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Abstract—In this paper, we have developed a method to 

compute fractal dimension (FD) of discrete time signals, in the 
time domain, by modifying the box-counting method. The size 
of the box is dependent on the sampling frequency of the 
signal. The number of boxes required to completely cover the 
signal are obtained at multiple time resolutions. The time 
resolutions are made coarse by decimating the signal. The log-
log plot of total number of boxes required to cover the curve 
versus size of the box used appears to be a straight line, whose 
slope is taken as an estimate of FD of the signal. The results 
are provided to demonstrate the performance of the proposed 
method using parametric fractal signals. The estimation 
accuracy of the method is compared with that of Katz, Sevcik, 
and Higuchi methods. In addition, some properties of the FD 
are discussed. 
 

Keywords—Box-counting, Fractal dimension, Higuchi method, 
Katz method, Parametric fractal signals, Sevcik method.  

I. INTRODUCTION 
RACTAL dimension (FD) is a useful concept in describing 
natural objects, which gives their degree of complexity 

[1], [2]. There are various closely related notions of fractional 
dimension. From the theoretical point of view, the most 
important are the Hausdorff dimension, the packing dimension 
and, more generally, the Rényi dimensions. On the other hand, 
the box counting dimension and correlation dimension are 
widely used in practice, may be due to their ease of 
implementation. The term FD generally refers to any of the 
dimension used for fractal characterization. This includes 
capacity dimension, correlation dimension, information 
dimension, Lyapunov dimension and Minkowski-Bouligand 
dimension [3]. However, in fractal geometry, the FD is a 
statistical quantity that gives an indication of how completely 
a fractal appears to fill the space, as one zooms down to finer 
and finer scales, accordingly there are many specific 
definitions of fractal dimension.  

The FD is a measure of how complicated a self-similar 
figure is. Hence the FD can be considered as a relative 
measure of number of basic building blocks that form a 
pattern [4]. According to Mandelbrot [1], a fractal is a set for 
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which the Hausdorff-Besicovitch dimension ( Dh ) strictly 

exceeds the topological dimension. Hence, every set with a 
non integer dimension D  is a fractal. The Hausdorff 
dimension (also known as the Hausdorff-Besicovitch 
dimension) is a non-negative real number associated to any 
metric space. To define the Hausdorff dimension for a set X  
as non-negative real number (that is a number in the half-
closed infinite interval [0, )∞ ), we first consider the number 

( )N r  of balls of radius at most r  required to cover X  
completely. Clearly, as r  gets smaller ( )N r  gets larger. Very 

roughly, if ( )N r  grows in the same way as 1 Dr  as r  is 
squeezed down towards zero, then we say X  has dimension 
D . In fact the rigorous definition of Hausdorff dimension is 
somewhat roundabout, since it first defines an entire family of 
covering measures for X . It turns out that Hausdorff 
dimension refines the concept of topological dimension and 
also relates it to other properties of the space such as area or 
volume.  

The fractal dimension measures, described above, are 
derived from fractals which are formally (mathematically) 
defined. However, many real-world phenomena exhibit fractal 
properties. So it can often be useful to characterize the fractal 
dimension of a set of sampled data. The fractal dimension 
measures of time series cannot be derived exactly but must be 
estimated. Practical dimension estimates are very sensitive to 
numerical or experimental noise, and particularly sensitive to 
limitations on the amount of data. 

The FD estimation algorithms give a number regardless of 
whether or not the object is fractal. It is also possible to have 
two different fractal sets having the same dimension. In 
addition, a fractal property can be spatial, it can be temporal, 
as in a series of data taken from a system over an interval of 
time, and it can be exact or statistical. Hence, the FD is 
applicable to sets that may not be self similar over all ranges 
of space or time. Furthermore, it is still possible and useful to 
apply the general idea to a natural system and define its FD. 
However, no physical object is truly a fractal because it does 
not have self-similar properties at all scales. This leads to the 
fact that fractal dimension analysis does not differentiate 
between fractal and non-fractal objects, but rather gives a 
measure of the appropriateness of describing the object using 
fractal models. 
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Thus, any planar curve (waveform) with 1 2Dh< <  is a 

fractal. The FD is an important characteristic of signals and 

contains information about their structural complexity. In the  

 
 

Fig. 1. Comparison of smooth and irregular waveforms, (a) sinusoidal signal of 10 Hz, (b) sinusoidal signal of 30 Hz, (c) random signal. 
 
field of signal processing, the fractal models have proven 
useful for many applications. There are numerous signals such 
as speech [5], fractional Brownian motion (fBm), 
physiological signals [6]-[8], etc., with fractal properties such 
that their graph is a fractal set. Consequently the FD could 
reflect the signal complexity in the time domain. This 
complexity could vary with sudden occurrence of transient in 
signals. We would like to measure the complexity of signal 
waveforms by estimating their FD.  

Consider the graph of functions as shown in the Figure 1, 
smooth sinusoidal curve of frequency 10 Hz, 20 Hz and a 
highly irregular random curve. Upon embedding these curves 
into a plane, it is evident that the irregular curve fills a larger 
region of the plane than the smooth one. The three curves 
have signal lengths of 6.6679, 18.9890 and 50.6929 
respectively, and zero crossing rates of 4, 10 and 50 
respectively. One definition of FD used in practice is a 
measure of this space filling property. Note that nothing has 
been stated explicitly regarding the self similarity of the 
irregular curve. Fractal dimension analysis is done because it 
gives a measure of the appropriateness of describing the 
structural complexity of objects.  

