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Abstract—In this paper, the concepts of dichotomous logisti@ssumption is violated. Model validation with theO:O
regression (DLR) with leave-one-out (L-O-O) weresadissed. To method produces the highest accuracy estimatesther
illustrate this, the L-O-O was run to determine itnportance of the classification problems due to its capability tmgess almost
simulation conditions for robust test of spreadcedures with good || of the available data for training the clagsifi9].
Type | error rates. The resultant model was thealuawed. The g haner, the concepts of DLR were discuséed, an
discussions included 1) assessment of the accofabe model, and illustration to illustrated DLR as one of the datsining

2) parameter estimates. These were presented hrstrated by hni f dtod . he | af th
modeling the relationship between the dichotomogpeddent EChniques were performed to determine the impoetari the

variable (Type | error rates) with a set of indegemt variables (the Simulation conditions for robust test of spreadcedures on
simulation conditions). The base SAS software doitg PROC the generating ofp-values. The discussions included 1)
LOGISTIC and DATA step functions can be making usedio the assessment of the accuracy of the model, and 2meder
DLR analysis. estimates. These were presented and illustratemdale! the
relationship between the dichotomous dependentalviari
Keywords—Dichotomous logistic regression, leave-one-out, teType | error rates) with a set of independent alglgs (the
of spread. simulation conditions).

I INTRODUCTION Il. PROBABILITY, DLR MODEL, ODDS, AND LOGIT

EARL_Y uses of logistic regression were in biomedical The logistic model describes the expected valu¥ (ife.,
studies, but in recent years have also seen muehinus E(Y)) in terms of the following “logistic” formula:

business applications, social science researchketiag, and 1

genetics [1-3]. Although logistic regression hasingd E(Y‘ X)= " @)
popularity, there remains considerable confusiooualits use 1+exp{-/)’O z B, X”}

and interpretation [4-5]. In short, the literat@eems to cover =1

theoretical and mathematical issues related to siiogi where

regression more thoroughly than the practical apgdlied By

aspects needed to put this technique to use [6]. B,
Dichotomous logistic regression (DLR) is a commypet of

generalized linear model that utilizes the logit itss link i ) )

function [1]. This particular regression enables ts corresporjdmg to thi'subpopulation.

investigate the relationship between a categodatdome and For a random variable with values 0 or 1 that

a set of independent variables. The independefdhlas can E(Y|X)=[0x RY=0)+1x RY=1)]= R;Y=1) (2

be of any form. DLR does not assume linearity ¢dtrenship \where

between the dependent and the independent varjaiules not P(Y = 0)= probability of the event which coded with 0

require normally distributed independent variablesd does

not assume homoscedasticity. However, it does redghiat

observations to be independent and that the indigmen

variables be linearly related to thegit of the dependent.  (SUcCess). . .

Thus, logistic regression can be used to predidegendent The formula ofDLR model can be written in a form that

variable on the basis of continuous and/or categbri describes the variation among probabilities apvodt

the intercept parameter,
a vector of regression parameters, and

X; = row vector of independent variables

(failure), and
P(Y =1) = probability of the event which coded with 1

independents; to determine the percentage of \@iam the P(Y) = 1 3)
dependent variable which has been explained by the ' k

independents; to rank the relative importance deprendent 1+eXp{'ﬁo 'Zﬁ, Xij}

variables; to assess interaction effects and teenstahd the = _ _
impact of covariate control variables [7-8]. Theodds of success for th" group of some eveiis defined

The L-O-O classification approach which does nofuie as the ratio probability of success to the prolighbif failure
the assumption of normality was then used to astess !-€-
accuracy of the DLR model. This is because the gamade
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P
odds = ——
= 1-p

=exp|:ﬁo+Zﬂinj:|- 4)

In DLR, the dependent variable is lagit, which is the
natural logarithm of the odds. That is by takingdoon both
sides of Equation 4, a linear DLR model for tbgit were
obtain:

log(odds) = logi{ P

ol

k
= B+ 2B, 5)
j=1
where
P; = the predicted probability of the event which eddvith
1, and
X; = independent variables= 1, 2, ... .
This is the log odds of success to failure for tfe

subpopulation. The logit transformation hereli§P /1-P).

The main reason for using tHegit form of output is to
prevent the predicting probabiliti€ from going out of range,
where the required range fd? is [0,1]. The logit(P;) is
assumed to be linear, that meansltigeoddsis assumed to be
linearly related to;.

DLR applies maximum likelihood estimation
transforming the dependent intdagit variable. Actually, the
maximum likelihood methods are used to estim@teand 5, .

In this way, DLR estimates the probability of ataer event

occurring. Note that DLR calculates the log odds tioé

dependent, not changes in the dependent itselfslibeess of
the DLR can be assessed by looking at the claatdit table

which tabulates the correct and incorrect classifims of

dichotomous dependent. Also, goodness-of-fit testeh

model chi-square is available as an indicator ofdeho
appropriateness and statistic, the Wald statistic lie used to
test the significance of individual independentiafles.

. ASSESSMENT OMODEL: FITTING

The statistic used to assess the overall fit of tiuglel is
based on the likelihood function. The null and #hernative
hypotheses for assessing overall model fit arengxe

H, : The hypothesized model fits the data.

