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Abstract—Graph decompositions are vital in the study of 

combinatorial design theory. Given two graphs G and H, an H-
decomposition of G is a partition of the edge set of G into disjoint 
isomorphic copies of H. An n-sun is a cycle Cn with an edge 
terminating in a vertex of degree one attached to each vertex. In this 
paper we have proved that the complete graph of order 2n, K2n can be 
decomposed into n-2 n-suns, a Hamilton cycle and a perfect 
matching, when n is even and for odd case, the decomposition is n-1 
n-suns and a perfect matching. For an odd order complete graph 
K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is 
decomposed as in the case of even order. The method of building n-
suns uses Walecki’s construction for the Hamilton decomposition of 
complete graphs. A spanning tree decomposition of even order 
complete graphs is also discussed using the labeling scheme of n-sun 
decomposition. A complete bipartite graph Kn, n can be decomposed 
into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be 
decomposed into (n-2)/2 n-suns and a Hamilton cycle. 

 
Keywords—Hamilton cycle, n-sun decomposition, perfect 

matching, spanning tree. 

I. INTRODUCTION 
Y a graph G = (V, E) we mean a finite undirected graph 
without loop unless otherwise stated. A cycle of length n 

is denoted by Cn. An n-sun is a cycle Cn with an edge 
terminating from each vertex of Cn [1]. Thus every n-sun 
graph contains exactly one cycle of length n and n pendant 
vertices. A decomposition of a graph is a collection of edge-
disjoint subgraphs G1, G2,…, Gn of G such that every edge of 
G belongs to exactly one Gi. Graph decompositions, known 
for its applications in combinatorial design theory, have been 
studied since the mid nineteenth century. Several decades after 
its introduction, Walecki has the credit of constructing 
Hamilton cycle decomposition of complete graphs [2]-[4]. 
Complete graphs are decomposed in many ways. In this paper 
we have decomposed complete graphs of even order, K2n into 
n-suns. The decomposition is based on Walecki’s construction 
of complete graphs into Hamilton cycles. The aim is to 
provide a systematic approach to the decomposition with a 
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labeling scheme.  By an orderly removal of edges from the 
cycles in n-suns, spanning tree decomposition is also possible 
in K2n. Each of these spanning trees has the specialty of 
containing a perfect matching of K2n. Complete bipartite 
graphs Kn, n are equally significant. Their n-sun 
decompositions are also given.  

II. PRELIMINARIES 
Let G be a graph with n vertices and m edges. A graph in 

which any two distinct points are adjacent is called a complete 
graph. A spanning cycle in a graph is called a Hamilton cycle 
of the graph. A perfect matching or 1-factor, denoted as I, of a 
graph G of even order is a set of mutually non-adjacent edges, 
which covers all vertices of G [5]. A Hamilton cycle of a 
graph of even order is the union of two perfect matchings of 
G.  

A Hamilton decomposition is a partitioning of the edge set 
of G into Hamilton cycles if G is 2d-regular or into Hamilton 
cycles and a perfect matching if G is (2d+1)-regular [4]. The 
complete graph Kn has Hamilton decomposition for all n > 2. 
Any complete graph K2n can be decomposed into (n-1)/2 
Hamilton cycles if n is odd and (n-2)/2 Hamilton cycles if n is 
even [6].  

In the decomposition of K2n into n-suns we choose Cn to be 
the Hamilton cycles of of its subgraph, Kn. 

III. MAIN DEFINITIONS AND RESULTS 
 An n-sun decomposition of the complete graph K2n is 

partitioning the edge set into n-suns and a perfect matching if 
n is odd and n-suns, a perfect matching and a Hamilton cycle 
if n is even.  

A graph G is said to have total n-sun decomposition if 
every edge belongs to exactly one n-sun of the decomposition. 
An example graph is shown in Fig. 1. Note that regularity of 
graphs does not play a role in total n-sun decomposition.  

 
Fig. 1 A graph with total n-sun decomposition 

 
A graph with 2n vertices may have an n-sun as its subgraph 

but need not have n-sun decomposition and not all regular 
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graphs have an n-sun decomposition which can be observed 
from Fig. 2. 
 

 
 
 
 

Fig. 2 A 3-regular graph and its 3-sun 
 
Lemma 3.1: A necessary condition for the n-sun 

decomposition of K2n into t isomorphic copies is that E  is 

divisible by (1+2t)n when n is odd and (3+2t)n when n is 
even. 