FD estimators will give a number regardless of whether or 
not the object is fractal. The conceptual description of fractal 
dimension as a measure of an object’s space filling property, 
establishes a basis for developing algorithms to estimate FD 
from experimental data. The FDs range from 1 to 2 for planar 
curves. To investigate the fractal structure experimentally, it is 
necessary to be able to relate the results of observation to 
fractal measures, such as dimension.  

A very popular approach to obtain FD of signals is the box-
counting method [9]. However, for signals the FD obtained by 
using box counting method is highly sensitive to the sampling 
frequency, and some times lead to over or under determination 
of the FD. In addition, most of the time series waveforms exist 
in the affine space where the axes have incompatible units, 
and there is no natural scaling between them. This means that 
distance along the time axis cannot be compared with distance 
along the amplitude axis. 

The box counting method appears more suitable for 
determining the FD of self similar mass fractals [9], and less 
suited for measuring FD of self affine boundary fractals such 

as time series waveforms. For self affine boundary fractals, 
the measuring unit in determining their FD ought to be a 
straight line. However, measuring a profile by using a line 
with a varying resolution is computationally inefficient. Some 
times the FD of waveforms computed using box counting 
method is more than 2, which is in conflict with the definition 
of fractals in two dimensional spaces. These limitations 
necessitated definition of a new algorithm which is not only 
conceptually valid but also has a lower time complexity than 
the box counting method.  

Many studies have been carried out to investigate the 
reliability of FD estimation with different algorithms applied 
to different FDs [10]-[13]. Numerous issues like quantization, 
number of data points, sampling methods, and role of noise 
have been addressed to help explain the existence of errors. 
Fractal complexity of signals in time domain is calculated 
using Katz’s and Sevcik’s methods. In time domain the 
method seems to be simple and may be used in many 
applications. The computation is quicker and simple to be 
done in real time. 

The FD calculated this way is a measure of complexity of 
the curve representing the signal in a plane. Here the 
complexity refers to the degree of space filling of the signal in 
the 2D plane. The complexity of a signal may be characterized 
by its FD directly in time domain. Generally, signal 
complexity can be analyzed in time domain, frequency 
domain, or in the phase space of the system which generated 
the signal. Analysis in the frequency domain requires Fourier 
or wavelet transform of the signal, while analysis in the phase 
space requires embedding of the data in a higher dimensional 
space. However, the FD is a descriptive quantitative measure, 
a single number that quantifies complexity of a signal. The 
estimation of FD adopted here is derived from an operation 
directly on the signal and not on any phase space. This means 
that the data series does not have to be embedded into higher 
dimensional space for the FD estimation.  

For signals, FD range between one and two. True 
waveforms can never become sufficiently convoluted to fill a 
plane. Thus the waveforms will never have FDs 
approximating the dimensionality of a plane ( 2.0D = ). The 
fractal dimensions of waveforms are a powerful tool for 
detection of transients in signals. FD analysis is frequently 
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used in biomedical signal processing applications including 
EEG data analysis. In particular, in the analysis of EEG, this 
feature has been used to identify and distinguish specific 
states of physiological function.  

The FD and its variants are popular measures for 
characterizing complexity of signals in various fields [5], [14], 
[6]. In biomedical signal analysis, the FD is used as a 
quantitative measure to estimate complexity of discrete time 
physiological signals [7], [8], [12]. Such analysis of 
complexity of biomedical signals helps us to study 
physiological processes underlying the systems. The FD can 
be used to study dynamics of transitions between different 
states of systems like brain, as also in various physiological 
and pathological conditions [10], [14], [7]. More details on the 
general notion of FD and various ways to estimate FD of 
signals are discussed elsewhere [9], [16], [17].  

There are various closely related notions of fractal 
dimension, and many algorithms have been proposed in the 
literature to estimate the FD of signals or time series data [17], 
[18]. It is proposed that the Higuchi’s method of computation 
of FD is the robust and gives accurate estimation results [10], 
[11]. This method is also suitable for estimating FD of short 
segment of a time series, and hence it can be used for 
computing moving window estimates of FD for nonstationary 
signals, by segmenting them into short stationary frames. 

Despite its popularity, issues of interpretation of the FD 
measure computed from signals and its relationship to their 
parameters have not been thoroughly addressed. The effect of 
various signal parameters such as amplitude, frequency, 
number of harmonics, noise power, signal bandwidth, etc., on 
its FD has not been addressed so far. For a particular class of 
signals, called 1 / f process, where the power spectrum of the 

process follows a power law, that is ( ) /S f c f
γ

≈ , where 

( )S f  is the power spectrum, c  is a constant, f is frequency 
and γ  is the power spectrum exponent, there exists a linear 
relationship between the power spectrum exponent and FD of 
the process, given by (5 ) / 2FD γ= −  as described in [19].  
However, the real world processes do not strictly follow the 
power law behavior and thus distribution of power over the 
frequencies may not follow the strict 1 / f rule. The power may 
be concentrated over some specific frequencies. In such cases 
one has to find the relationship between the power spectrum 
of the signal and its FD numerically.  

In this chapter, we deal with the problem of estimating FDs 
of topographically one dimensional signal waveforms, and we 
propose a new method, refer it as multiresolution box-
counting method (MRBC), to estimate fractal dimension of 
signal waveforms. A little modification of this method results 
in another method; we refer it as multiresolution length 
method (MRL), which is also used to estimate FDs of signals. 
We test estimation accuracy of the proposed methods using 
parametric fractal signals such as, Weierstrass cosine function 
(WCF), Weierstrass-Mandelbrot cosine function (WMCF), 
Knopp function (KF), and fractional Brownian motion (fBm) 

signals, and also compare the estimation performance with 
that of Katz, Sevcik, and Higuchi methods. We show that our 
method performs comparable to Higuchi method but 
computationally less time consuming than the Higuchi 
method. In addition, we also study the issue of interpretation 
of the FD measure computed from signals and its relationship 
to the parameters such as amplitude, frequency, and noise 
power. 
 