H , : The hypothesized model does not fits the d

Obviously, non rejection of the null is desiredjtdeads to the
conclusion that the model fits the data.
The test statistic for this hypothesis is the iikebd ratio

after

statistics, one for a model that includes onlyitiiercept and
another includes intercept and covariates. Deviaisc¢he
difference between two log-likelihood values. Imygaring a
null model () with only the intercept and a modél(4e)
including intercept an#t parameters, then the deviance is the
difference between Edglyy - (-2LogLmode)[11]. The smaller
the deviance, the better the model fits the data.

The deviance for a large sample given by

Go2 = _ZIn(mj =-2LogL,, — (-2L0ogL o) (6)
model

has a chi-square distribution wikhdegrees of freedom, where
Lo and Liogel refer to the likelihood of the null and full
models, respectively. This means that the likelthoatio test
was used to compare the likelihood of the full midde. with
all the predictors included) with the likelihood die null
model (i.e. a model which contained only the ioégt). This
is analogous to the overal-test of the model in linear
regressions.

IV. PERCENT OFCORRECTCLASSIFICATION

In any classification method, the percentage ofremr
classification is the primary indicator of goodnest the
method. Classification table (or confusion mati)used to
show the ability to predict correctly the outcomategory
(dichotomous dependent variable) for all casesdiygu2 x 2
tables. It shows all correct and incorrect estisalte fact, the
classification table is used to determine the erabe of the
model, which is an evaluation measure of the medel
predictive performance. Classification of obseiwadiis done

by first estimating the probabilities? = P(each observation
belonging to a given group). Table | presented afuion
matrix with a dependent variable with two categei(i@ or 1).
The columns in the table are the two predicted eslof the
dependent, while the rows are the two observedegati the
dependent. Each cell contains the number of cdimeotrect
predictions as the following:

TN = the number of correct predictions that ananse is

zero;

FP = the number of incorrect predictions that atance is

one;

FN = the number of incorrect predictions that astance is

zero; and

TP = the number of correct predictions that anaince is

one.

The hit ratio or percent of correct classificatifiCC) is
determined using the equation:
TN+TP

TN+ FP+ FN+ TP

Hit ratio =

()

test. The likelihoodl., of a model is defined as the probabilitySensitivity is the ability to predict an event amtly. Itis the
that estimated hypothesized model represents {hat iata. Proportion of observed event responses that wezdigied to

To test the null and alternative hypothedess transformed to

be events. Specificity is the ability to predictnan-event

-2LogL The -2LogL statistic is referred to as the likelihoodCorrectly. It is the proportion of observed non+eveesponses

ratio. It has ay® distribution withn-gq degrees of freedom

10]. The output of likelihood ratio test providesgot-2LogL

that were predicted to be non-events. The equatiois

. . sensitivity and specificity were:
whereq is the number of parameters in the full model [7-8 iy speciiictty
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e TP square of thé-values give the Walg ? statistic, which can be
Sensitivity =—— (8) . - .
TP + FN used to assess the statistical significance of e@a#pendent
o TN variable.
Specificity =——— 9)
TN+FP A. Wald Test
TABLE | The test on individual coefficients is based ort-like
CLASSIFICATION TABLE statistic referred to as the Wald inference [19WAald test is
Predicted used to test the statistical significance of eanéfficient (5)
0 1 ; ; ;
in the model. The corresponding null and altermativ
Actual 0 N FP hypotheses are
1 FN TP yp

H,:p;=0, j=0,1,... k
In a perfect model, all cases will be on the diajarf Table H,:p; #0.
| and the PCC, sensitivity, and specificity will H0%. -
Classification of the observations into these gsoisfhased on The Wald test statistic A
a cutoff value for p, which is usually assumed to be 0.5. All W = i (10)

observations wherep is greater than or equal to 0.5 are s.ef) o
classified as events and values which are less thanare follows t_he standard nor_mal _d|str|but|_on under thell
classified as non-events. If the observed sampk prior hypothesis,5; = 0. The statistic is essentially the same as the
probability of belongs to group 0O is large and #aenple has t-statistic in the linear model. Under the altenvatiypothesis,
prior probability of belongs to group 1 is smaldavice versa, it is asymptotic toy? distribution and is calculated by
then 0.5 is not the right cut off value. The cut wére now o
depends on the sample proportion of group 1. The 2 _ B

e e Wald y“ = — | . (11)
classification table and the classification rateported by s.e.f)
Statistical Analysis Software (SAS) program areaoted by Though the Wald test is used by many, it is lessestil

using the pseudo-jackinife estimation procedure. than the likelihood ratio test. This is because\Weld test is
biased under certain situations. The Wald testofitésleads

the user to conclude that the coefficient (consetipethe

The data is made up of categorical independenaibis; corresponding risk factor) is not significant whesality it
hence the normality assumption is violated. Theesfthe L- indeed is [8]. Certainly, several authors have fified
O-O approach which does not require the assumpbibn problems with the use of the Wald statistic. Merj@@] warns
normality is used. The Jackknife-like method alsmwn as that for large coefficients, standard error isated, lowering

the Lachenbruch’s holdout is a widely used apprd@sed on the wald 42 statistic value. Agresti [1] stated that the
estimation with multiple subsets of the sample \falidation

[12-14]. The L-O-O method represents a special cdste
cross-validation technique [15]. Givencases available in a
dataset, a classifier is trained onl) cases and then is teste
on the case that was left out [16-17]. This proéesspeatect
times until every case in the dataset have bedoded once
as a cross-validation instance. The results areaged across
the n test cases to estimate the classifier's prediction
performance [14]. Therefore, this method produbeshighest B. P-Value
accuracy estimates for the classification problg@hs The p-value for each parameter estimate gf is the
Most researchers suggest that L-O-O approach ieardg  ropapility of obtaining a value of the test stitigs extreme
when the smallest group size is at least five tithesnumber 55 or more extreme (in the appropriate directibaptthe one

of predictor variables [18]. One of the characterssof the L- actually computed when the null hypothesis is trtee p-
0-O method is that the outside test recognitioa sitould be 5 e (refer to Fig. 1) is given by:

