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Abstract—In this paper, the concepts of dichotomous logistic 
regression (DLR) with leave-one-out (L-O-O) were discussed. To 
illustrate this, the L-O-O was run to determine the importance of the 
simulation conditions for robust test of spread procedures with good 
Type I error rates. The resultant model was then evaluated. The 
discussions included 1) assessment of the accuracy of the model, and 
2) parameter estimates. These were presented and illustrated by 
modeling the relationship between the dichotomous dependent 
variable (Type I error rates) with a set of independent variables (the 
simulation conditions). The base SAS software containing PROC 
LOGISTIC and DATA step functions can be making used to do the 
DLR analysis. 
 

Keywords—Dichotomous logistic regression, leave-one-out, test 
of spread.  

I. INTRODUCTION 

ARLY uses of logistic regression were in biomedical 
studies, but in recent years have also seen much use in 

business applications, social science research, marketing, and 
genetics [1-3]. Although logistic regression has gained 
popularity, there remains considerable confusion about its use 
and interpretation [4-5]. In short, the literature seems to cover 
theoretical and mathematical issues related to logistic 
regression more thoroughly than the practical and applied 
aspects needed to put this technique to use [6]. 

Dichotomous logistic regression (DLR) is a common type of 
generalized linear model that utilizes the logit as its link 
function [1]. This particular regression enables us to 
investigate the relationship between a categorical outcome and 
a set of independent variables. The independent variables can 
be of any form. DLR does not assume linearity of relationship 
between the dependent and the independent variables, does not 
require normally distributed independent variables, and does 
not assume homoscedasticity. However, it does require that 
observations to be independent and that the independent 
variables be linearly related to the logit of the dependent. 
Thus, logistic regression can be used to predict a dependent 
variable on the basis of continuous and/or categorical 
independents; to determine the percentage of variance in the 
dependent variable which has been explained by the 
independents; to rank the relative importance of independent 
variables; to assess interaction effects and to understand the 
impact of covariate control variables [7-8].  

The L-O-O classification approach which does not require 
the assumption of normality was then used to assess the 
accuracy of the DLR model. This is because the data is made 

up of categorical independent variables and the normality 
assumption is violated. Model validation with the L-O-O 
method produces the highest accuracy estimates for the 
classification problems due to its capability to process almost 
all of the available data for training the classifier [9]. 

In this paper, the concepts of DLR were discussed. And, an 
illustration to illustrated DLR as one of the data mining 
techniques were performed to determine the importance of the 
simulation conditions for robust test of spread procedures on 
the generating of p-values. The discussions included 1) 
assessment of the accuracy of the model, and 2) parameter 
estimates. These were presented and illustrated by model the 
relationship between the dichotomous dependent variable 
(Type I error rates) with a set of independent variables (the 
simulation conditions). 

II.  PROBABILITY , DLR MODEL, ODDS, AND LOGIT 

The logistic model describes the expected value of Y (i.e., 
E(Y)) in terms of the following “logistic” formula: 
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where 

0β  =  the intercept parameter, 

jβ  =  a vector of t regression parameters, and 

ijX = row vector of independent variables 

corresponding to the jthsubpopulation. 
For a random variable with values 0 or 1 that       

i( ) = [0× ( = 0) +1× ( = 1)] = ( = 1)i i iE Y X P Y P Y P Y      (2) 

where  
( = 0)iP Y = probability  of the event which coded with 0 

(failure), and 
( = 1)iP Y  = probability  of the event which coded with 1 

(success). 
The formula of DLR model can be written in a form that 

describes the variation among probabilities as follows: 
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The odds of success for the j th group of some event i is defined 
as the ratio probability of success to the probability of failure 
i.e. 
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In DLR, the dependent variable is a logit, which is the 
natural logarithm of the odds. That is by taking logs on both 
sides of Equation 4, a linear DLR model for the logit were 
obtain: 

( ) = ( )i i

i

i

log odds logit P

P
= ln

1 - P

 
 
 

                                 

           
=1

k

0 j ij
j

= β + β X∑                                    (5)          

where  
Pi = the predicted probability of the event which coded with 
1, and 
Xij = independent variables, i = 1, 2, … , n.  

This is the log odds of success to failure for the j th 
subpopulation. The logit transformation here is ( )1-i iln P P . 

The main reason for using the logit form of output is to 
prevent the predicting probabilities Pi from going out of range, 
where the required range for Pi is [0,1]. The logit(Pi) is 
assumed to be linear, that means the log odds is assumed to be 
linearly related to Xij. 
 DLR applies maximum likelihood estimation after 
transforming the dependent into a logit variable. Actually, the 
maximum likelihood methods are used to estimate 0β  and jβ . 

In this way, DLR estimates the probability of a certain event 
occurring. Note that DLR calculates the log odds of the 
dependent, not changes in the dependent itself. The success of 
the DLR can be assessed by looking at the classification table 
which tabulates the correct and incorrect classifications of 
dichotomous dependent. Also, goodness-of-fit tests such 
model chi-square is available as an indicator of model 
appropriateness and statistic, the Wald statistic can be used to 
test the significance of individual independent variables. 

III.  ASSESSMENT OF MODEL: FITTING 

The statistic used to assess the overall fit of the model is 
based on the likelihood function. The null and the alternative 
hypotheses for assessing overall model fit are given by  

: The hypothesized model fits the data.

: The hypothesized model does not fits the data.
0

A

Η

Η
 

Obviously, non rejection of the null is desired, as it leads to the 
conclusion that the model fits the data.  