II. METHODS 

A. Box-counting method 
There are many notions of FD and many algorithms are 

available to calculate them for topologically one dimensional 
curves [9], [16], the box-counting dimension is one among 
them. The box-counting dimension is motivated by the notion 
of determining space filling properties of a curve. In this 
approach, the curve is covered with a collection of area 
elements (square boxes), and the number of elements of a 
given size is counted to see how many of them are necessary 
to cover the curve completely. As the size of the area element 
approaches zero, the total area covered by the area elements 
will converge to the measure of the curve. This can be 
expressed mathematically as 

lim (log ( ) / log(1 / ))
0

D N r rB r
=

→
,                                                                     

where ( )N r is the total number of boxes of size r  required to 
cover the curve entirely. However in practice, the box-
counting algorithm estimates FD of the curve by counting the 
number of boxes required to cover the curve for several box 
sizes, and fitting a straight line to the log-log plot of 

( )N r versus r . That is 

log ( ) log(1 / )N r D r CB= + ,                                                                         
where C  is a constant. The slope of the least square best fit 
straight line is taken as an estimate of the box-counting 
dimension DB  of the curve. This procedure is also called grid 
method and involves two dimensional processing of the curve 
at multiple grid sizes, which is computationally highly time 
consuming. In order to avid this drawback, we propose a new 
method of computation of signal waveforms by computing 
box areas at multiple time resolutions. 

B. Multiresolution Box-counting Method  
In this section, we propose a method to compute fractal 

dimension of waveforms. The proposed approach is described 
as follows. Consider a discrete time signal 

{ }(1), (2), ..., ( )S s s s N= of sampling frequency fs  and having 
N  number of sample points. Each of the sample points ( )s i  in 
the sequence is represented as ( ( ), ( ))x i y i , 1, 2, ...,i N= . The 

( )x i are the abscissa, representing the monotonically 
increasing time at which the signal is sampled, and ( )y i  are 
the ordinate values. Here, we have assumed that the discrete 
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time signal is sufficiently highly sampled with a rate of 1 / fs , 
at least two times the Nyquist rate. At this sampling rate, the 

sample values represent the signal at the finest time resolution 
1 /r fs= . Then the following calculations are made. 

 

 
Fig. 2. Multiresolution box-counting approach for sinusoidal signal, (a) at the finest time resolution, and (b) and (c) at the next two coarse time 
resolution. 

Step (1): 
Consider the two points ( )s i  and ( 1)s i + on the curve 

representing the signal. The time interval between the points is 
( 1) ( ) 1 /dt x i x i fs= + − = . The height between the points is 

( 1) ( )h y i y i= + − . The size of the box considered to cover the 
two points is dt , and the number of boxes of that size required 

to cover the points is ( ) /b i h dt= ⎡ ⎤⎢ ⎥ , where a⎡ ⎤⎢ ⎥  represents 

( )ceil a , the highest integer near to a . Then the value of 
( 1)y i +  is updated as follows. If 0h > , then 

( 1) ( )y i y i h dt+ = + − , and if 0h < , then ( 1) ( )y i y i h dt+ = − + . 
The procedure is repeated for all the points on the curve until 
the end point is reached. The total number of boxes required 
to cover the curve at the resolution r  is calculated as 

( ) ( ( ))B r sum b i= , 1, 2, ..., 1i N= − . This procedure is depicted in 
Figure 2(a), for a sinusoidal curve. 

Step (2): 
Now, consider the curve at the next coarse time resolution, 

by decimating the signal by a factor of two. That means, we 
leave every alternate points on the curve to get a time 
resolution 2 /r fs= . Now, the size of the box considered to 

cover the curve is 2 /dt fs= . The same procedure described in 
the step (1) is repeated at this time resolution and the total 
number of boxes required to cover the entire curve is 
calculated. The Figure 2(b) explains this step. 

Step (3): 
By repeating the above steps for many time resolutions, we 

get the number of boxes ( )B r to cover the curve, for 

1 / , 2 / , ..., /r f f R fs s s= , where /R fs is the maximum coarse 
time resolution at which the curve is looked at. 

Step (4): 
The least-square linear best fitting procedure is applied to 

the graph ( , ( ))r B r . The coefficient of linear regression of the 
plot of log( ( ))B r  versus log(1 / )r  is taken as an estimate of the 
fractal dimension FD  of the discrete time signal, and denoted 
as De .  

In Figure 3, the plot of log( ( ))B r  versus log(1 / )r , and least 
square best fit straight line to the graph (1 / , ( ))r B r  is shown 
for three fractal signals of different FDs. The fractal signals 
used here are explained in detail in the next section. 

Since the total number of boxes to cover the curve is 
calculated at multiple time resolutions, we refer this approach 
to as multiresolution box counting (MRBC) method. The sizes 
of the box considered are the time resolutions at which the 
curve/signal is looked at. A variant of this method is also 
proposed which is discussed below.  

C. Multiresolution Length Method  
The approach that we propose is described as follows. 

Consider a time series { }(1), (2), ..., ( )S s s s N= of length N . 

Each point ( )s i  in the sequence S  is represented as ( , )x yi i , 

1, 2, ...,i N= . The xi  are abscissa and yi  are ordinate values. 

[0, ]x ti ∈ . If the points (1)s  and (2)s are represented as 

( , )1 1x y and ( , )2 2x y  respectively, the Euclidean distance 
between them can be calculated as  

2 2
( 1, 2) ( ) ( )1 2 1 2dist s s x x y y= − + − .                                                         

We have assumed that the observed time series is 
sufficiently sampled with a high sampling rate. This time 
series is considered as a geometric object (curve) and further 
calculations are made on the object.  