V. LEAVE-ONE-OUT CLASSIFICATION

likelihood-ratio test is more reliable for smallngale sizes
than the Wald test. Therefore, this statistic negalsbe
OIjnterpreted with great caution. In this study, Weld statistic
was considered because it is computationally easl ia
provided automatically in the output of most stata
computer packages, i.e. SAS.

able t.q approach the true recognition rate. clobebause each p= P(V SV ) (12)
classifier uses almost all the data set leavingeorgy. °
where
VI. PARAMETER ESTIMATES AND Vioxg
IMPORTANCE OFPARAMETERS V, = calculated value of test statistic, and
The maximum likelihood estimates of parameters Wél v = degrees of freedom.

used. The coefficient of the independent variabileg the
amount by which the dependent variable will incecas
decrease if the independent variable changes byoiheThe
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having lung cancer considered as an event, whitehaving
lung cancer considered as non-event. The binampiedent
variable, smoking status has values smoker or naoker
with non-smoker considered as the reference level.

For the binary independent variable, smoking statu
keeping the other variable age constant, the catitscould be
obtained. For exampleX, and X, are two specifications of

Critical Region/
Rejection Region

m&%

[
|

v Vo r these two independent variables smoking statusaged say,
A)p=PPV)< a, seject . D e S X, = (1, 45) and X, = (-1, 45). Here, X, denotes the group
Fig. 1 Thep-value of »” distribution of 45-year-old smokers (smoking status = -1), waerX,

denotes the group of 45-year-old non-smokers (smgogiatus
=1). Then, from Equation 13,

The Hy is rejected whenp<a, where a is the level of  OR, ., :exp{( X, - )%)514,( X, - )%)132}

significance. Thus, thp-value for a test can also be defined as

the smallest value ofc for which the null hypothesis can be - exp{ 45 4E)ﬁz}
rejected. In fact, when controlling the level ofrsficance at T

a=0.05,

] ] If the estlmate of the2f, coefficient from maximum
p<0.05 rejectH, (refer to Figure 1A

p=0.05 accepH, (refer to Figure 1E

Note that in general the sample size must be lergeder
for thep-value to be accurate.

likelihood estimation turns out to be, sa)p}1 = 2.303 then the

estimated odd ratio will bee>*®=10. This indicates that a
smoker is ten times more likely to get lung cancempared
) against a non-smoker.

C. Odds Ratio Similarly, for the continuous independent varialkige,

Quantification of the relationships of the predistan the keeping smoking status constant, the odds ratiddche

logistic model to the dependent variable involvgsagameter optained. For example, sa¥, = (-1, 45) and X, = (-1, 21).
called the odds ratio [21]. The odds ratio is thgor of the g °

odds (refer to Equation 4) of having an outcomeofte group Here, X, denotes the group of 45-year-old smokers, whereas

versus another, that is: Xg denotes the group of 21-year-old smokers. Thesm fr
_ odds,, Equation 13,
Xa VS Xg s s . .
odds, ORy o x, :exp{( X, = ><Bl),31+( Xy = Xg,)ﬁz}
P R
=l /1 XFF; =exp{((-2) -(-1) 5, +(45-2)5,}
=,
ex;{ﬁ0+2ﬁ XAJ] If the estimate of the24p, coefficient from maximum
likelihood estimation turns out to be, s&yﬂ,ﬁ’z =0.15Z then
exl{ﬁo +Zﬂj Xa,} the estimated odd ratio will be®*** =1.164. This indicates
j=1

that the odds of getting lung cancer increases#% with

K each increasing age (year) of a smoker.
=ex Zﬂj(xﬁ_)%j)]' (13) gagey
j=1 D. Importance of Parameters
It is normally represented Wxp(H) or Exp(Est) whereH = The importance of independent variables is detegchiby

odds ratios and thp-values. Independent variables that have

influence/importance are those with odds ratiodartyan one

interpreted by transforming the values into odd#osausing Or odds ratio less than one, withvalues significant (<0.05).

the exponential function. The odds ratio can be aog- An odds ratio greater than one means a non-referénel

negative number. When tii&xp(H) has the value 1, it indicates independent variable will be classify into the avgroup. An

that the sample is predicted to belong to the eesdt vice odds ratio less than one imply that the refereneeell

versa. independent variable will be classified into themvgroup.
The odd ratios could also be interpreted by evaigahow