The test statistic for this hypothesis is the likelihood ratio 
test. The likelihood, L, of a model is defined as the probability 
that estimated hypothesized model represents the input data. 
To test the null and alternative hypotheses, L is transformed to 
-2LogL. The -2LogL statistic is referred to as the likelihood 
ratio. It has a 2

χ  distribution with n-q degrees of freedom 

where q is the number of parameters in the full model [7-8, 
10]. The output of likelihood ratio test provides two -2LogL 

statistics, one for a model that includes only the intercept and 
another includes intercept and covariates. Deviance is the 
difference between two log-likelihood values. In comparing a 
null model (Lnull) with only the intercept and a model (Lmodel) 
including intercept and k parameters, then the deviance is the 
difference between -2LogLnull - (-2LogLmodel)[11]. The smaller 
the deviance, the better the model fits the data.  

The deviance for a large sample given by  

2ln 2 ( 2 )2 null
0 null model

model

L
G LogL LogL

L

 
= − = − − − 

 
        (6) 

has a chi-square distribution with k degrees of freedom, where 
Lnull and Lmodel refer to the likelihood of the null and full 
models, respectively. This means that the likelihood ratio test 
was used to compare the likelihood of the full model (i.e. with 
all the predictors included) with the likelihood of the null 
model (i.e.  a model which contained only the intercept). This 
is analogous to the overall F-test of the model in linear 
regressions.  

IV. PERCENT OF CORRECT CLASSIFICATION 

In any classification method, the percentage of correct 
classification is the primary indicator of goodness of the 
method. Classification table (or confusion matrix) is used to 
show the ability to predict correctly the outcome category 
(dichotomous dependent variable) for all cases by using 2× 2 
tables. It shows all correct and incorrect estimates. In fact, the 
classification table is used to determine the error rate of the 
model, which is an evaluation measure of the model’s 
predictive performance. Classification of observations is done 

by first estimating the probabilities, ̂P = P(each observation 
belonging to a given group). Table I presented a confusion 
matrix with a dependent variable with two categories (0 or 1). 
The columns in the table are the two predicted values of the 
dependent, while the rows are the two observed values of the 
dependent. Each cell contains the number of correct/incorrect 
predictions as the following: 

TN = the number of correct predictions that an instance is 
zero; 
FP = the number of incorrect predictions that an instance is 
one; 
FN = the number of incorrect predictions that an instance is 
zero; and  
TP = the number of correct predictions that an instance is 
one. 

 
 The hit ratio or percent of correct classification (PCC) is 
determined using the equation: 

 Hit ratio =
TN TP

TN FP FN TP

+
+ + +

                          (7) 

Sensitivity is the ability to predict an event correctly. It is the 
proportion of observed event responses that were predicted to 
be events. Specificity is the ability to predict a non-event 
correctly. It is the proportion of observed non-event responses 
that were predicted to be non-events. The equations of 
sensitivity and specificity were: 
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TP

Sensitivity = 
TP + FN

                                (8) 

 
TN

Specificity = 
TN + FP

                                  (9) 

 
TABLE I 

CLASSIFICATION TABLE 
Predicted  

0 1 
0 TN FP Actual 
1 FN TP 

 
In a perfect model, all cases will be on the diagonal of Table 

I and the PCC, sensitivity, and specificity will be 100%. 
Classification of the observations into these groups is based on 
a cutoff value for p̂ , which is usually assumed to be 0.5. All 

observations where ̂p  is greater than or equal to 0.5 are 

classified as events and values which are less than 0.5 are 
classified as non-events. If the observed sample has prior 
probability of belongs to group 0 is large and the sample has 
prior probability of belongs to group 1 is small, and vice versa, 
then 0.5 is not the right cut off value. The cut off were now 
depends on the sample proportion of group 1. The 
classification table and the classification rates reported by 
Statistical Analysis Software (SAS) program are obtained by 
using the pseudo-jackknife estimation procedure. 

V. LEAVE-ONE-OUT CLASSIFICATION 

The data is made up of categorical independent variables; 
hence the normality assumption is violated. Therefore, the L-
O-O approach which does not require the assumption of 
normality is used. The Jackknife-like method also known as 
the Lachenbruch’s holdout is a widely used approach based on 
estimation with multiple subsets of the sample for validation 
[12-14]. The L-O-O method represents a special case of the 
cross-validation technique [15]. Given n cases available in a 
dataset, a classifier is trained on (n-1) cases and then is tested 
on the case that was left out [16-17]. This process is repeated n 
times until every case in the dataset have been included once 
as a cross-validation instance. The results are averaged across 
the n test cases to estimate the classifier's prediction 
performance [14]. Therefore, this method produces the highest 
accuracy estimates for the classification problems [9].  

Most researchers suggest that L-O-O approach be used only 
when the smallest group size is at least five times the number 
of predictor variables [18]. One of the characteristics of the L-
O-O method is that the outside test recognition rate should be 
able to approach the true recognition rate closely because each 
classifier uses almost all the data set leaving one entry.   

VI.  PARAMETER ESTIMATES AND                                 

IMPORTANCE OF PARAMETERS 

The maximum likelihood estimates of parameters will be 
used. The coefficient of the independent variable gives the 
amount by which the dependent variable will increase or 
decrease if the independent variable changes by one unit. The 

square of the t-values give the Wald 2χ  statistic, which can be 

used to assess the statistical significance of each independent 
variable.  

 

A. Wald Test 

The test on individual coefficients is based on a t-like 
statistic referred to as the Wald inference [19]. A Wald test is 
used to test the statistical significance of each coefficient (βj) 
in the model. The corresponding null and alternative 
hypotheses are 

: 0, 0,1, , .

