
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

182

Abstract—Nowadays, HPC, Grid and Cloud systems are evolving

very rapidly. However, the development of infrastructure solutions
related to HPC is lagging behind. While the existing infrastructure is
sufficient for simple cases, many computational problems have more
complex requirements.Such computational experiments use different
resources simultaneously to start a large number of computational
jobs.These resources are heterogeneous. They have different
purposes, architectures, performance and used software.Users need a
convenient tool that allows to describe and to run complex
computational experiments under conditions of HPC environment.

This paper introduces a modularworkflow system called SEGL
which makes it possible to run complex computational experiments
under conditions of a real HPC organization. The system can be used
in a great number of organizations, which provide HPC power.
Significant requirements to this system are high efficiency and
interoperability with the existing HPC infrastructure of the
organization without any changes.

Keywords—HPC, Molecular Dynamics, Workflow Languages,
Workflow Management.

I. INTRODUCTION
ACHHPC organization that provides computational power
has its own scheme of resource management, security

policies, concepts of access rights, limitations for the use of
computational resources, disk space, memory and network.
Organization may offer different cost models for different
purposes of resource usage, such as commercial usage or
scientific research usage. Resources can be provided free of
charge or as a paid service. Accordingly, user jobs will have
different priorities and limitations.

However, there are a lot of common or similar principles in
the existing frameworks to organize work with a HPC
resource in a real organization. Commonly, these principles
are based on widespread and well-known open-source
software. Usually resources run Linux/Unix-like operating
systems (Linux/Unix OS are installed on 95% of the HPC
computers in the TOP500 [1]). Most computational resources,
clusters or supercomputers, have one or more access-point

Y. Yudin is with High Performance Computing Center Stuttgart (HLRS),

University of Stuttgart,Nobelstr 19,70597 Stuttgart, Germany (phone: +49-
711-685-87263; fax: +49-711-685-87209; e-mail: yudin@hlrs.de).

T. Krasikova is with High Performance Computing Center Stuttgart
(HLRS), University of Stuttgart, Nobelstr 19, 70597 Stuttgart, Germany
(phone: +49-711-685-87263; fax: +49-711-685-87209; e-mail:
krasikova@hlrs.de).

Y. Dorozhko is with High Performance Computing Center Stuttgart
(HLRS), University of Stuttgart, Nobelstr 19, 70597 Stuttgart, Germany
(phone: +49-711-685-87216; fax: +49-711-685-87209; e-mail:
dorozhko@hlrs.de).

N. Currle-Linde is with High Performance Computing Center Stuttgart
(HLRS), University of Stuttgart, Nobelstr 19, 70597 Stuttgart, Germany
(phone: +49-711-685-65801; fax: +49-711-685-87209; e-mail:
linde@hlrs.de).

machines (so called front-ends). A job submission is organized
with the help of batch systems [2] in accordance with queue
policies, priorities and limitations existing in the organization.

Users can access front-end machines within the local
network of the organization via SSH [3]. Access from an
external network can be denied or can be restricted and
provided only for fixed IP addresses. Quite often resources are
accessed from an external network through VPN (Virtual
Private Network). Users have their own accounts on all
accessible resources of the organization. Data exchange
between users and resources is organized using SSH [3] and
such well-known programs as SCP, SFTP, RSYNC.

The approach described above is widespread in
organizations which offer HPC resources, because of simple
installation and support, high reliability and security.

The standard scenario for working with HPC resources is
the following: the user transfers input data to the selected
resource. Then the user submits a job to the queue. After that
the user has to check state of the job periodically. Often such a
job is part of a complex computational task. A large number of
computational jobs can be started within the scope of the task
in parallel or sequentially. Jobs can be dependent on other
jobs, if some resulting data of one job is used as an input data
for another job. A user, who starts such tasks (or experiments)
requires a suitable tool to create the computational experiment,
to run it and to monitor it. Workflow systems [4] for HPC
environments fit these requirements.

In this paper we describe our experience in development
and usage of the high performance workflow system SEGL
(Science Experimental Grid Laboratory). This system is
designed to work in a real HPC organization.The key goal of
our work was to develop a comprehensive platform to
describe, run and analyze complex large-scale data-intensive
simulation experiments. For this new methods for describing
such complex scalable experiments – based on GriCoL (Grid
Concurrent Language) [5], [6]– were developed. Furthermore,
a specific middleware solution supporting data-intensive tasks
was developed and implemented. Finally, a graphical user
interface was implemented which provides the necessary tools
for the whole simulation experiment i.e. model description,
simulation running, simulation monitoring and data
processing. One of the key requirements was to get a fully
functional, efficient, and user-friendly system which provides
not only some testing mode for scientific experiments, but
enables a full-blown efficient cooperation between end users
and the system in production mode.