the unit changes i, affect Exp(H) Suppose there is an

example of lung cancer occurrences, and the purfose

analyze the predictors of lung cancer, namely snipkiatus,

and some other variable, e.g. age representingnanaous

variable. Hence the dependent variable is dichotmnaith

k
Z,Bj(XAj—XBj). Significant Wald values can only be
j=1
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TABLE Il TABLE Il
CATEGORICAL INDEPENDENTV ARIABLES AVAILABLE FOR ENTRY CATEGORICAL INDEPENDENTVARIABLES AVAILABLE FOR ENTRY
Variable  Variable Label Level Level Label
DISTR Type of BETA(0.5,0.5)  Symmetric Model Information
distribution platykurtic Data Set WORK.TRAINING
FLEISHMAN1  Skewed platykurtic Response Variable pvalo5
FLEISHMAN2  Skewed normal- Number of Response Levels 2
tailed Model binary logit
G=.225/H=.225  Skewed leptokurtic Optimization Technique Fisher's scoring
(severe)
G=.76/H=-.098  Skewed leptokurtic Number of Observations Read 84
G=0/H=.225 Symmetric Number of Observations Used 84
leptokurtic Sum of Frequencies Read 25257
N(0,1) Standard normal Sum of Frequencies Used 25257
SHAPE Skewness of SKEW Skewed
distribution SYMM Symmetric Response Profile
TAIL Kurtosis of LEPT Leptokurtic Ordered Value pval05 Total Frequency
distribution PLAT Platykurtic 1 1 1860
NORM Normal 2 0 23397
GSIZE Total group 120 N=120 Probability modeled is pvalo5=1.
size 60 N=60
GSCOND  Group size INCRO5 Increment of 5
increments INCR10 Increment of 10 TABLE IV
EQUAL Equal sample size ASSESSMENT OMODEL

Part A. Model Fit Statistics
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

VIl. DLR TODETERMINE THEIMPORTANCE OFSIMULATION
CONDITIONS FORROBUSTTEST OFSPREADPROCEDURES ON  __Model Fit Statistics
GENERATING OFP-VALUES Criterion Intercept Only 2 Intercept and Covariates
-2 Log L 13283.252 12449.159

This paper performed an illustration of DLR as afighe o _
data mining techniques to determine the importaot¢he PartB. L"Te"h?Od ITat'O TﬁSt_ _ _
simulation conditions for robust test of spreadcerures on —-esting Global Null Hypothesis: BETAZ0

. . . Test Chi-Square DF Pr > ChiSq
the generating op-values. That is, DLR was conducted t0 [jefinood Ratio 834.0929 9 <.0001
evaluate the particular simulation conditions twék produce
robust Type | error rates, i.e. Type | error ratiest fall in 2The -2 Log L for Intercept Only-@ LogL,,, ) is defined below, wherido

[0.045, 0-950]- Es_sentia”y- the database confligi-ealues &  yngn, are observed frequencies for the dichotomous deenariableNo+
attendant information for tests of spread proceslén@m [22].  Ni=N, total sample size.

In particular, these procedures were comparedhfar Type I -2 Logl,,, =-2[ N,In(N,/ N )+ N,In(N,/ N )]
error rates when data were obtained from 7 differen ,
2 =4 2339%h (23397 25257) +1860 25P57[ 664162 =132832
distributions within the context of 6 one-way indegent . L_Dgl"" 1 G ~ ’ e [ ~ 62@5(
groups’ designs. The designs differed by total darsjze & G = (210Gl ) - (2 L0Ghygy ) = 13283.252-12449.159 = 834.6¢
group sample sizes;
(a) degree of sample size inequality; 4) A g and h distribution [24] wherg =h = 0. This is the
(b) shape of the population distribution; and standard normal distribution witjy =y, = 0.

(c) values of trimming. _ _ o o )
For each condition five thousand replications wevaducted ®)A 9=0 and h=0.225 long ta|Ie_d distribution W'th
and the nominal level of significance was 0.05. n=0 and y, =154.84, representing symmetric

The simulation conditions in this study were typefs  leptokurtic distributions.
distribution, skewness of distribution, kurtosisdi$tribution, 6)A g=0.76 and h=-0.098distribution with
total group size, and unbalanced group size inan&sn@&efer p=2andy, =€ representing skewed leptokurtic
to Table Il). These were also the independent kke&in the

. R . . . distribution.
analy3|s. The 7 distributions simulated in [22] sversed in 7YA g=0.225and h = 0.225 distribution. This is also a
this study, they were ) - o
1) The Fleishman [23] transformation of the staddar Ong-tailed skewed leptokurtic distribution
normal distribution into a skewed platykurtic disttion (7 =4.9,7, =4673.9, but more severe than (6).
with skewnessy, = 0.5 and kurtosisy, =-0.5. The skewness of a distribution was either symmaetric

2) A second Fleishman transformation of the stemdaskewed, while the kurtosis of distributions rangédm
normal distribution into a skewed normal-tailedtdimition ~ Platykurtic to normal-tailed to leptokurtic distdtions. The
with 7, = 0.75 andy, = 0. total sample group size was designed as 60 (averagele
size of 20) or 120 (average sample size of 40).urt@lanced
group size increments followed 3 conditions of skengize
equality or inequality. These were equal sampleessiz

3) The Beta (0.5, 0.5) distribution representinghsyetric
platykurtic distributions withy, = 0 andy, = -1.5.
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TABLE V

BIAS-ADJUSTEDCLAS:!