The curve S  is a time series looked at the finest time 
resolution say 1r . The total length of the curve at this 
resolution is calculated as  

1
( , )11

N
L dist s si ii

−
∑= +=

.                                                                                   

This is the length 1Lr  at resolution 1 /1r fs= , where fs  is 
the sampling rate of the time series. Consider the time series at 
next coarse resolution by eliminating every alternate point 
(decimation by a factor 2). Now the resolution becomes 

2 /2 sr f= . Calculate the length 
2

Lr  of the curve at this new 

time resolution. It is to be noted that as the resolution becomes 
coarser the estimate of length of the time series becomes less 
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accurate. Repeat the above procedure for different resolutions 
, , ...,1 2r r r rp= , where rp  is the maximum coarsest resolution 

at which the length of the curve is calculated. Let the lengths 
be denoted as Lr , , , ...,1 2r r r rp= . Draw a log-log graph of 

(1 / )rk  versus ( / )L rr  and compute the slope α  of the best fit 
straight  

 
Fig. 3. Least square straight line fitting to log-log plot of total number of boxes required to cover the curve versus the size of the box (time 
resolution), for (a) Weierstrass cosine function, (b) Weierstrass-Mandelbrot cosine function (c) Knopp function, and (d) Fractional Brownian 
motion.  
 
line to graph of points by linear regression method. Finally the 
fractal dimension of the time series is calculated as D α= . We 
refer to this method as multiresolution length-based (MRL) 
method.  

There are many methods available in the literature that deal 
with estimation of FD of time series waveforms. The methods 
such as Katz, Sevcik and Higuchi are considered here to 
compare the estimation accuracy results with the above 
proposed methods. They are explained briefly now. 

D. Katz Method 
This method is explained as follows [20]. Consider a 

waveform with sequence of points [ , , ..., ]1 2
Ts s sN , where T  

represents transposition and N  is the total number of samples 
in the sequence. The graph of the sequence is represented as 

( , )s x yi i i= , 1, 2, ...,i N= , xi  are values of abscissa and yi , are 

values of ordinate. In time series waveforms x ti i= , where ti , 

1, 2, ...,i N=  are monotonically increasing time instants at 

which the waveform is sampled. If the points 1s  and 2s are 

represented as 1 1( , )x y  and 2 2( , )x y  respectively, the Euclidean 
distance between the points is computed as  

2 2
1 2 1 2 1 2( , ) ( ) ( )dist s s x x y y= − + − .                                                        

The fractal dimension of the waveform representing the 
time series is estimated using Katz method as follows. 

The FD of the curve can be defined as  
log( )
log( )

LD
d

= ,                                                                                              

where L  is the total length of the curve calculated as the sum 
of the distance between the successive data points as  

1

1
( , 1)

N

i
L dist i i

−

=
= +∑ ,                                                                                    

where ( , )dist i j  is the distance between the points i and j on 
the curve, d  is the diameter or planar extent of the curve, 
estimated as the distance between the first point and the point 
in the sequence that gives the farthest distance.  For the 
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waveforms (signals) that do not cross themselves it can be 
expressed as max( (1, ))d dist i= , 2,3,...,i N= .  

The FD computed in this manner depends on the 
measurement units used. If the units are different then so are 
the FDs. Katz’s approach solved this problem by dividing the 
length by average step or average distance between the 
successive points, a . This normalization results in  

log( )

log( )

L a
Dk d a

= .                                                                                                                      

Defining n L a=  the expression becomes,  
log( )

log( ) log( )

n
Dk n d L

=
+

.                                                                                                     

E. Sevcik Method 
Sevcik [21] showed that approximate FD may be estimated 

from a set of N  values sampled from a waveform. In this 
method, the FD estimate is derived from the definition of 
Hausdorff dimension ( hD ). The hD of a set in a metric space 

may be expressed as 
0

log( ( ))
lim log( )h

ND
ε

ε
ε→

−
= ,                                                                                                       

where ( )N ε  is the number of open balls of radius ε  needed 
to cover the set. In a metric space, given any point p , an open 
ball of center c and radius ε  is a set of all points q  for which 

( , )dist p q ε< .  A curve of length L  may be divided into 
( ) 2N Lε ε=  segments of length 2ε  and may be covered by 
( )N ε  balls of radius ε . Then the expression becomes 

log( ) log(2 )
lim

0 log( )

L
Dh

ε

ε ε

−
= −

→

⎡ ⎤
⎢ ⎥⎣ ⎦

,                                                                                                

log( ) log(2)
1lim

0 log( )

L
Dh ε ε

−
= −

→

⎡ ⎤
⎢ ⎥⎣ ⎦

.                                                                                                

Sevcik proposes a double linear transformation of the curve 
into another normalized metric space, making all axes equal 
since the topology of a metric space does not change under 
linear transformation. For this, normalization of abscissa and 
ordinates are done as follows. *

maxi ix x x= , 1, 2,...,i N=  

and *
min max min( ) ( )i iy y y y y= − − , 1, 2,...,i N=  where 

max max( )ix x= and max max( )iy y= , min min( )iy y= . These two 
linear transformations map the N  points of the curve into 
another that belong to a unit square. The unit square can be 
visualized as covered by a grid of N N×  cells. Calculating 
length L  of the of the transformed waveform in the unit 
square and taking 1 2 Nε ′= , where 1N N′ = − , the above 
equation becomes  

log( ) log(2)1lim log(2( 1))s
N

LD
N′→∞

⎡ ⎤−
= +⎢ ⎥−⎣ ⎦

.    