The main requirements to the SEGL system were the
following:

Y. Yudin, T. Krasikova, Y. Dorozhko and N. Currle-Linde
Modular Workflow System for HPC Applications

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

183

• The system must work under conditions of the real HPC
organization without any changes of the infrastructure of
the organization.

• Reliability of the system.
• Simplicity of using HPC resources by applied specialists

(scientists, engineers) with the help of this system.
• Ability to reuse existing code. This means reusing of the

predefined computational jobs as well as the complex
computational experiments.

• Scalability of the system to complex simulation
experiments that consist of large number of computational
tasks (up to tens of thousands and hundreds of thousands).

All these requirements have the same priority.
It should be noted that we are talking about real HPC

organization, but not about a virtual organization (VO)[7].
There are a number of differences between a VO and a real
HPC organization [8] concerning HPC resources from the
viewpoint of the workflow developer. There are such
questions as administration of the resources, network
communications and security. Often computational resources
of the real organization are used as resources of the VO, but
resources of the VO can have different settings and
limitations. Also user support in a VO is a separate and
complicated problem[9].

However in the case of using the HPC resources for
business and industrial tasks foreground questions are
security, commercial advantage, quality of user support and
responsibility of the organization that provides resources.
Using resources as a part of the VO supposes some changes of
the infrastructure of the real organization. We solve the
problem by developing a workflow system within the scope of
the real HPC organization, without any infrastructure changes.

In this article we start with a brief overview of the related
work in this field. Then we introduce the workflow description
languageGriCoL. In the fourth, fifth and sixth sections we
present the executive environment and the middleware
solutions of the SEGL system. Molecular Dynamics
simulation is described in the seventh section. This is a good
example for a complex simulation workflow. Furthermore it
shows that our concept can be successfully used in a true
production environment.

II. RELATED WORK
The development of simulation technologies includes

various scientific branches. One of the key strategies is
creating integrated simulation environments, which would
support all aspects of creating and executing simulation
applications. These requirements are partially met by
“Scientific Workflows” and “Science Gateways”.

Currently Science Gateways are based on portal
technologies and often include different possibilities for
creating and running complex applications. One such system
is the P-Grade Portal [4]. This is a web based, service rich
environment for the development, execution and monitoring
of workflows and workflow based parameter studies on
various grid platforms. P-Grade can support both task- and

service-based workflows and provides interoperability with
Globus Toolkit, LCG and gLiteGrid middleware.

General purpose open source workflow systems include
Taverna, Kepler, and Triana[4], [10]. A service-based
approach has been adoptedin all these well-known workflow
managers. Developed for supporting scientific workflows
these systems have a very similar approach: the workflow is
visually constructed from components, which can be local
processes, tasks for grid resources or can invoke remote
services such as Web services. These workflow systems can
interact with Grid resources via middleware systems, such as
Globus Toolkit, gLite, Unicore. Initially these systems were
not intended to execute data-intensive workflows.

Other systems, such as the LONI Pipeline for neuro-
imaging and the commercial Pipeline Pilot for drug discovery,
are more geared towards specific applications and are
optimized to support specific component libraries [11].

Obviously, one of the major tendencies in the field of
simulation is the rapid growth of data volumes which happens
simultaneously with the development of HPC technologies.
This leads to new applications which have to deal with
thousands of data sets. Speaking about examples of large scale
data-intensive workflow systems [12]Pegasus[4], [10] is a
good example.Pegasus is a framework that allows mapping of
workflow instances onto a set of distributed resources such as
the Grid or a Condor pool. The mapping process not only
involves finding the appropriate resources for the tasks but
also may include some workflow restructuring geared toward
improving the performance of the overall workflow.
Scalability challenges in the workflow description,
management, and performance analysis and the solutions can
be illustrated by the usage of Pegasus in earthquake science
application [12]. The complicacy of this experiment consisted
in the big number of data sets, as Pegasus was able to cope
with it, it satisfied the requirements ideally. It supports
runtime vertical and horizontal job clustering to reduce
scheduling overheads [13].

One more data-intensive workflow management system is
ASKALON [14]. In ASKALON, the user composes a Grid
workflow application graphically using a UML-based
workflow composition and modeling service. To optimize
execution of data-intensive applications in ASKALON
algorithms based on performance predictions are used. A
performance prediction service estimates execution times of
workflow activities through a training phase and statistical
[15].

External representations for workflow instances, whether
they are based on control flow or data flow, are often very
similar. One of the most common forms is that of a directed
acyclic or cyclic graph (DAG or DCG) with nodes and
vertices. Petri Nets are another popular representation method
for workflow. Other representations include scripting
languages that model the relationships between tasks as a
series of ordered function call, and Unified Modeling
Language (UML) diagrams that use the standard diagrams and
representations to model the relationships [4]. The general-
purpose workflow language BPEL is also used to create

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

184

executable simulation workflows[6].Although there are many
languages to describe workflows, none of them is particularly
designed for data-intensive workflows with dynamic nature of
data sets behavior.