: 0.
0 j
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Η β j k
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The Wald test statistic  

 
β

W =
s.e.(β)

ˆ

ˆ
                     (10) 

follows the standard normal distribution under the null 
hypothesis, = 0jβ . The statistic is essentially the same as the 

t-statistic in the linear model. Under the alternative hypothesis, 
it is asymptotic to 2χ  distribution and is calculated by 

 

2

2 β
Wald χ =

s.e.(β)

 
  
 

ˆ

ˆ
.                      (11) 

Though the Wald test is used by many, it is less powerful 
than the likelihood ratio test. This is because the Wald test is 
biased under certain situations. The Wald test often misleads 
the user to conclude that the coefficient (consequently the 
corresponding risk factor) is not significant when reality it 
indeed is [8]. Certainly, several authors have identified 
problems with the use of the Wald statistic. Menard [20] warns 
that for large coefficients, standard error is inflated, lowering 
the Wald 2

χ  statistic value. Agresti [1] stated that the 

likelihood-ratio test is more reliable for small sample sizes 
than the Wald test. Therefore, this statistic needs to be 
interpreted with great caution. In this study, the Wald statistic 
was considered because it is computationally easy and is 
provided automatically in the output of most statistical 
computer packages, i.e. SAS.     

 

B. P-Value 

The p-value for each parameter estimate of β̂  is the 

probability of obtaining a value of the test statistic as extreme 
as or more extreme (in the appropriate direction) than the one 
actually computed when the null hypothesis is true. The p-
value (refer to Fig. 1) is given by:   

( )0p = P V > V                (12) 

where 
2
vV χ: ,  

 0V = calculated value of test statistic, and 

  v  = degrees of freedom. 
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Fig. 1 The p-value of 2

χ distribution 
 
 

The 0H  is rejected when p α≤ , where α  is the level of 

significance. Thus, the p-value for a test can also be defined as 
the smallest value of α  for which the null hypothesis can be 
rejected. In fact, when controlling the level of significance at 
α = 0.05, 

0

0

0.05 reject (refer to Figure 1A);

0.05 accept (refer to Figure 1B) .

p H

p H

<
≥

 

Note that in general the sample size must be large in order 
for the p-value to be accurate.  

C. Odds Ratio 

Quantification of the relationships of the predictors in the 
logistic model to the dependent variable involves a parameter 
called the odds ratio [21]. The odds ratio is the ratio of the 
odds (refer to Equation 4) of having an outcome for one group 
versus another, that is:  
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It is normally represented by Exp(H) or Exp(Est), where H = 

( )
1

k

j Aj Bj
j

X Xβ
=

−∑ . Significant Wald values can only be 

interpreted by transforming the values into odds ratios using 
the exponential function. The odds ratio can be any non-
negative number. When the Exp(H) has the value 1, it indicates 
that the sample is predicted to belong to the event and vice 
versa. 
 The odd ratios could also be interpreted by evaluating how 
the unit changes in H, affect Exp(H). Suppose there is an 
example of lung cancer occurrences, and the purpose is to 
analyze the predictors of lung cancer, namely smoking status, 
and some other variable, e.g. age representing a continuous 
variable. Hence the dependent variable is dichotomous, with 

having lung cancer considered as an event, while not having 
lung cancer considered as non-event. The binary independent 
variable, smoking status has values smoker or non-smoker 
with non-smoker considered as the reference level. 
 For the binary independent variable, smoking status, 
keeping the other variable age constant, the odds ratio could be 
obtained. For example, AX  and BX  are two specifications of 

these two independent variables smoking status and age, say, 
= (1, 45)AX  and = (-1, 45)BX . Here, AX  denotes the group 

of 45-year-old smokers (smoking status = -1), whereas BX  

denotes the group of 45-year-old non-smokers (smoking status 
= 1). Then, from Equation 13, 

A BX vs XOR ( ) ( ){ }1 1 2 21 2A B A Bexp X X X Xβ β= − + −     

         ( )( ) ( ){ }= 1- -1 + 45- 451 2exp β β  

                  12= .βe  
If the estimate of the 12β  coefficient from maximum 

likelihood estimation turns out to be, say 12 = 2.303β̂  then the 

estimated odd ratio will be 2.303 = 10e . This indicates that a 
smoker is ten times more likely to get lung cancer compared 
against a non-smoker. 
 Similarly, for the continuous independent variable age, 
keeping smoking status constant, the odds ratio could be 

obtained. For example, say, = (-1, 45)'
AX  and = (-1, 21)'

BX . 

Here, '
AX  denotes the group of 45-year-old smokers, whereas 

'
BX  denotes the group of 21-year-old smokers. Then, from 

Equation 13,  

A BX vs XOR ( ) ( ){ }1 1 2 21 2
' ' ' '
A B A Bexp X X X Xβ β= − + −     

         ( ) ( )( ) ( ){ }= -1 - -1 + 45- 211 2exp β β  

 224= .βe  
If the estimate of the 224β  coefficient from maximum 

likelihood estimation turns out to be, say 224 = 0.152β̂  then 

the estimated odd ratio will be 0.152 = 1.164e . This indicates 
that the odds of getting lung cancer increases by 16.4% with 
each increasing age (year) of a smoker. 

D. Importance of Parameters  

 The importance of independent variables is determined by 
odds ratios and the p-values. Independent variables that have 
influence/importance are those with odds ratio larger than one 
or odds ratio less than one, with p-values significant (<0.05). 
An odds ratio greater than one means a non-reference level 
independent variable will be classify into the event group. An 
odds ratio less than one imply that the reference level 
independent variable will be classified into the event group. 
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TABLE II 
CATEGORICAL INDEPENDENT VARIABLES AVAILABLE FOR ENTRY 

Variable Variable Label Level Level Label 
BETA(0.5,0.5) Symmetric 

platykurtic 
FLEISHMAN1 Skewed platykurtic 
FLEISHMAN2 Skewed normal-

tailed 
G=.225/H=.225 Skewed leptokurtic 

(severe) 
G=.76/H=-.098 Skewed leptokurtic 
G=0/H=.225 Symmetric 

leptokurtic 

DISTR 
 

Type of 
distribution 

N(0,1) Standard normal 
SKEW Skewed  SHAPE Skewness of 

distribution SYMM Symmetric 
LEPT Leptokurtic 
PLAT Platykurtic 

TAIL 
 

Kurtosis of 
distribution 

NORM Normal 
120 N=120 GSIZE Total group 

size 60 N=60 
INCR05 Increment of 5 
INCR10 Increment of 10 

GSCOND 
 
 