The sD is approximately equal to the fractal dimension D and 
the approximation improves as N ′ → ∞ .  

F. Higuchi Method 
Higuchi’s method of computation of fractal dimension of 

the waveform is explained as follows [18]. An epoch of the 
waveform is represented by (1), (2), ..., ( )y y y N , where N  is the 
total number of samples in the epoch. From the given epoch, 
k  new sub-epochs are constructed and represented by k

ym , 
each of them is defined as  

k
ym = { ( ), ( ), ( 2 ),y m y m k y m k+ + }..., ( )x m Mk+ , 1, 2, ...,m k= ,                          

where m  and k  are integers, indicating initial time and 
interval time respectively, ( ) /M N m k= −⎢ ⎥⎣ ⎦ , where a⎢ ⎥⎣ ⎦  

denotes integer part of a . For each of the sub-epochs k
ym  

constructed, the average length ( )L km  is computed as 

( )L km = ( ){ }1 1
( ) ( ( 1) )

1

MN
y m ik y m i k

ik Mk

−
∑ + − + −
=

,  

where ( 1) /N Mk−  is a normalization factor. The length of the 
epoch ( )L k  for the time interval k  is computed as the mean of 

the k  values, for 1, 2, ...,m k= . That is ( ) ( )
1

k
L k L kmm

∑=
=

.   

If ( )L k  is proportional to D
k

− , the curve describing the 
shape of the epoch is fractal-like with the dimension D . Thus, 
if ( )L k  is plotted against k , 1, ..., maxk k= , on a double 
logarithmic scale, the points should fall on a straight line with 
a slope equal to - D . The least-square linear best fitting 
procedure is applied to the graph (ln(1 / ), ln( ( )))k L k . The 
coefficient of linear regression of the plot of ln( ( ))L k  versus 
ln(1 / )k is taken as an estimate of the fractal dimension of the 
epoch. The value of interval time used is taken as 1, 2, 3, 4k = , 

and ( 1) / 4
[2 ]

j
k

−
=  for k  larger than 4, where 

11,12,13, ...j = and [.]  denotes Gauss notation. We have used 
ten interval time values to compute Higuchi’s fractal 
dimension. 

III. PARAMETRIC FRACTAL SIGNALS 
To compute the accuracy of the proposed FD estimation 

methods and to compare the performance with the methods 
discussed, we have used parametric fractal waveforms which 
are briefly explained below.  

A. Weierstrass cosine Function 
The WCF [11] is defined as  

( ) cos(2 )
0

kH kW t tH k
γ πγ

∞ −= ∑
=

, 0 1H< < ,                                                     

where 1γ > . The function is continuous but nowhere 
differentiable, and its fractal dimension is 2D H= − . If γ  is 
integer, then the function is periodic with period one. We 
synthesized discrete time WCFs of various fractal dimensions 
by controlling the parameter H , and by sampling [0, 1]t ∈  at 

1N +  equidistant points, using a fixed 5γ =  and truncating the 
infinite series so that the summation is done only for 
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0 maxk k≤ ≤ and choosing 100maxk = . Figure 4 shows 
waveforms of sampled WCF for fractal dimensions 1.2, 1.5 
and 1.8. 

B. Weierstrass-Mandelbrot cosine Function 
This function is derived from Weierstrass-Mandelbrot 

function (WMF) ( )W t  which is a scaling fractal curve [9]. The  

 
WMF of fractal dimension D  is defined as 

(1 )
( ) (2 )

ikib t ke e
W t D kk b

φ
∞ −

= ∑ −=−∞
, 1 2D< <  , 

 

 
 

Fig. 4. Weierstrass cosine function, N=1025, g = 5, M = 100, (a) D = 1.2, (b) D = 1.5, (c) D = 1.8. 
   

 
 

Fig. 5. Weierstrass-Mandelbrot cosine function, N = 1025, b = 1.5, M = 100, (a) D = 1.2, (b) D = 1.5, (c) D = 1.8. 
   

 
 
Fig. 6. Knopp function (Takagi function) for different parameter values of a, N = 1025, (a) a  =  0.60, FD = 1.263, (b) a  =  0.75, FD  =  1.585, 
(c) a  =  0.90, FD = 1.848. 
 

 
 

Fig. 7. Fractional Brownian motion,  N = 1024, (a) FD = 1.2, (b) FD = 1.5, (c) FD = 1.8. 
 
where nφ  is an arbitrary phase, and each choice of nφ  defines 
a specific function ( )W t . This function is continuous but has 

no derivatives at any point. If we set 0nφ =  and taking real 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:1, 2010

47

 

 

part of ( )W t to obtain Weierstrass-Mandelbrot cosine function 

(WMCF) as (1 cos )
( ) (2 )

kb t
C t D kk b

∞ −
= ∑ −=−∞

. 

Figure 5 shows waveforms of discrete time WMCF for the 
value of fractal dimension equal to 1.2, 1.5, and 1.8, for 

1.5b = .  

C. Takagi Function 
The TF also called Knopp function (KF) [21] is defined as  

( ) ( )
0

k kK t a b t
k

φ
∞

= ∑
=

,               

 

 
 
Fig. 8. Plot of estimated FD versus theoretical FD of synthetic fractal signals using Katz, Sevcik, Higuchi, and MRA method, for (a) 
Weierstrass-cosine function, (b) Weierstrass-Mandelbrot function, (c) Knopp (Takagi) function, (d) fractional Brownian motion. The number 
of samples in each of the signals is 1024. 
 
where φ  is the distance close to integer, that is 

( ) ( )t bt round btφ = − , b  is an integer greater than one and  a  is 

a real number [0, 1]a ∈ . This function is everywhere 
continuous but nowhere differentiable if 1ab ≥ . We set 2b =  
and [1/ 2, 1]a ∈ . If ( )K t  is defined with 1 / 2 1a< <  and 

[0, 1]t ∈  then ( )K t  has a Bouligand dimension of  
log(4 ) / log( )D a b=                  

We synthesize discrete time TF by sampling [0,1]t ∈  at 1N +  
equidistant points using a fixed value of parameter 2b = , with 
a maximum limiting value 100maxk = and for different values 
of parameter a , to get waveforms with different fractal 
dimension. Three sample waveforms are shown in Figure 6 
for fractal dimensions of 1.263, 1.585, and 1.848. 