SIFICATION TABLE

Classification Table

Prob Correct Incorrect Percentages
Level Event Non-Event Event Non-Event Correct Sensitivity Specificity
0.070 1290 13821 9576 570 59.8° 69.4 59.1
? correct % ={ corregl,, +COMEEae) /Nx100%= 1290882] /25257 x100% = 59.8
TABLE VI
ANALYSIS OF MAXIMUM LIKELIHOOD ESTIMATES
Analysis of Maximum Likelihood Estimates
Parameter DF Estimate Stgrr;g?rd Wald XZ Pr > ChiSq Exp(Est)
INTERCEPT 1 -2.7557 0.0295 8745.0258 <.0001 0.064
DISTR BETA(0.5,0.5) 1 0.4032 0.0575 49.2344 <.0001 1.497
DISTR FLEISHMAN1 1 -0.5912 0.0817 52.3279 <.0001 0.554
DISTR FLEISHMAN2 1 -0.9563 0.0958 99.6994 <.0001 0.384
DISTR G=.225/H=.225 1 0.1100 0.0630 3.0517 0.0807 1.116
DISTR G=.76/H=-.098 1 -0.5950 0.0823 52.2690 <.0001 0.552
DISTR G=0/H=.225 1 0.5496 0.0548 100.4790 <.0001 1.733
SHAPE SKEW 0 0 . . . .
TAIL LEPT 0 0
TAIL PLAT 0 0 . . . .
GSIZE 120 1 0.2210 0.0249 78.6714 <.0001 1.247
GSCOND INCRO5 1 0.1596 0.0338 22.2760 <.0001 1.173
GSCOND INCR10 1 -0.1810 0.0362 25.0339 <.0001 0.834

increments of 5 (moderately unequal sample sizasy
increment of 10 (extremely unequal sample sizes). tke
other hand, the dependent variable had two valdes,
representingp-values falling in [0.045, 0.050] and O for
values falling outside of this interval after restiure it.
Originally, there were one scale dependent variaht&five
independent variables with 25,257 records.
independent variables contain the information dewvels of
types of distributions, 2 levels of skewness ofribations, 3
levels of kurtosis of distributions, 2 levels otabgroup size
and 3
preliminary run on DLR showed that with this pauntar
variables structure, there were zero parametematds. This
was a sign of presence of multicollinearity. Howevihis
study still believes that the collinear variables eelevant to
the model. Thus, the data was restructured by iredgfthe
variables. Since theSHAPE and TAIL were fixed in the
distributions. The combination of the independeatiables
formed 42 combinations of levels after restructine original
independent variables. For each of the 42 comloingtithe
number of records in group 0 and group 1 were azliffibr

This equation was estimated using the iterativehdfis
scoring method. This is the default method in SASOE
LOGISTIC as shown in the Table Ill. The term “Surh o
Frequencies” meant the total number of frequenaieshe
response profile. Since the data in this study md have
missing values, the sum of frequencies read and usze

The fiveame, i.e. 25,257. The numbers of observations asddused

were 84.
Note the level-ordering displayed in the responsdilp. By
default, PROC LOGISTIC in SAS system will attempt t

levels of group size increments. However, thmodel (i.e. predict the probability of) the lowef the two

values of the dependent variable, i.e. PVALO5=0wkleer,
this was not the desired condition. Thus, the DESCENG
option (refer to line 000102 in Appendix B) wasluded to
override this system default. Now, the value 1 bexahe
reference level. Hencey was defined as the probability of
being in group 1.

These probabilities were used to group the simanati
conditions combinations (the independent variabléeR)e
classification depended upon a cutoff point. Geradlsi, SAS
set the cutoff probability as 0.5. In order to defia cutoff

PVALOS5 (dependent). Hence, there were 42 combination pfobability, the option PPROB was invoked (refer litwe
multiplied by 2 levels ofPVALOS5 equaling 84 records. The 000107 in Appendix B). Simulation conditions condiions
total number of counts for the 84 records will bg257. with predicted values that exceeded the classifinatutoff
Basically, this was the number of records before ttata were classified as group 1, while those with pridicvalues
restructured. Using these combination, DLR wasqreréd to smaller than the cutoff were classified as groum@his case,
examine relationship between the dichotomous depwndthe value of the cutoff point for classifying caseas 0.07
variable (Type | error rates) with a set of indegemt (1860/25257).

variables (the simulation conditions). The resued Since the data were in count form, it is indicated®ROC

variables are given in Appendix A. LOGISTIC by writing the FREQ statement (refer tmeli

. - . 000105 in Appendix B). The main effects model waecsfied

A. Dichotomous L(.)gIS'[IC Regression (DLR) in the MODEL statement, which also included theiam
The DLR model estimated was SCALE=NONE and AGGREGATE (refer both to line 000106
PVALGS = 4 +B0STRf, SHAFES Tk £SIZE 4 GOON (14) in Appendix B). The SCALE option enabled the PROC

LOGISTIC to treat each uniqgue combination of the
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independent variable values as a distinct groupoimputing
the goodness-of-fit statistics. The SCALE=NONE estatnt
specifies that no correction was needed for theedgon
parameter. The AGGREGATE option grouping
observations into subpopulations and compute theigess-
of-fit test statistics for them.

The results for simulation conditions are discussethis
manner:

1) Assessment of model

2) Percent of correct classification

3) Parameter estimates

B. Assessment of Model

In order to assess the model fit, the likelihootiorgest was
used.The test statistic for the null hypothesis that eiofits
the data, was the likelihood ratio test involviog likelihoods.
The model fit statistics from Table IV, Part A slexlvthe
model convergence status and statistics for testiagoverall
model significance.

The output of the likelihood ratio test providedotv2LoglL
statistics. The result of testing this hypothesid thep-value

for this decision was presented in Table IV, ParfTBe Xz

was 834.0929. Thp-value was less than 0.0001 implying the

order to interpret the DLR model, the logits wehanged into
odds ratio. The odd ratios can use to determinepeddent
variables that were included in the DLR model ttagbrobust

thelype | error rates.