Group size 
increments 

EQUAL Equal sample size 

 

VII.  DLR  TO DETERMINE THE IMPORTANCE  OF SIMULATION 

CONDITIONS FOR ROBUST TEST OF SPREAD PROCEDURES ON 

GENERATING OF P-VALUES 

This paper performed an illustration of DLR as one of the 
data mining techniques to determine the importance of the 
simulation conditions for robust test of spread procedures on 
the generating of p-values. That is, DLR was conducted to 
evaluate the particular simulation conditions that will produce 
robust Type I error rates, i.e. Type I error rates that fall in 
[0.045, 0.050]. Essentially, the database consist all p-values & 
attendant information for tests of spread procedures from [22]. 
In particular, these procedures were compared for their Type I 
error rates when data were obtained from 7 different 
distributions within the context of 6 one-way independent 
groups’ designs. The designs differed by total sample size & 
group sample sizes; 

(a) degree of sample size inequality;  
(b) shape of the population distribution; and 
(c) values of trimming. 

For each condition five thousand replications were conducted 
and the nominal level of significance was 0.05.  
 The simulation conditions in this study were types of 
distribution, skewness of distribution, kurtosis of distribution, 
total group size, and unbalanced group size increments (Refer 
to Table II). These were also the independent variables in the 
analysis. The 7 distributions simulated in [22] were used in 
this study, they were  

1) The Fleishman [23] transformation of the standard 
normal distribution into a skewed platykurtic distribution 
with skewness, 1γ = 0.5 and kurtosis, 2γ =-0.5. 

2)  A second Fleishman transformation of the standard 
normal distribution into a skewed normal-tailed distribution 
with 1γ  = 0.75 and 2γ = 0. 

3) The Beta (0.5, 0.5) distribution representing symmetric 
platykurtic distributions with 1γ  = 0 and 2γ = -1.5. 

 

TABLE III 
CATEGORICAL INDEPENDENT VARIABLES AVAILABLE FOR ENTRY 

 
Model Information 
Data Set WORK.TRAINING 
Response Variable pval05 
Number of Response Levels 2 
Model binary logit 
Optimization Technique Fisher's scoring 
 
Number of Observations Read 84 
Number of Observations Used 84 
Sum of Frequencies Read 25257 
Sum of Frequencies Used 25257 

 
Response Profile 

Ordered Value pval05 Total Frequency 
1 1 1860 
2 0 23397 

 Probability modeled is pval05=1. 

 
TABLE IV 

ASSESSMENT OF MODEL 
Part A. Model Fit Statistics 
Model Convergence Status 
Convergence criterion (GCONV=1E-8) satisfied. 
 
Model Fit Statistics 

Criterion Intercept Only  a Intercept and Covariates 
-2 Log L 13283.252 b 12449.159 

 
Part B. Likelihood Ratio Test 
Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 
Likelihood Ratio 834.0929 c 9 <.0001 

 
 a The -2 Log L for Intercept Only ( null-2 LogL ) is defined below, where N0 

and N1 are observed frequencies for the dichotomous dependent variable. N0+ 
N1=N, total sample size. 

0 0 1 1-2 null-2 LogL = N ln( N N )+ N ln( N N )    

 b -2 =-2 23397 (23397 25257)+1860 (1860 25257) =-2 -6641.626 =13283.252null LogL ln ln        
 c = (-2 ) - (-2 ) = 13283.252 -12449.159 = 834.0929null modelG LogL LogL  

 
4) A g and h distribution [24] where = 0g = h . This is the 

standard normal distribution with 1 2= = 0γ γ . 

5) A = 0g  and = 0.225h  long-tailed distribution with 

1 = 0γ  and 2 = 154.84γ , representing   symmetric 

leptokurtic distributions.  
6) A = 0.76g  and = - 0.098h distribution with 

1 2= 2 and = 6γ γ , representing skewed leptokurtic 

distribution. 
7) A = 0.225g and = 0.225h  distribution. This is also a 

long-tailed skewed leptokurtic distribution 
( 1 2= 4.9, = 4673.8γ γ ), but more severe than (6).  

The skewness of a distribution was either symmetric or 
skewed, while the kurtosis of distributions ranged from 
platykurtic to normal-tailed to leptokurtic distributions. The 
total sample group size was designed as 60 (average sample 
size of 20) or 120 (average sample size of 40). The unbalanced 
group size increments followed 3 conditions of sample size 
equality or inequality. These were equal sample sizes, 
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increments of 5 (moderately unequal sample sizes), and 
increment of 10 (extremely unequal sample sizes). On the 
other hand, the dependent variable had two values, 1 
representing p-values falling in [0.045, 0.050] and 0 for p-
values falling outside of this interval after restructure it. 

Originally, there were one scale dependent variable and five 
independent variables with 25,257 records. The five 
independent variables contain the information of 7 levels of 
types of distributions, 2 levels of skewness of distributions, 3 
levels of kurtosis of distributions, 2 levels of total group size 
and 3 levels of group size increments. However, the 
preliminary run on DLR showed that with this particular 
variables structure, there were zero parameter estimates. This 
was a sign of presence of multicollinearity. However, this 
study still believes that the collinear variables are relevant to 
the model. Thus, the data was restructured by redefining the 
variables. Since the SHAPE and TAIL were fixed in the 
distributions. The combination of the independent variables 
formed 42 combinations of levels after restructure the original 
independent variables. For each of the 42 combinations, the 
number of records in group 0 and group 1 were counted for 
PVAL05 (dependent). Hence, there were 42 combination of 
multiplied by 2 levels of PVAL05 equaling 84 records. The 
total number of counts for the 84 records will be 25,257. 
Basically, this was the number of records before the data 
restructured. Using these combination, DLR was performed to 
examine relationship between the dichotomous dependent 
variable (Type I error rates) with a set of independent 
variables (the simulation conditions). The restructured 
variables are given in Appendix A. 