Proof: When n is odd, the total of n(2n-1) edges in K2n are 
divided as follows. Since there are 2n edges in an n-sun, 2nt 
edges are in t isomorphic copies of n-suns and n edges in the 
perfect matching. Also n(2n-1) = 2nt + n + 2n implies t = n – 
1. The same line of reasoning is applicable for odd n in which 
t = n – 2.  

By the above lemma, K2n can be decomposed into n-1 n-
suns and a perfect matching when n is odd. For n even, K2n 
can be decomposed into n-2 n-suns, a Hamilton cycle and a 
perfect matching. We use a labeling scheme to decompose K2n 
(n > 2) into n-suns. A proper labeling of G with k vertices is a 
bijection f: V(G) → {1, 2, …, k}. 

Theorem 3.2: The complete graph K2n has n-sun 
decomposition for all odd n > 2. 

Proof: Consider the complete graph K2n where n is odd. 
Split the vertex set V = {v1, v2,…, vn, vn+1, vn+2, …, v2n} of K2n 
into two such that V1 = {v1, v2,…, vn} and V2 = {vn+1, vn+2, …, 
v2n}. Let U and W be the induced subgraph of K2n with vertex 
subset V1 and V2 respectively. Then U and W are complete 
graphs of odd order and have n(n-1)/2 edges each. The 
remaining n2 edges of K2n form an edge cut (whose removal 
disconnects K2n). To construct n-suns, we find Hamilton 
cycles of U and W using Walecki’s construction and to each 
Hamilton cycle, adjoin n edges from the edge cut. A similar 
functional notation of [2] is adopted in finding the Hamilton 
cycles of U and W. 

Since n is odd, U can be decomposed into (n-1)/2 Hamilton 
cycles and a perfect matching and hence the maximum 
number of edge disjoint n-suns possible in U is (n-1)/2.  

In U, let C be the Hamilton cycle 
12
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U. For simplicity, let kΦ denote the kth Hamilton cycle and 
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decomposition of W. Let )(vΦ ik
′  denote vertex vi in the kth 

Hamilton cycle ′
kΦ  in W, where k = 1, 2,…, 

2
1−n . Then 
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Finally, the perfect matchings of U and W form a perfect 
matching of K2n. The matching is given as (vi, vj) 

where n...,2,1,i = and
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perfect matching along with the n-suns decomposes K2n. 
An illustration of the n-sun decomposition of K14 into six 7-

suns and a perfect matching is shown in Fig. 4 of Appendix. 
Corollary 3.3: K2n + Cn can be decomposed into n n-suns 

when n is odd. 
From the previous theorem there are n-1 n-suns of K2n. Add 

n multi edges (v1, v2), (v2, v3), (v3, v4), …, (vn-1, vn), (vn, v1) to 
form an n-cycle of K2n. The perfect matching of K2n in the 
previous theorem with the multi edges forms another n-sun.  

Spanning trees are well known in the literature as minimally 
connected subgraphs of a graph. They find immense 
applications in networks whenever there is a necessity of 
unique paths between vertices. K2n can be decomposed into n 
spanning trees [2], [4]. The next corollary gives a labeling 
scheme for the spanning tree decomposition of K2n. By 
properly removing one edge from each cycle of n-sun and 
adding them with the perfect matching, we get the required 
decomposition. 

Corollary 3.4: K2n can be decomposed into n spanning 
trees each containing a perfect matching. 

In Theorem 3.4, delete edges (vk+1, vk+2) from ( )Ck 1−α  and 

edges (vn+k+1, vn+k+2) from ( )Ck 1−β , k = 1, 2, …, 
2

1−n . These 

edges with the perfect matching give a spanning tree. The 
edge deleted n-suns form another n–1 spanning trees. 

Theorem 3.5: The complete graph K2n has n-sun 
decomposition for all even n > 2. 

Proof: The maximum number of n-sun decomposition 
possible when n is even is n-2. The procedure for the 
decomposition is the same as that for odd n except for a slight 
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change in the labels. Let the vertex set of K2n be split as V1 = 
{v1, v2,…, vn} and V2 = {vn+1, vn+2, ..., v2n}. Let X and Y be 
the induced subgraph of K2n with vertex subset V1 and V2 
respectively. Here let C be the Hamilton cycle 

12
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2
n

2
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+++−−  and α  be the 

permutation (v1)(v2v3…vn) as in the odd case. Then 
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ααα  is a Hamilton cycle 
decomposition of X.  