Noticed that there were some peculiar values far th
estimate (refer to Table VI). These were zero \&ltiat
obtained forISHAPEkew TAIL gpr andTAlLp a1 This was due
to the presence of multicollinearity in the dateheTSAS
output gave three equations (refer to Equationd 7)5with
regard taSHAPE;ew TAIL gpr and TAILp a1 They were

SHAPEsew =0.14286 * INTERCEPT — 1.14286 *
DISTReLeistmanz + 0.85714 * DISTR- 2o5/1= 225+ 0.85714 *
DISTRG-= 76/k=.008- 1.14286 * DISTR-ojhi= 225 (15)

TAIL gpr  =0.14286 * INTERCEPT — 0.14286 *
DISTRserA©505— 0.14286 * DISTR gisriman: — 1.14286 *
DISTR: eishmanz + 0.85714 * DISTR- zp5p- 205+ 0.85714 *

DISTRG= 76/H=.00s*t 0.85714 * DISTR=g/1=.225 (16)
TAIL prat = DISTRgeta@0.5,0.5 1 DISTR:EisHmans —
DISTReLEisHMAN2 (17)

rejection ofH,. This indicated that the overall DLR model was

highly significant and at least one and perhapsoélithe

parameter estimates were significantly differeatrfrzero. The
model with the independent variables was signifiyabetter
then the model with just the intercept. In otherradey the
inclusion of the independent variables significanthproved
model fit and contributed to predicting the likeldd of being
classified as group 1. Other than the testing odehdit, L-O-

O classification table is used to shows the acguiEcthe
model to assign records into correct group.

C. Percent of Correct Classification

In any classification method, the hit ratio islgtie primary
indicator of the goodness of the method. Usuatg tlass
display of this assessment was in the form of ogeticy table
of observations versus predicted grouping. In SASOE
LOGISTIC, this was given as bias-adjusted clas#ifin table
(refer to Table V).

In computing the bias-adjusted classification tal#AS
used an approximate pseudo jack-knife method knasvthe
L-O-0 technique. Essentially, for a given obseatia model
was fitted by excluding an observation from theadatd then
classifies the observation using the resulting rhodde
CTABLE option (refer to line 000107 in Appendix Bljowed

Notice that these three equations were linear coatioins
of the variables that were non-zero estimates. & hasiables
were not included in the model because of theiedn
relationships. However, this did not imply thatytheere not
important variables in the model. This actually lieg that
these variables were characteristics of other bk$a that
existed in the model.

The SHAPE and TAIL variables are the skewness and
kurtosis of the distributions, respectively. Eaditribution
comes with known values of skewness and kurtosifcés.
Therefore, the SHAPE and TAIL were inherent in the
distribution. Technically, a linear relationship ncabe
formulated for each distribution, ie.
DISTR =4, + 4,SHAPE +,,TAIL, where i = type of
distribution. Then, there were seven of these égpmffor all
the seven distributions in the data set. Base upese seven
equations, they can be reformulated into Equatidnslé and
17.

From Table VI, the parameter column showed
simulation conditions and the second column wadeahels of
the conditions. Each level of the parameter coedisbf
dichotomous dummy variables. OriginalpISTR has seven
levels. Reformulating these as dummy variablesgtiere six

the

one to use L-O-O technique which gave us the uebiasqy,mmy variables. Each of the six distributions wampared

estimate of the correct classification. Table V wtlas bias-
adjusted classification table produced by CTABLEiap
This particular model constructed from the trainuhata set
has 59.8% hit ratio caused by moderate high seitgiti
(69.4%) and specificity (59.1%).

D. Parameter Estimates

The maximum likelihood method was used to estintlage
parameters. Then, the Wald chi-square was usedstotlie
statistical significance of each of the coeffici¢g). Next, in

against the standard normal distribution. The refktthe
variables undergo the same process, where a lewsl w
considered as a reference level and every othezl leas
compared against this reference level.

Then, the Wald y* was used to test the statistical
significance of each of the coefficiegg). From Table VI, the
DLR equation for the model could be express as
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PVALOS, o= ~27557 +0.403ASTRer, 05057

0.591DISTR, gy pyuns - 0-9563DIS TR s pamn
0.595MISTR. 41— 0o - 0.5496DISTR 1 - s+
0.221@SIZ,,, +0.159SCOND s -

0.181@GSOND) k10
These estimates described the relationship betwisen
dependent variables and the independent varialvtesse the
dependent variable was on thagit scale. From the same
table, all parameters were significant under Wakt,texcept

for DISTRs= 225H =-.22¢

The coefficients £) in the model Equation 18 wetlegits.
To interpret the model, thegits was changed into odds ratio.
This was represented in Exp(Est) column. From Tath)eéhe
independent variables that have influence/imporéaatthose
with Exp(Est)>1 or Exp(Est)<l, withp-values significant
(<0.05). The variables that influenced classificatinto group

(18)

1 were  DISTR3ETA(0.50.5: DISTRs=0/H=.225:
D|STFN(0J_), GSIZE »q, GSCONDNCROS5 and
GSCONR:QUAL -

The odds ratio for DISTRseTA(0.50.5 favored the

BETA(0.5,0.5) distribution over N(0,1) distribution. This
meant that the likelihood of getting good rateSgpe | error

more likely to give good rates of Type | error cargd with
unbalanced group size increments by ten units mddairom a
(10, 20, 30) design or (30, 40, 50) design (reprisg by

GSCONDLNCR10)- The latter design represented extremely

unequal sample size.

VIII.