Conclusion: there is a wide variety of systems which can
support complex applications and represent an integrating
environment for experiments from different spheres of
scientific fields. However, it is difficult to figure out one
solution which would be a convenient platform for supporting
the whole cycle of the users’ activities in different science
areas on the one hand, and a highly-effective adaptive solution
in the field of execution and post -processing of complex data-
intensive applications and simulations, on the other hand.
Thus, the motivation of our work is to implement all parts of
an efficient platform for complex computational tasks, which
operate at the “triple point” of dynamic, distributed and data-
intensive (3D) attributes.

III. WORKFLOW DESCRIPTION LANGUAGE
The Grid Concurrent Language (GriCoL) [16]is used in the

system to describe a computational experiment as a workflow.

Fig. 1 Control flow level

GriCoL has a two-layer model for the description of the

experiment. There are the control flow level and the data flow
level.

The control flow level (Fig. 1)offers possibilities to describe
set of parallel and sequential tasks within the scope of the
experiment. This description is the workflow of the
experiment. To describe the logic of the experiment, the
control flow level offers different types of blocks: solver,
transition, fork/merge (parallel branching), cycle, conditional
transition, nested experiment.

For each computational block in the control flow level the
user has to describe data flow model.

Fig. 2 Data flow level

The data flow level (Fig. 2) description contains detail

information about the computational job that will be started on
the HPC resource. Also this information includes descriptions
of input and output data sets, variables that describe different
parallel data sets, parameter values for the different data sets
and expressions to select and group the data sets.

GriCoL provides a modular approach[17]. Jobs that will be
started on the HPC resource are described in the system as
executable modules. A module is an abstract description of the
computational job. It includes information about input and
output data sets. The module description is used to create a
computational experiment. Each executable module has one or
more implementations. Different implementations for different
resources can be used. In runtime the system selects the most
suitable resource for each job. Then system runs appropriate
implementation of the executable module on the selected
resource.

The system keeps a library of described executable modules
and a number of implementations for each module. This
allows to reuse an executable module in different experiments.
The set of the module implementations can be changed in the
case of changes in the set of computational resources.

Once described a computational experiment can be run
many times. Description of the input and output data sets does
not refer to file and directory names. This allows to run
experiments with different input data sets, which have
different file names and different numbers of data sets.
GriCoL offers its own language elements to describe data
communication in the experiment. Such description weakly
depends on real runtime data and number of data sets. This
approach allows to run a once described experiment with an
undefined number of data sets. Also data sets can be
parameterized with a set of defined variables.

GriCoL supports the description of nested experiments. The
number of nesting levels is unlimited. This allows to use
simple experiments as a part of a more complicated
experiment.

IV. WORKFLOW ENGINE IMPLEMENTATION
The workflow engine is a part of a SEGL system server.

The system server is installed in the local network of the
organization. It has the following tasks: running of the
workflow engine, communication with system agents to run
computational jobs and handling of client requests. The server
keeps all required information in a relational database. This is
information about such entities as computational resources of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

185

th
ex
Fi

in
m
m

de
ap
ac
op
th
fo
be
re
ex
im
be
C
ta
of

ex
st
in
su
in
th
in

sy
m

he organization
xecutable mod
ig. 3).

Detail descri
n a format of

modules and
modified forma

Selection of
epends on th
ppropriate mo
ccessible for
perable at the
he resource an
or the given jo
enchmarks va
esource for di
xecutable mo
mportant ben
enchmarks is
orrelation betw

ask benchmark
f available res

The system s
xperiment in
ored: the sele

nput and outpu
uccess or fa
nformation hel
here is the po
nterrupted.

Jobs are star
ystem agent

machine (Fig. 3

n, executable
dules, experim

Fig. 3 Archite

iptions of the
f GLUE 2[18
the module

at of JSDL[19
f the compu
he following
dule impleme
the user an

moment. It al
nd the optimal
ob[20]. Each re
alues. These
ifferent tasks.
odule keeps

nchmarks. Th
ordered in rel
ween resource
ks allows tose
sources.
stores all runt
the database

ected resource
ut data on the
ailure and th
lps to analyze
ssibility to co

rted on the re
is a service
3). The agent

modules, imp
ment models a

ecture of the sy

computationa
]. Description
implementati
].