D. Fractional Brownian Motion (fBm) 
Fractional Brownian motions are non stationary and self 

similar stochastic processes, which are of great importance for 
modeling processes which exhibit long-term dependencies, 
such as 1 / f  type processes. We have used wavelet-based 
synthesis approach to generate fBms, and the approach is 
explained in [22]. For generating fBm waveforms, we have 
made use of the Matlab command ( , )wfbm H N , which 
generates N sample fBm of Hurst exponent H . The fractal 
dimension of the waveform is computed using the relation 

2FD H= − . Three samples of fBm for H equal to 0.8, 0.5, and 
0.2 (corresponding FDs 1.2, 1.5 and 1.8, respectively) are 
shown in Figure 7. 
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IV. RESULTS 

A. Results on Papmetric Fractal Signals  
The proposed FD estimation methods are applied to 

synthesized mathematical fractal signals for studying their 
performance. The parametric fractal signals considered here 
are WCF, WMCF, TF and fBm. Since the fBm is a stochastic 
fractal, the estimation accuracy is averaged for 100 
realizations of the time series. The fractal dimensions are 

increased from 1 to 2 in steps, and corresponding estimate 
values are computed using the two methods for all the four 
synthetic parametric fractal waveforms. Figure 8 (a)-(d) show 
the plot of estimated values versus theoretical values for the 
waveforms synthesized using WCF, WMCF, TF and fBm 
respectively. In Figure 9, the performance is compared for 
Higuchi, MRBC and MRL methods, in order to have high 
clarity plot. Note that, perfect reproduction of the true fractal 
dimension should yield a straight line of slope equal to one.  

 
 
Fig. 9. Plot of estimated FD versus theoretical FD of synthetic fractal signals using Higuchi, and MRA method, for (a) Weierstrass-cosine 
function, (b) Weierstrass-Mandelbrot function, (c) Knopp (Takagi) function, (d) fractional Brownian motion. The number of samples in each 
of the signals is 1024. 
 
From the results, it is observed that the proposed MRBC and 
MRL methods have provided the more accurate estimates of 
the fractal dimension for all the four parametric fractal 
waveforms than the Katz and Sevcik methods. In addition, the 
proposed methods have shown comparable estimation 
performance as that of Higuchi method. And also, a little bias 
is observed in the value of MRBC, MRL, and Higuchi FDs for 
the TF (KF) and fBm cases, and the values have become 
saturated towards fractal dimension of 1 and 2 for fBm 
waveforms. The Katz method is less accurate and has not 
provided linear variation but shown an exponential variation 
with increase of theoretical fractal dimension. Furthermore, 
the Sevcik method has shown a saturation at the beginning 
(near FD from 1 to 1.2) and towards end (near FD from 1.8 to 
2), for all the four signals that we have used. 

There is considerable amount of error which is expected 
due to sampling of continuous functions for which the true FD 
is defined. Since mathematically defined parametric fractal 
signals are sampled versions of non-band-limited fractal 
functions, some degree of fragmentation is lost during 
sampling. However, the true FD refers to the continuous time 
signal. Hence, the fractal dimensions estimation algorithms 
can offer only an approximate of true FD. In addition, the 
specific approach used to synthesize fractal signals, such as 
wavelets for fBm synthesis, affects the relationship between 
the degree of their fragmentation and the true FD. Thus, it 
may also affect the performance of the FD estimation 
algorithms. 
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B. Computation Time Taken 
The time taken to compute FDs for various lengths of the 

data are compared for all the considered methods, and is 
plotted in Figure 10. The results show that for sequences of 
large length, the Higuchi’s method has taken longer time to 
compute their FDs. It is also observed that the MRBC and 
MRL methods are comparatively faster than Higuchi and 
Sevcik method. The time taken to compute FD is increased 
with the length of the time series for Higuchi method, and the 
variation is almost quadratic.  

C. Stochastic and Chaotic Signal 
Consider a random process with linear temporal 

correlations, such as the autoregressive process of order one 
AR(1), 1x xi ii α ε= ++ , where 1 1α− < < , and iε  is a normally 
distributed random variable with mean zero and standard 
deviation one [23]. The standard deviation of the process is 

2
1 / 1xσ α= − , and its autocorrelation k

kρ α= , where k  is 
the time delay. 

 

 
 
Fig. 10. Plot of time taken to estimate FD versus number of sample points in the signal, (a) comparison of Katz, Sevcik and Higuchi methods, 
(b) comparison of Higuchi, MRBC and MRL methods. 
 

The nonlinear deterministic system known as the skew-tent 

map, given by 
1 / 0

1
(1 ) /(1 ) 1

a y aiyi
y a a yi i

≤ ≤
=+

− − ≤ ≤

⎧
⎨
⎩

                                                                              

is a non invertible transformation of unit interval into itself, 
with the parameter a  chosen to satisfy 0 1a< < , and its 
invariant measure is uniform on the unit interval. This 
dynamic system is a chaotic system.  