A. Dichotomous Logistic Regression (DLR) 

The DLR model estimated was 
 

0 1 2 3 4 5
DISTR SHAPE TAIPVAL05 = β +β +β +β +L βSIZE G+β SCOND          (14) 

This equation was estimated using the iterative Fisher’s 
scoring method. This is the default method in SAS PROC 
LOGISTIC as shown in the Table III. The term “Sum of 
Frequencies” meant the total number of frequencies in the 
response profile. Since the data in this study did not have 
missing values, the sum of frequencies read and used were 
same, i.e. 25,257. The numbers of observations read and used 
were 84. 

Note the level-ordering displayed in the response profile. By 
default, PROC LOGISTIC in SAS system will attempt to 
model (i.e. predict the probability of) the lower of the two 
values of the dependent variable, i.e. PVAL05=0. However, 
this was not the desired condition. Thus, the DESCENDING 
option (refer to line 000102 in Appendix B) was included to 
override this system default. Now, the value 1 became the 
reference level. Hence, p was defined as the probability of 
being in group 1.  

These probabilities were used to group the simulation 
conditions combinations (the independent variables). The 
classification depended upon a cutoff point. Generically, SAS 
set the cutoff probability as 0.5. In order to define a cutoff 
probability, the option PPROB was invoked (refer to line 
000107 in Appendix B). Simulation conditions combinations 
with predicted values that exceeded the classification cutoff 
were classified as group 1, while those with predicted values 
smaller than the cutoff were classified as group 0. In this case, 
the value of the cutoff point for classifying cases was 0.07 
(1860/25257).  

Since the data were in count form, it is indicated to PROC 
LOGISTIC by writing the FREQ statement (refer to line 
000105 in Appendix B). The main effects model was specified 
in the MODEL statement, which also included the options 
SCALE=NONE and AGGREGATE (refer both to line 000106 
in Appendix B). The SCALE option enabled the PROC 
LOGISTIC to treat each unique combination of the 

TABLE V 
BIAS-ADJUSTED CLASSIFICATION TABLE 

Classification Table 
Correct Incorrect Percentages Prob 

Level Event Non-Event Event Non-Event Correct Sensitivity Specificity 
0.070 1290 13821 9576 570 59.8 a 69.4 59.1 

a ( ) ( )event non-eventcorrect % = correct + correct /N×100% = 1290 +13821 /25257×100% = 59.8% 

TABLE VI 
ANALYSIS OF MAXIMUM LIKELIHOOD ESTIMATES 
Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard 

Error Wald 
2χ  Pr > ChiSq Exp(Est) 

INTERCEPT  1 -2.7557 0.0295 8745.0258 <.0001 0.064 
DISTR BETA(0.5,0.5) 1 0.4032 0.0575 49.2344 <.0001 1.497 
DISTR FLEISHMAN1 1 -0.5912 0.0817 52.3279 <.0001 0.554 
DISTR FLEISHMAN2 1 -0.9563 0.0958 99.6994 <.0001 0.384 
DISTR G=.225/H=.225 1 0.1100 0.0630 3.0517 0.0807 1.116 
DISTR G=.76/H=-.098 1 -0.5950 0.0823 52.2690 <.0001 0.552 
DISTR G=0/H=.225 1 0.5496 0.0548 100.4790 <.0001 1.733 
SHAPE SKEW 0 0 . . . . 
TAIL LEPT 0 0 . . . . 
TAIL PLAT 0 0 . . . . 
GSIZE 120 1 0.2210 0.0249 78.6714 <.0001 1.247 
GSCOND INCR05 1 0.1596 0.0338 22.2760 <.0001 1.173 
GSCOND INCR10 1 -0.1810 0.0362 25.0339 <.0001 0.834 
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independent variable values as a distinct group in computing 
the goodness-of-fit statistics. The SCALE=NONE statement 
specifies that no correction was needed for the dispersion 
parameter. The AGGREGATE option grouping the 
observations into subpopulations and compute the goodness-
of-fit test statistics for them.  

The results for simulation conditions are discussed in this 
manner: 

1) Assessment of model 
2) Percent of correct classification 
3) Parameter estimates 

B. Assessment of Model 

In order to assess the model fit, the likelihood ratio test was 
used. The test statistic for the null hypothesis that model fits 
the data, was the likelihood ratio test involving log likelihoods. 
The model fit statistics from Table IV, Part A showed the 
model convergence status and statistics for testing the overall 
model significance.  

The output of the likelihood ratio test provided two -2LogL 
statistics. The result of testing this hypothesis and the p-value 

for this decision was presented in Table IV, Part B. The 2χ  

was 834.0929. The p-value was less than 0.0001 implying the 
rejection of H0. This indicated that the overall DLR model was 
highly significant and at least one and perhaps all of the 
parameter estimates were significantly different from zero. The 
model with the independent variables was significantly better 
then the model with just the intercept. In other words, the 
inclusion of the independent variables significantly improved 
model fit and contributed to predicting the likelihood of being 
classified as group 1. Other than the testing of model fit, L-O-
O classification table is used to shows the accuracy of the 
model to assign records into correct group.  

C. Percent of Correct Classification 

In any classification method, the hit ratio is still the primary 
indicator of the goodness of the method. Usually, the class 
display of this assessment was in the form of contingency table 
of observations versus predicted grouping. In SAS PROC 
LOGISTIC, this was given as bias-adjusted classification table 
(refer to Table V).  