Let )(vΦ ik denote vertex vi in the kth Hamilton cycle of X, 

where k = 1, 2, …, 
2

2−n . Then kΦ = ( )Ck 1−α . Append the 

edges to the Hamilton cycles of X as 
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 and β  is the permutation (vn+1)(vn+2vn+3 ….. v2n). Let 

)(vΦ ik
′ denote vertex vi in the kth Hamilton cycle 

′
kΦ = ( )Ck 1−β  of Y where k = 1, 2, …, 

2
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pendant edges using the labeling 

scheme n...,2,1,i,
nikifi)modn(k
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perfect matching of X: {(vi, vj)} and that of Y: {(vn+i, vn+j)} 
forms a perfect matching of K2n where i = 1, 2,…, 2

n  and 
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⎪
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⎧
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2
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j . The remaining edges form a Hamilton 

cycle whose labeled structure is shown in Fig. 3.  

 
Fig. 3 The Hamilton cycle structure in the n-sun decomposition of 

K2n, n even 
 
A decomposition of K12 into four 6-suns, a perfect matching 

and a Hamilton cycle is shown in Fig. 5 of Appendix. 
Corollary 3.6: Let K2n – I denote the subgraph of K2n with 

a perfect matching removed. Then (K2n – I) + 2Cn can be 
decomposed into n n-suns. 

Add two sets of n multi edges (v1, v2), (v2, v3), (v3, v4), (vn-

1, vn), (vn, v1) to K2n. These multi edges form two n-cycles. 
Since a Hamilton cycle is the union of two perfect matchings, 
append one matching each to the two n-cycles to obtain the 
required decomposition. 

Corollary 3.7: An odd order complete graph can be 
decomposed into n-suns, a Hamilton cycle, a perfect matching 
and a star graph when n is even. For odd n, n-suns, a perfect 
matching and a star partition the edges of K2n+1.  

Proof: In the case of odd order complete graphs K2n + 1, n-
sun decomposition is not possible, since the maximum 
matching is 2n. By the removal of a star graph K1, 2n, the 
resultant is a complete graph of even order which has n-sun 
decomposition.  

In the next section we discuss about the n-sun 
decomposition of complete bipartite graphs Km, m, m = 2n. We 
split Km, m into two complete bipartite subgraphs Kn, n and the 
remaining edges form an edge cut of Km, m. We find Hamilton 
cycles in each subgraph Kn, n and append edges from the edge 
cut for the pendants of the n-sun. Since the minimum cycle 
length in bipartite graphs is four and to append pendants, m ≥  
4.   

In [7] decomposition of r-partite graphs into edge-disjoint 
Hamilton cycles is discussed. We brief now the procedure to 
find edge-disjoint Hamilton cycles for bipartite graphs which 
uses consecutive perfect matchings (1-factors).  

Let the vertices of Kn, n be partitioned as U = {u1, u2, …, un} 
and V = {v1, v2, …, vn}. Let the set of perfect matching be 

where {Fj = jii
n

1i
vu +

=
∪ , j = 1, 2, … , n} and the suffices of v are 

taken modulo n. Then Hk = F2k-1 ∪ F2k, k = 1, 2,…, n/2 is a set 
of edge disjoint Hamilton cycles of Kn, n. When n is even, Kn, n 
can be decomposed into n/2 edge-disjoint Hamilton cycles. 
For odd n, the decomposition is (n-1)/2 Hamilton cycles plus a 
perfect matching. When n is odd the edges of the perfect 
matching is {uivi} where i = 1, 2, …, n. 

An n-sun decomposition of the complete bipartite graph Kn, 

n is partitioning the edge set into n-suns and n copies of C4 if 
n/2 is odd and n-suns if n/2 is even. 

Theorem 3.8: The complete bipartite graph Kn, n has n-sun 
decomposition for all n/2 even. 

Proof: To simplify the labeling scheme, let the vertices of 
Kn, n be partitioned as U and V, 

U= }u,...,u,u,u...,,u,{u n/221n/221 ′′′ and 

             V = }v,...,v,v,v...,,v,{v n/221n/221 ′′′ . 