If the parameter values of these two systems are chosen 
such that 2 1aα = − , then both systems will have identical 
power spectra [24]. To enhance the similarity between these 
two systems, a measurement function ( )z h yi i=  can be used 

to transform the output of the skew-tent map yi  , so that the 

probability density function (pdf) of zi  is also normally 

distributed with mean zero and standard deviation xσ , as in 
the case of the AR(1) process. The measurement function used 
is 

 
2 1

2
2

z yi i
xσ

= Φ −
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,                                     

where Φ  is the inverse error function [25]. The 
autocorrelation functions of xi  and zi  will differ somewhat, 

although those of xi  and yi  are identical. Figure 12 shows the 

statistical properties of xi  and zi  for 0.95a = . Although the 

two time series shown in Figure 11 look different to the eye, 
their pdfs are identical, and their autocorrelation functions are 
similar, even though some disparity is introduced as the 
measurement function Φ  is nonlinear. The difference in the 
underlying dynamical equations is best seen by investigating 
their return maps (delay reconstructions), as shown in Figure 
12(c) and 12(f). Note that linear statistics, such as variance, 
autocorrelation function, and indeed any quantity defined with 
respect to power spectrum, fail to distinguish between the two 
systems illustrated in the Figure 12. The time series is 
segmented into epochs of length 1000 samples to get 901  

TABLE I 
FD OF STOCHASTIC AND DETERMINISTIC SIGNALS 

  Stochastic NL Deterministic 

  Mean Std Mean Std 

Katz 1.0120 0.0004 1.0113 0.0004 
Sevcik 1.6239 0.0134 1.5608 0.0219 
Higuchi 1.5933 0.0267 1.3833 0.0260 
MRBC 1.5973 0.0282 1.3815 0.0278 
MRL 1.5964 0.0282 1.3800 0.0278 

 
epochs. The FD is found for each of the epochs and mean and 
standard deviation values are calculated and presented in the 
Table 1. The Katz FD values are similar for both stochastic 
and deterministic signals. On the other hand, the other 
methods (Sevcik, Higuchi, MRBC and MRL) have shown a 
clear distinction in FDs between the two time series. 
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In addition, we have also performed a study to interpret FD 
measure of signals in terms of their parameters such as 
amplitude, frequency, etc. The variation of FD with these 
parameters are computed and plotted, and the results are 
discussed as follows. 

D. Effect of Waveform Amplitude  
To test the effect of waveform amplitude on its fractal 

dimension, the amplitude of WCF is varied from 1 to 200 in 
steps of 10, and corresponding fractal dimension of the 
waveforms are computed using the five methods. The results 
are plotted as fractal dimension against the amplitude as 

shown in Figure 13. It is observed from the plots that the Katz 
method is sensitive to the waveform amplitude, and as the 
amplitude is increased the fractal dimension is also increased. 
However, the rest of the methods are insensitive to change in 
amplitude of the waveform. Hence, one should be careful in 
applying Katz method to find fractal dimensions, particularly 
for biomedical recordings, where the variance of the epochs is 
changing. And also note that because of this nature the Katz 
method finds applications in detection of transients in signals 
such as epileptic seizures. 
 

 
Fig. 11. (a) Time series of stochastic AR(1) process, (b) Time series of nonlinear deterministic process. 

 

 
Fig. 12. (a) histogram, (b) auto-correlation, and (c) return map of stochastic process, (d) histogram, (e) auto-correlation, and (f) return map of 
non-linear deterministic process. 
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Fig. 13. Effect of waveform amplitude on FD, (a) Katz method, (b) Sevcik method, (c) Higuchi method, (d) MRBC method, (e) MRL method. 
 

 
 
Fig. 14. Cascade of random and sinusoidal waves with constant variance (first row, left) and step increase in variance (first row, right), 
fractogram (STFD) using Katz method (second row), Sevcik method (third row), Higuchi’s method (fourth row), MRBC method (fifth row), 
MRL method (sixth row). 
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E. Effect of Variance  
We have also simulated two waveforms by cascading 

random and sinusoid waves as follows. The sinusoid wave of 
frequency 17 Hz is used here and its sampling frequency is 
1000 Hz.  The first waveform is 

[ (1, ) 0.5, 0.5 sin(2 ), (1, ) 0.5]1
T

s rand N fn rand Nπ= − −   
where the MATLAB command (1, )rand N  generates uniformly 
distributed random numbers, and T represents transpose. The 
second waveform is same as the first waveform but amplitude 
of sinusoid is changed to 10. That is  

[ (1, ) 0.5,10 sin(2 ), (1, ) 0.5]2
T

s rand N fn rand Nπ= − − . 
The values of N chosen here is 600. The short-time fractal 
dimension (fractogram) of the cascade waveforms is plotted 
by computing fractal dimensions of moving window of 100 
samples with an overlap of 50 samples. This test is carried out 
to check the effect of changing variance of a waveform on its 
fractal dimension. The time series and STFD computed are 
depicted in the Figure 14. The sinusoidal waveforms have the 

property of less space filling than the random waveforms. This 
is also shown in the FDs in the left column of the figure. 
However, due to its sensitivity to variance, the Katz FD value 
has increased for the sinusoidal waveforms as shown in the 
right column of the Figure 3.14.  