The most common method to use for analyzing dath wi
binary response variables is DLR. In DLR model, résponse
variable is Bernoulli distributed mean value retat® the
independent variables through the logit transforomatThe
SAS system facilitates the building of a programctmduct
DLR analysis by using PROC LOGISTIC and DATA stap.
this study, the response variables are binary randariables,
taking values 1 and 0, where 1 represengivglues falling in
[0.045, 0.050] and O fop-values falling outside of this
interval. In order to test hypotheses in DLR, theslihood
ratio test was have used. Wald test gneblues, and odds
ratios were used to analyze maximum likelihoodnestes. In
this study, independent variables that were indude the
DLR model to obtained robust Type | error ratedirfglin
[0.045, 0.050] were successfully determined. Thst the
model should include either symmetric platykurtic
distributions (DISTRseTA(0.5,0.5) OF symmetric leptokurtic

distributions DISTRs =g/ =-.225), with a (35, 40, 45) design.

CONCLUSION

using theBETA(0.5,0.5)distribution was about twice that of 1o (35, 40, 45) design indicated conditions ofjéatotal

the N(0,1) distribution, when other variables were contralled

The same result was observed for tBSTRs-g/H=-225
distribution. Noticed that thBETA(0.5,0.5was a symmetric
playkurtic distribution withy, = 0 and y,= -1.5 and the
G=0/H=.225was a symmetric leptokurtic distribution.

On the contrary, the odds ratios @ISTR:| F|SHMANT

DISTR:LEISHMAN2:  DISTRs= 76/H=-008 favored the
N(0,1) distribution. This meant that when type of distitibn
was standard normal, it was more likely to resulgood rates
of Type | error compared with the skewed platykarti
distribution (DISTR: gjsHmang): the skewed normal-tailed

distribution (DISTR:| gjsHMAN2) and the skewed leptokurtic

sample size GSIZE »g) and moderately unequal sample size

(GSCONDNCROS)-

Usually, if one is interested to do predictionnoddel, the
hit ratio of 80% is necessary. However, it is nequired in
this study because the hit ratio is used for thp@se of model
accuracy assessment. Hence, the model construated ot
be used for prediction purpose.

APPENDICES

APPENDIXA
RESTRUCTUREVARIABLES FORTRAINING DATA SET

distribution (D|STF%5=.76/H =-.098)'

From the same table, noticed that the odds ratio fog

GSIZR g favored GSIZE g over GSIZEg. This meant

that the likelihood of getting good rates of Typertor using
large total sample sizeN€120) was about twice that of the
small total sample siz&E60).

The odds ratio for GSCONDR\cRros favored the

GSCONDINCRos over GSCONLxquaL - However, the odds
ratio for GSCONDQNcR10 favored theGSCONRzquaL over

GSCONDONCcR1o- This meant that unbalanced group sizé(l)

increments by five units obtained from a (15, 28), @esign or
(35, 40, 45) design (representing BSCONDQ\cRros) Was

more likely to give good rates of Type | error cargd with
balanced group size such as (20, 20, 20) desig#0o40, 40)
design. While, balanced group siz&$CON[RqouaL) was

[a)