Let us split Kn, n into n/2n/2,K ′ , n/2n/2,K ′′  and an edge-cut with 

n2/2 edges where n/2n/2,K ′  and n/2n/2,K ′′  are the induced 

subgraphs formed by }v...,,v,v,u...,,u,{u n/221n/221 and 

}v,...,v,v,u,...,u,u{ n/221n/221 ′′′′′′ respectively. 
The maximum number of n-suns possible in the 

decomposition of Kn, n is n/2 since the maximum number of 
Hamilton cycles in n/2n/2,K ′  and n/2n/2,K ′′  put together is n/2. 
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Let {Fj = jii
n/2

1i
vu +

=
∪ , j = 1, 2, … , n/2}, be the perfect matchings 

of  n/2n/2,K ′ , the suffix of v being taken modulo n/2. Let Hk = 
F2k-1 ∪ F2k, k = 1, 2,…, n/4 be a Hamilton cycle 
decomposition of n/2n/2,K ′ . Append edges from the edge cut as 

follows: Hk(ui) = pv′ , Hk(vi) = pu ′ , p ≡  (k+i-1 mod (n/2)), i = 

1, 2, … n/2 and k = 1, 2, …, n/4. Similarly let { jF′  = jii
n/2

1i
vu +

=
′′∪ , 

j = 1, 2, … , n/2}, be the perfect matchings of n/2n/2,K ′′ , the 

suffix of v being taken modulo n/2. Let 2k1-2kk FFH ′∪′=′ , k = 
1, 2, …,n/4 be a Hamilton cycle  decomposition of n/2n/2,K ′′ . 

Append edges for the pendants of n-sun as ikk v)iu(H +=′′  and 

ikik u)v(H +=′′ , i, = 1, 2, …, n/2, k = 1, 2, …, n/4,  the suffices 
k+i are taken modulo n/2. The Hamilton cycles with the 
appended edges form n-suns. Since every edge is in exactly 
one n-sun, Kn, n has a total n-sun decomposition. 

Theorem 3.9: The complete bipartite graph Kn, n has n-sun 
decomposition for all n/2 odd. 

Proof: Let the notations U, V, Fk and Hk be as in Theorem 
3.8 where n/2 is odd, k = 1, 2, …, (n-2)/4 and the maximum 
number of n-suns possible is (n-1)/2. By the construction, the 
perfect matching left out in n/2n/2,K ′  and n/2n/2,K ′′  after the n-

suns are constructed are Fn/2 and n/2F′  respectively.  These 
edges along with the edge set {ui qv′ } ∪ { iu′ vq}, i = 1, 2, …, 
n/2 and q = i+(n-1)/2 is taken modulo n/2, forms a Hamilton 
cycle. In fact {ui qv′ } ∪ { iu′ vq} is a perfect matching of Kn, n. 

Examples of n-sun decompositions of K4, 4 and K6, 6 are 
shown in Fig. 6 and Fig. 7 of Appendix. 

IV. CONCLUSION 
The aim of this communication has been to present a new 

kind of decomposition of K2n and Kn, n. It is hoped that this 
decomposition may stimulate further studies on n-sun 
decompositions. The n-suns and the Hamilton cycles of K2n 
have close association since both are spanning subgraphs with 
exactly one cycle. When n is odd, the total number of n-suns 
in the decomposition of K2n is n-1 which is exactly the same 
number as in the decomposition of K2n into Hamilton cycles, 
whereas for even n, the number is n-2 which is one less than 
the number of Hamilton cycles in the decomposition. Also the 
deletion of any one edge of the cycle in the n-sun or Hamilton 
cycle results in a spanning tree where the tree contains a 
perfect matching. Since the maximum degree of a vertex in 
the n-sun is three, the spanning trees obtained from n-suns 
also have the same maximum degree. The important feature of 
these spanning trees is that the diameter is (n/2)+1 for all n 
where as in Hamilton paths the diameter is n-1. An n-sun 
decomposition of Kn, n is also discussed. Finding a strong 
sufficient condition for the existence of n-sun and total n-sun 
decomposition of K2n and Kn, n will be well appreciated. Tree 
decomposition for Kn, n using n-suns can be studied.  

APPENDIX 

 
Fig. 4 A 7-sun decomposition of K14 

 
Fig. 5 A 6-sun decomposition of K12 
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Fig. 6 A 4-sun decomposition of K4, 4 

 

 
Fig. 7 A 6-sun decomposition of K6, 6 
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