F. Effect of Sampling Frequency 
The effect of sampling frequency on the estimated fractal 

dimensions is tested by simulating waveforms of WCF of 
amplitude 100. The sampling frequency of the waveform is 
varied from 501 Hz to 4300 Hz in steps of 300 Hz, keeping 
the time duration constant, and corresponding fractal 
dimensions are computed using all the five methods. This test 
is carried out for waveforms of three different fractal 
dimensions such as 1.2, 1.5 and 1.8 as shown in Figure 15. 
The estimation accuracy is improved for all the methods 
except for Katz method as the sampling frequency is 
increased. However, the Katz fractal dimension is decreased 
as the sampling frequency  

 
 
Fig. 15. Effect of sampling frequency of waveforms on FD estimate, (a) Katz method, (b) Sevcik method, (c) Higuchi method, (d) MRBC 
method, (e) MRL method. 
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Fig. 16. Effect of  waveform length (number of sample points) on FD estimate, (a) Katz method, (b) Sevcik method, (c) Higuchi method, (d) 
MRBC method, (e) MRL method. 
 
of the waveform is increased. This is because, as the number 
of samples N  increase, the ratio /d L  in the Katz equation 
approaches a constant. Hence the fractal dimension rapidly 
decreases towards one. 

G. Effect of Signal Length 
The FDs of signals of various sample lengths are computed 

and plotted in the Figure 16, to study the effect of number of 
sample points of a signal on its FD value. The test is 
performed for signals of three different fractal dimensions 
(1.2, 1.5 and 1.8). The FD estimate of Katz method is not 
accurate and has shown a decrease of FD as the samples in the 
signal is increased. Even though the Sevcik method is less 
accurate, FD computed using this method increased and 
reached saturation. The Higuchi, MRBC and MRL methods 
showed constant values of FDs irrespective of their sample 

points except for the signals with very less number of 
samples. For higher FDs, a little bias in the FD estimate is 
observed in all the three cases.  

H. Effect of Noise 
To study the effect of noise, we have added noise to the 

WCF in steps and corresponding FD is computed. The 
variation of FD versus noise amplitude is shown in the Figure 
17. Since the Katz method is sensitive to amplitude of 
waveforms, the result has shown a linear variation. In the case 
of other methods, the FD variation is increased for less value 
of noise amplitude and reached saturation. The sevcik FD 
reached to a value of 1.7 and Higuchi, MRBC and MRL FD 
reached towards 2 which is the FD of random noise 
waveforms. It is also observed that the waveform with higher  
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Fig. 17. Effect of noise power on FD estimate, (a) Katz method, (b) Sevcik method, (c) Higuchi method, (d) MRBC method, (e) MRL method. 
 
FD value has shown a slow variation with noise amplitude 
than the waveform with less FD. 

V. DISCUSSION AND CONCLUSION 
In this paper, we have proposed a method to compute FD of 

signal waveforms, based on counting the number of boxes to 
cover the waveform entirely at multiple resolutions. We 
referred this technique as MRBC method. A modification of 
this method resulted in another method; we referred it as MRL 
method. In MRBC method, total number of boxes which 
cover the entire waveform is calculated at multiple time 
resolutions, whereas signal length at multiple time resolutions 
are computed in MRL method. We have used these two 
methods to compute FD of various signal waveforms, 
parametric fractal signals, as also sinusoids, and random 
signals.  

Since the parametric fractal signals are mathematically 
defined and their true (theoretical) FD can be calculated, we 
have used these waveforms to compare the performance of the 
proposed methods with other methods, by plotting graph of 
estimated FD versus true FD. The parametric fractal signals 
considered in this study are WCF, WMCF, KF (TF), and fBm 
signals. Since the fBm is a stochastic fractal signal, the FD 
values are computed for 100 different realizations of the time 
series at each of FD value, and the results are averaged to get 
the FD value. Other methods discussed in this chapter, such as 
Katz, Sevcik, and Higuchi, are used for comparing the results. 

The proposed MRBC and MRL methods have shown 
superior performance in estimating FD of waveforms than 
Katz and Sevcik methods, while the accuracy results are 
comparable to that of Higuchi method. Furthermore, the 
MRBC and MRL methods have taken less time to compute 
FD compared to Higuchi method. The Katz method has shown 
poor performance in estimating FD whereas the FD values of 
Sevcik method have become saturated at low and high FD 
values. In addition, the MRBC and MRL methods do not 
require specifying the value of interval time as it is required in 
the Higuchi method. It is also observed from the results that 
the Higuchi method has taken more time to compute the FD of 
long-length time series data, other results being similar.  

In the usual box-counting method of computing FD, 
covering the graph of one dimensional discrete time signal by 
grids involves two dimensional processing of the signal at 
multiple scales. However, the proposed MRBC and MRL 
methods involve one dimensional processing of the signal at 
multiple time resolutions. The methods can yield results that 
are invariant with respect to shifting of the domain of the 
signal and scaling of its dynamic range. In addition, the 
methods can be applied to arbitrary time signals and used to 
measure short-time FD (fractogram) of time varying signals.  

Since the MRBC method has given more accurate FD 
results compared to other methods which are discussed here in 
this chapter, we have used this method to compute FD of 

various signal waveforms including chaotic, stochastic, and 
sinusoids. In an experimental study, the FD has clearly 
discriminated stochastic and chaotic signal waveforms for 
which mean, variance, and autocorrelation are similar except 
the return maps. Thus, the FD finds applications in 
distinguishing signals having similar second order statistics 
but of different nature.  

In addition, we have made a study of effect of various 
parameters, such as signal amplitude, frequency, sampling 
frequency, signal length, noise power, noise band-width, 
autocorrelaton, on FD. It is found that the MRBC, MRL, 
Sevcik, and Higuchi methods are insensitive to wave form 
amplitudes (variance). However, the Katz method has shown 
sensitive dependence on signal amplitude (variance). As the 
amplitude is increased, the Katz FD of the waveform is 
increased.  

In conclusion, the proposed MRBC and MRL method gives 
comparable performance in estimating FD of waveforms as 
Higuchi method, computation time taken being very less. This 
property may be used in real-world applications, as in clinical 
settings to compute structural changes in signal waveforms. 
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