w z ;Y =

E < - N S 2 3

9 T < 0 0 > o

z o n ~ O] O] o O
BETA(0.5,0.5) SYMM  PLAT 60 EQUAL 0 551

2 BETA(0.5,0.5) SYMM  PLAT 60 EQUAL 1 59
3 BETA(0.5,0.5) SYMM  PLAT 60 INCRO5 0 533

4 BETA(0.5,0.5) SYMM  PLAT 60 INCRO5 1 59
5 BETA(0.5,0.5) SYMM  PLAT 60 INCR10 0 565

BETA(0.5,0.5) SYMM  PLAT 60 INCR10 1 37
7 BETA(0.5,0.5) SYMM  PLAT 120 EQUAL 0 550

8 BETA(0.5,0.5) SYMM  PLAT 120 EQUAL 1 51
9 BETA(0.5,0.5) SYMM  PLAT 120 INCRO5 0 515

BETA(0.5,0.5) SYMM  PLAT 120 INCRO5 1 82
BETA(0.5,0.5) SYMM  PLAT 120 INCR10 0 560

12 BETA(0.5,0.5) SYMM  PLAT 120 INCR10 1 32
13 FLEISHMAN1 SKEW  PLAT 60 EQUAL 0 567

14  FLEISHMAN1 SKEW  PLAT 60 EQUAL 1 36
15 FLEISHMAN1 SKEW  PLAT 60 INCRO5 0 594

16 FLEISHMAN1 SKEW  PLAT 60 INCRO5 1 13
17 FLEISHMAN1 SKEW  PLAT 60 INCR10 0 594

18 FLEISHMAN1 SKEW  PLAT 60 INCR10 1 11
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19 FLEISHMAN1 SKEW PLAT 120 EQUAL 0 572 APPENDIXB
20 FLEISHMAN1 SKEW  PLAT 120 EQUAL 1 30 PARTIAL PROGRAM FORLOGISTICREGRESSION OFSIMULATION CONDITIONS
21  FLEISHMAN1 SKEW  PLAT 120 INCRO5 0 584 000001/ /
22 FLEISHMAN1 SKEW PLAT 120 INCRO5 24 000002 /* DICHOTOMOUS LOGISTIC REGRESSIO */
23 FLEISHMAN1 SKEW  PLAT 120 INCR10 0 585 000003/ /
24  FLEISHMAN1 SKEW  PLAT 120 INCR10 13 000004
25 FLEISHMAN2 SKEW NORM 60 EQUAL 0 586 000005Data trainingsimcond42;
26 FLEISHMAN2 SKEW NORM 60 EQUAL 1 13 O000006LABEL DISTR =Type of distribution’
27 FLEISHMAN2 SKEW NORM 60 INCRO5 0 571 000007 SHAPE =Skewness of distribution’
28 FLEISHMAN2 SKEW NORM 60 INCRO5 23 000008  TAIL ='Kurtosis of distribution’
29 FLEISHMAN2 SKEW NORM 60 INCR10 0 596 000009 GSIZE =Total group size'
30 FLEISHMAN2 SKEW NORM 60 INCR10 12 000010 GSCOND =Unbalanced group size increments'
31 FLEISHMAN2 SKEW NORM 120 EQUAL 0 568 O000011LENGTHDISTR $13,
32 FLEISHMAN2 SKEW NORM 120 EQUAL 1 14 000012INPUT DISTR $ SHAPE $ TAIL $ GSIZE $ GSCOND $PVAL05
33 FLEISHMAN2 SKEW NORM 120 INCRO5 0 582 000013 COUNT @@;
34  FLEISHMAN2 SKEW NORM 120 INCRO5 16 000014CARDS
35 FLEISHMAN2 SKEW NORM 120 INCR10 0 592 000015BETA(0.5,0.5) SYMM PLAT60 EQUAL 0 551
36 FLEISHMAN2 SKEW NORM 120 INCR10 10 000016BETA(0.5,0.5) SYMM PLAT60 EQUAL 1 59
37 G=.225/H=.225 SKEW LEPT 60 EQUAL 0 564 :
38 G=.225/H=.225 SKEW LEPT 60 EQUAL 1 33
39 G=.225/H=.225 SKEW LEPT 60 INCRO5 0 552 888833!\‘(0'1) L
40 G=.225/H=.225 SKEW LEPT 60 INCRO5 45 OOOlOOi?UN'
41 G:.225§H:.225 SKEW LEPT 60 INCR10 0 581 000101 ’
42  G=.225/H=.225 SKEW LEPT 60 INCR10 18 =
43 G=.225§H=.225 SKEW  LEPT 120 EQUAL 0 573 OOOlOZBEggEL,\?S:\ISJIC DATA=TRAININGSIMCOND42
44  G=.225/H=.225 SKEW LEPT 120 EQUAL 1 32 . . .
45 G=.225/H=.225 SKEW LEPT 120 INCRO5 0 552 000103 (EI'L/QEQ?EDIEL%(EEAE)_ N(O,1)) SHAPEREF=SYMM)
46 G=.225/H=.225 SKEW LEPT 120 INCRO5 54 . . .
47 G=.225/H=.225 SKEW LEPT 120 INCR10 0 540 888183 Sg,'zz EREF 6(.)) GSCONDREF=EQUALY;
- - QCOUNT;
48 G=225MH=225 SKEW LEPT 120 INCRIO 1 64 (00105 MODEL PVALOS = DISTR SHAPE TAIL GSIZE GSCOND /
49 G=76/H=-098 SKEW LEPT 60 EQUAL 0 553 ;4147 5CAlE=NONEAGGREGATEEXPB RSQUARECTABLE
50 G=.76/H=-.098 SKEW LEPT 60 EQUAL 1 41 PPROB0.07
51 G:'76/H:"098 SKEW LEPT 60 INCROS 0 584 000108 /*PPROB is the prior probabilities to tlaenple size*/
52 G=76/H=-.098  SKEW LEPT 60  INCROS 16 000109 OUTPUTOUT=PROBSLRREDPROBS(CROSSVALIDATE);
53  G=76/H=-098 SKEW  LEPT 60 INCR10 0 585 000110 /*PROBSLR saves posterior probabilitiesctessification*/
54 G=.76/H=-.098 SKEW LEPT 60 INCR10 15 000111RUN:
55 G=.76/H=-.098 SKEW LEPT 120 EQUAL 0 570 ’
56 G=.76/H=-.098 SKEW LEPT 120 EQUAL 1 18
57 G=.76/H=-.098 SKEW LEPT 120 INCRO5 0 581 ACKNOWLEDGEMENT
58 G=.76/H=-.098 SKEW LEPT 120 INCRO5 19 .
59 G-76/H--098 SKEW LEPT 120 INGR10O O 583 'I_'he authors V\_/oul_d like to acknowledge the Wor:ktﬂed_ to
60 G=76/H=-098 SKEW LEPT 120 INCR10 16 this paper publication funded by the School of Mathtical
61 G=0/H=.225 SYMM LEPT 60 EQUAL 0 570 Sciences, and supported by the Universiti Sainsaidd
62  G=0/H=.225 SYMM LEPT 60 EQUAL 1 27 Fgllowship.
63 G=0/H=.225 SYMM  LEPT 60 INCRO5 0 530
64 G=0/H=.225 SYMM  LEPT 60 INCRO5 79
65 G=0/H=.225 SYMM  LEPT 60  INCR10 0 572 REFERENCES
66 G=0/H=.225 SYMM LEPT 60 INCR10 33 [1] A. Agresti, An Introduction to Categorical Data Analys& ed. New
67 G=0/H=.225 SYMM LEPT 120 EQUAL 0 542 York: Wiley, 2002.
68 G=0/H=.225 SYMM LEPT 120 EQUAL 1 69 [2] J. M. Henshall and M. E. Goddard, “Multiple-traibapping of
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