In computing the bias-adjusted classification table, SAS 
used an approximate pseudo jack-knife method known as the 
L-O-O technique. Essentially, for a given observation, a model 
was fitted by excluding an observation from the data and then 
classifies the observation using the resulting model. The 
CTABLE option (refer to line 000107 in Appendix B) allowed 
one to use L-O-O technique which gave us the unbiased 
estimate of the correct classification. Table V was the bias-
adjusted classification table produced by CTABLE option. 
This particular model constructed from the training data set 
has 59.8% hit ratio caused by moderate high sensitivity 
(69.4%) and specificity (59.1%).  

D. Parameter Estimates 

The maximum likelihood method was used to estimate the 
parameters. Then, the Wald chi-square was used to test the 
statistical significance of each of the coefficient (βj). Next, in 

order to interpret the DLR model, the logits were changed into 
odds ratio. The odd ratios can use to determine independent 
variables that were included in the DLR model to obtain robust 
Type I error rates. 

Noticed that there were some peculiar values for the 
estimate (refer to Table VI). These were zero values that 
obtained for SHAPESKEW, TAILLEPT and TAILPLAT. This was due 
to the presence of multicollinearity in the data. The SAS 
output gave three equations (refer to Equations 15-17) with 
regard to SHAPESKEW, TAILLEPT and  TAILPLAT. They were 
 

SHAPESKEW =0.14286 * INTERCEPT – 1.14286 * 
DISTRBETA(0.5,0.5) + 0.85714 * DISTRFLEISHMAN1 + 0.85714 * 
DISTRFLEISHMAN2 + 0.85714 * DISTRG=.225/H=.225 + 0.85714 * 
DISTRG=.76/H=.098 - 1.14286 * DISTRG=0/H=.225                           (15)  

 
TAIL LEPT       =0.14286 * INTERCEPT – 0.14286 * 
DISTRBETA(0.5,0.5) – 0.14286 * DISTRFLEISHMAN1 – 1.14286 * 
DISTRFLEISHMAN2 + 0.85714 * DISTRG=.225/H=.225 + 0.85714 * 
DISTRG=.76/H=.098 + 0.85714 * DISTRG=0/H=.225                          (16) 
 
TAIL PLAT       = DISTR BETA(0.5,0.5) + DISTRFLEISHMAN1 – 
DISTRFLEISHMAN2                                                                                             (17) 

 
Notice that these three equations were linear combinations 

of the variables that were non-zero estimates. These variables 
were not included in the model because of their linear 
relationships. However, this did not imply that they were not 
important variables in the model. This actually implied that 
these variables were characteristics of other variables that 
existed in the model.  
 The SHAPE and TAIL variables are the skewness and 
kurtosis of the distributions, respectively. Each distribution 
comes with known values of skewness and kurtosis indices. 
Therefore, the SHAPE and TAIL were inherent in the 
distribution. Technically, a linear relationship can be 
formulated for each distribution, i.e. 

i 0 1 i 2 iDISTR =λ + λ SHAPE +λ TAIL , where i = type of 

distribution. Then, there were seven of these equations for all 
the seven distributions in the data set. Base upon these seven 
equations, they can be reformulated into Equations 15, 16 and 
17. 

From Table VI, the parameter column showed the 
simulation conditions and the second column was the levels of 
the conditions. Each level of the parameter consisted of 
dichotomous dummy variables. Originally, DISTR has seven 
levels. Reformulating these as dummy variables, there were six 
dummy variables. Each of the six distributions was compared 
against the standard normal distribution. The rest of the 
variables undergo the same process, where a level was 
considered as a reference level and every other level was 
compared against this reference level.  
 Then, the Wald 2

χ  was used to test the statistical 

significance of each of the coefficient (βj). From Table VI, the 
DLR equation for the model could be express as 
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 = -2.7557 +0.4032 - 

0.5912  - 0.9563 -

0.5950 - 0.5496 +

0.2210 + 0.1596 -

0.1810
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edict
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 (18) 

These estimates described the relationship between the 
dependent variables and the independent variables, where the 
dependent variable was on the logit scale. From the same 
table, all parameters were significant under Wald test, except 
for .225/ =-.225G= HDISTR .  

The coefficients (βj) in the model Equation 18 were logits. 
To interpret the model, the logits was changed into odds ratio. 
This was represented in Exp(Est) column. From Table VI, the 
independent variables that have influence/important are those 
with Exp(Est)>1 or Exp(Est)<1, with p-values significant 
(<0.05). The variables that influenced classification into group 
1 were BETA(0.5,0.5)DISTR , G=0/H=.225DISTR , 

N(0,1)DISTR , 120GSIZE , INCR05GSCOND  and 

EQUALGSCOND .  

The odds ratio for BETA(0.5,0.5)DISTR  favored the 

BETA(0.5,0.5) distribution over N(0,1) distribution. This 
meant that the likelihood of getting good rates of Type I error 
using the BETA(0.5,0.5) distribution was about twice that of 
the N(0,1) distribution, when other variables were controlled. 
The same result was observed for the G=0/H=-.225DISTR  

distribution. Noticed that the BETA(0.5,0.5) was a symmetric 
playkurtic distribution with 1γ  = 0 and 2γ = -1.5 and the 

G=0/H=.225 was a symmetric leptokurtic distribution. 
On the contrary, the odds ratios for FLEISHMAN1DISTR , 

FLEISHMAN2DISTR , G=.76/H=-.098DISTR  favored the 

N(0,1) distribution. This meant that when type of distribution 
was standard normal, it was more likely to result in good rates 
of Type I error compared with the skewed platykurtic 
distribution ( FLEISHMAN1DISTR ), the skewed normal-tailed 

distribution ( FLEISHMAN2DISTR ) and the skewed leptokurtic 

distribution ( G=.76/H=-.098DISTR ). 

