.5, 413]

0, otherwise.

(12)

When there is a lack of engineering experience, the reliability

that the yielding limit value arises in each interval can be

determined strictly in accordance with objective data in the

expression below:

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.02, [398, 399.5]

0.02, [399.5, 401]

0.06, [401, 402.5]

0.14, [402.5, 404]

0.24, [404, 405.5]

0.22, [405.5, 407]

0.16, [407, 408.5]

0.08, [408.5, 410]

0.04, [410, 411.5]

0.02, [411.5, 413]

0, otherwise.

(13)

We take MTBF as an example to explain the algorithm of

calculating the mechanical structure reliability parameters by

the BN model, in the following example (the tensile strength

of a batch of steel is tested 50 times): where xi = [xi, xi+1.5]
and x0 = 398 MPa. Finally E(xi) = 405.71 and 405.50 MPa

respectively. The namely obtained MTBF of tensile strength

of a batch of steel failure after tested 50 times is 405.71 or

405.50 MPa according to subjective engineering or the lack

or engineering experience respectively.
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TABLE I
MEASURED DATA OF YIELD LIMIT

No. of Occurrences 1 1 3 7 12

Yield Limit (MPa) x1 x2 x3 x4 x5

No. of Occurrences 11 8 4 2 1

Yield Limit (MPa) x6 x7 x8 x9 x10

Fig. 1. Reliability Histogram

VII. CONCLUSION

After a brief introduction of unascertained information and

BN theory; in this paper; a time-dependent stochastic process

analysis is applied to a mechanical structure design. Based on

this time-dependent stochastic process theory, reliability opti-

mization theory and BN theory, a time-dependent reliability

optimization model is built. The result shows that BN prove

to be an important numerical tool which is convenient and

effective in solving complex optimization design problems.

To achieve a target reliability and to ensure BN performance

optimization in the future, other issues regarding mechanical

design based on BN have to be carried on in providing accurate

forecasting capabilities on the change point.
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