From the same table, noticed that the odds ratio for 

120GSIZE  favored 120GSIZE  over 60GSIZE . This meant 

that the likelihood of getting good rates of Type I error using 
large total sample size (N=120) was about twice that of the 
small total sample size (N=60).  

The odds ratio for INCR05GSCOND  favored the 

INCR05GSCOND  over EQUALGSCOND . However, the odds 

ratio for INCR10GSCOND  favored the EQUALGSCOND  over 

INCR10GSCOND . This meant that unbalanced group size 

increments by five units obtained from a (15, 20, 25) design or 
(35, 40, 45) design (representing by INCR05GSCOND ) was 

more likely to give good rates of Type I error compared with 
balanced group size such as (20, 20, 20) design or (40, 40, 40) 
design. While, balanced group size ( EQUALGSCOND ) was 

more likely to give good rates of Type I error compared with 
unbalanced group size increments by ten units obtained from a 
(10, 20, 30) design or (30, 40, 50) design (representing by 

INCR10GSCOND ). The latter design represented extremely 

unequal sample size.  

VIII.  CONCLUSION 

The most common method to use for analyzing data with 
binary response variables is DLR. In DLR model, the response 
variable is Bernoulli distributed mean value related to the 
independent variables through the logit transformation. The 
SAS system facilitates the building of a program to conduct 
DLR analysis by using PROC LOGISTIC and DATA step. In 
this study, the response variables are binary random variables, 
taking values 1 and 0, where 1 representing p-values falling in 
[0.045, 0.050] and 0 for p-values falling outside of this 
interval. In order to test hypotheses in DLR, the likelihood 
ratio test was have used. Wald test and p-values, and odds 
ratios were used to analyze maximum likelihood estimates. In 
this study, independent variables that were included in the 
DLR model to obtained robust Type I error rates falling in 
[0.045, 0.050] were successfully determined. That is, the 
model should include either symmetric platykurtic 
distributions ( BETA(0.5,0.5)DISTR ) or symmetric leptokurtic 

distributions ( G=0/H=-.225DISTR ), with a (35, 40, 45) design. 

The (35, 40, 45) design indicated conditions of large total 
sample size ( 120GSIZE ) and moderately unequal sample size 

( INCR05GSCOND ). 

 Usually, if one is interested to do prediction of model, the 
hit ratio of 80% is necessary. However, it is not required in 
this study because the hit ratio is used for the purpose of model 
accuracy assessment. Hence, the model constructed could not 
be used for prediction purpose.   
 

APPENDICES 

APPENDIX A  
RESTRUCTURE VARIABLES FOR TRAINING DATA SET 
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1 BETA(0.5,0.5) SYMM PLAT 60 EQUAL 0 551 
2 BETA(0.5,0.5) SYMM PLAT 60 EQUAL 1 59 
3 BETA(0.5,0.5) SYMM PLAT 60 INCR05 0 533 
4 BETA(0.5,0.5) SYMM PLAT 60 INCR05  1 59 
5 BETA(0.5,0.5) SYMM PLAT 60 INCR10 0 565 
6 BETA(0.5,0.5) SYMM PLAT 60 INCR10  1 37 
7 BETA(0.5,0.5) SYMM PLAT 120 EQUAL 0 550 
8 BETA(0.5,0.5) SYMM PLAT 120 EQUAL 1 51 
9 BETA(0.5,0.5) SYMM PLAT 120 INCR05 0 515 
10 BETA(0.5,0.5) SYMM PLAT 120 INCR05  1 82 
11 BETA(0.5,0.5) SYMM PLAT 120 INCR10 0 560 
12 BETA(0.5,0.5) SYMM PLAT 120 INCR10  1 32 
13 FLEISHMAN1 SKEW PLAT 60 EQUAL 0 567 
14 FLEISHMAN1 SKEW PLAT 60 EQUAL 1 36 
15 FLEISHMAN1 SKEW PLAT 60 INCR05 0 594 
16 FLEISHMAN1 SKEW PLAT 60 INCR05  1 13 
17 FLEISHMAN1 SKEW PLAT 60 INCR10 0 594 
18 FLEISHMAN1 SKEW PLAT 60 INCR10  1 11 
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19 FLEISHMAN1 SKEW PLAT 120 EQUAL 0 572 
20 FLEISHMAN1 SKEW PLAT 120 EQUAL 1 30 
21 FLEISHMAN1 SKEW PLAT 120 INCR05 0 584 
22 FLEISHMAN1 SKEW PLAT 120 INCR05  1 24 
23 FLEISHMAN1 SKEW PLAT 120 INCR10 0 585 
24 FLEISHMAN1 SKEW PLAT 120 INCR10  1 13 
25 FLEISHMAN2 SKEW NORM 60 EQUAL 0 586 
26 FLEISHMAN2 SKEW NORM 60 EQUAL 1 13 
27 FLEISHMAN2 SKEW NORM 60 INCR05 0 571 
28 FLEISHMAN2 SKEW NORM 60 INCR05  1 23 
29 FLEISHMAN2 SKEW NORM 60 INCR10 0 596 
30 FLEISHMAN2 SKEW NORM 60 INCR10  1 12 
31 FLEISHMAN2 SKEW NORM 120 EQUAL 0 568 
32 FLEISHMAN2 SKEW NORM 120 EQUAL 1 14 
33 FLEISHMAN2 SKEW NORM 120 INCR05 0 582 
34 FLEISHMAN2 SKEW NORM 120 INCR05  1 16 
35 FLEISHMAN2 SKEW NORM 120 INCR10 0 592 
36 FLEISHMAN2 SKEW NORM 120 INCR10  1 10 
37 G=.225/H=.225 SKEW LEPT 60 EQUAL 0 564 
38 G=.225/H=.225 SKEW LEPT 60 EQUAL 1 33 
39 G=.225/H=.225 SKEW LEPT 60 INCR05 0 552 
40 G=.225/H=.225 SKEW LEPT 60 INCR05  1 45 
41 G=.225/H=.225 SKEW LEPT 60 INCR10 0 581 
42 G=.225/H=.225 SKEW LEPT 60 INCR10  1 18 
43 G=.225/H=.225 SKEW LEPT 120 EQUAL 0 573 
44 G=.225/H=.225 SKEW LEPT 120 EQUAL 1 32 
45 G=.225/H=.225 SKEW LEPT 120 INCR05 0 552 
46 G=.225/H=.225 SKEW LEPT 120 INCR05  1 54 
47 G=.225/H=.225 SKEW LEPT 120 INCR10 0 540 
48 G=.225/H=.225 SKEW LEPT 120 INCR10  1 64 
49 G=.76/H=-.098 SKEW LEPT 60 EQUAL 0 553 
50 G=.76/H=-.098 SKEW LEPT 60 EQUAL 1 41 
51 G=.76/H=-.098 SKEW LEPT 60 INCR05 0 584 
52 G=.76/H=-.098 SKEW LEPT 60 INCR05  1 16 
53 G=.76/H=-.098 SKEW LEPT 60 INCR10 0 585 
54 G=.76/H=-.098 SKEW LEPT 60 INCR10  1 15 
55 G=.76/H=-.098 SKEW LEPT 120 EQUAL 0 570 
56 G=.76/H=-.098 SKEW LEPT 120 EQUAL 1 18 
57 G=.76/H=-.098 SKEW LEPT 120 INCR05 0 581 
58 G=.76/H=-.098 SKEW LEPT 120 INCR05  1 19 
59 G=.76/H=-.098 SKEW LEPT 120 INCR10 0 583 
60 G=.76/H=-.098 SKEW LEPT 120 INCR10  1 16 
61 G=0/H=.225 SYMM LEPT 60 EQUAL 0 570 
62 G=0/H=.225 SYMM LEPT 60 EQUAL 1 27 
63 G=0/H=.225 SYMM LEPT 60 INCR05 0 530 
64 G=0/H=.225 SYMM LEPT 60 INCR05  1 79 
65 G=0/H=.225 SYMM LEPT 60 INCR10 0 572 
66 G=0/H=.225 SYMM LEPT 60 INCR10  1 33 
67 G=0/H=.225 SYMM LEPT 120 EQUAL 0 542 
68 G=0/H=.225 SYMM LEPT 120 EQUAL 1 69 
69 G=0/H=.225 SYMM LEPT 120 INCR05 0 532 
70 G=0/H=.225 SYMM LEPT 120 INCR05  1 69 
71 G=0/H=.225 SYMM LEPT 120 INCR10 0 514 
72 G=0/H=.225 SYMM LEPT 120 INCR10  1 92 
73 N(0,1) SYMM NORM 60 EQUAL 0 530 
74 N(0,1) SYMM NORM 60 EQUAL 1 77 
75 N(0,1) SYMM NORM 60 INCR05 0 538 
76 N(0,1) SYMM NORM 60 INCR05  1 65 
77 N(0,1) SYMM NORM 60 INCR10 0 571 
78 N(0,1) SYMM NORM 60 INCR10  1 35 
79 N(0,1) SYMM NORM 120 EQUAL 0 479 
80 N(0,1) SYMM NORM 120 EQUAL 1 128 
81 N(0,1) SYMM NORM 120 INCR05 0 463 
82 N(0,1) SYMM NORM 120 INCR05  1 145 
83 N(0,1) SYMM NORM 120 INCR10 0 473 
84 N(0,1) SYMM NORM 120 INCR10  1 135 

Total 42 25,257 
 
 
 
 
 

APPENDIX B  
PARTIAL PROGRAM FOR LOGISTIC REGRESSION OF SIMULATION CONDITIONS 

000001 /******************************************* **********/  
000002 /*            DICHOTOMOUS LOGISTIC REGRESSION              */ 
000003/******************************************** *********/  
000004 
000005 Data trainingsimcond42; 
000006 LABEL    DISTR  = 'Type of distribution' 
000007     SHAPE  = 'Skewness of distribution' 
000008     TAIL   = 'Kurtosis of distribution' 
000009     GSIZE  = 'Total group size' 
000010     GSCOND = 'Unbalanced group size increments'; 
000011 LENGTH DISTR $ 13; 
000012 INPUT DISTR $ SHAPE $ TAIL $ GSIZE $ GSCOND $PVAL05  
000013       COUNT @@; 
000014 CARDS; 
000015 BETA(0.5,0.5) SYMM PLAT 60 EQUAL  0 551 
000016 BETA(0.5,0.5) SYMM PLAT 60 EQUAL  1 59 

M  
000098 N(0,1)  SYMM NORM 120 INCR10  1 135 
000099 ; 
000100 RUN; 
000101 
000102 PROC LOGISTIC  DATA=TRAININGSIMCOND42  
             DESCENDING; 
000103  CLASS DISTR(REF='N(0,1)') SHAPE(REF='SYMM')  
              TAIL(REF='NORM')  
000104  GSIZE(REF='60') GSCOND(REF='EQUAL'); 
000105  FREQ COUNT; 
000106  MODEL PVAL05 = DISTR SHAPE TAIL GSIZE GSCOND /  
000107  SCALE=NONE AGGREGATE EXPB RSQUARE CTABLE   
              PPROB=0.07; 
000108  /*PPROB is the prior probabilities to the sample size*/ 
000109  OUTPUT OUT=PROBSLR REDPROBS=(CROSSVALIDATE); 
000110  /*PROBSLR saves posterior probabilities for classification*/ 
000111 RUN; 
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