utational reso
g factors: w
entation, whet
nd whether t
lso depends o
value of the d
esource has a
values indica
. And the im

information
his set of t
levance to the
e benchmark

elect the best r

time informat
e. The follow
e for each job
e resource, if t
he cause of
e the experim
ontinue an ex

source by the
that is starte
starts and mon

mplementations
and system use

ystem

al resources a
ns of the exe
ions are kep

ource to run
whether there
ther the resour
these resourc

on the current
different benc
set of the pre

ate efficiency
mplementation
n about the
the most im
e computation
values and the
resource from

tion about the
wing informa
b, the location
the job finishe
f the failure

ment later. In a
xperiment whi

e system agen
ed on the fro
nitors jobs. A

s of the
ers (see

are kept
ecutable
pt in a

a job
is an

rces are
ces are
load of

chmarks
defined
of the

n of the
e most

mportant
nal task.
e list of

m the set

 started
ation is
n of the
ed with
e. This
addition
ich was

nts. The
ont-end

After job

co
ag
als

Ac
rig
exp

•

•

•

is
fra

or
all
the

cre
of
via

V.

loc
wo
the
loc
to
da
use
mo
sev

suc
at
all
res
life
sys
dep
can

co
tra
da
wh

lis

mpletion the
ent is control
so responsible
The system h

ccess Control
ghts for suc
periment mod
Use cases of t

Some user
implementa
and/or use t
Some user
of before d
access to e
using this m
Some user
access to m

A graphical c
installed, s

amework[21].
User is authe
by X.509 ce

lowed resourc
ese resources.
Using the cl
eates experim

f the experime
a HTTPS.

 EXECUTING O

Before startin
cation of the i
orkstation or o
e user has to
cated on the u
the required

ata can be stor
er workstation
ore preferred
veral terabyte
The system
ch as Lustre[2
the resource

locates only o
source. As a r
fetime can be
stem (limited
pends on the
n be impleme
During wor
mputational

ansfers the inp
ata is stored o
ho starts the ex
Each user of t
t of the autho

agent analyze
lled by comm
e for data trans
has an autho
List (ACL).

ch system o
dels, experime
the system can
creates an ex

ations. Then t
this module.
creates a mod
described mo
edit this mod
model.
starts an expe

monitor this exp
client of the s
started and

enticated in th
ertificate. The
ces for the use

lient the user

ment models, s
ents. The clie

OF THE EXPERI

ng the experim
input data. Th
on the compu
have read ac

user workstatio
resources thr

red at the reso
n with the he
when the da

s.
supports wor
22]. User can
es, so-called
one workspac
rule, workspa

extended by
d or unlimited
 file system
nted as a syste
rkflow exec
resource for

put data of the
on the resourc
xperiment.
the system ha

orized keys (~

es the output d
mands of the s
sfer between r

orization mech
Users can ha

objects as ex
ents.
n be as follow

xecutable mod
this user can

del of an exper
odules. Then
del or to crea

eriment. Then
periment or to
ystem is a de
updated by

he system by
system keep

er and about t

r describes e
tarts experime
nt communic

IMENT AND RU

ment the user
he data can be
utational resou
ccess to these
on, it is transfe
rough the ser
ources or can b
elp of the clie
ata has a larg

rking with pa
allocate nam
workspaces.
ce for each e
ces have a lim

y mechanisms
d number of
and its settin
em function.

cution, the
each job an

e job to the se
ce under the

as to add a serv
~/.ssh/authoriz

data of this jo
server. The a
resources.
hanism, a so
ave different
xecutable mo

ws:
dule and a set
grant access

riment with th
this user can

ate new expe

n this user can
o get output da
esktop applica

Java Web

login and pas
s information
the user accou

executable mo
ents and gets
ates with the

UNNING OF TH

r has to spec
e located on th
urce. In the la
e data. If the
ferred from the
rver. Also the
be transferred

ent. The first
ge size, for ex

arallel file sy
ed large disk
The SEGL

experiment on
mited life time
s of the paral

extending tim
gs). Also ext

server sele
nd then the
lected resourc
account of th

ver public key
zed_keys). Aft

ob. The
gent is

called
access

odules,

t of its
to edit

he help
n grant
eriment

n grant
ata.

ation. It
Start

ssword
n about
unts on

odules,
results
server

HE JOBS
ify the
he user
ast case
data is
e client
e result
d to the
case is
xample

ystems,
spaces
system
n each
e. This
lel file
mes, it
tending

ects a
server

ce. The
he user

y into a
fter that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

186

the server can connect to some front-end via SSH [3] under
the account of the user as it shows Fig. 4. The server transfers
the input data to the resource and gets the output data of the
job via SFTP protocol.

To submit the job to the queue, to monitor the job state and
to analyze the result data of the job the agent is used. The
agent is started on the front-end (Fig. 4). To execute some
commands, the agent creates a SSH connection from the given
front-end to the given front-end under the account of the user.
To do it, agent certificate must be added into the list of the
authorized certificates. This will be executed by the server
automatically.

Message exchange between agent and server is realized by
the asynchronous JMS protocol, which enables high
productivity and guaranteed message delivery. HTTPS is used
as transport layer for JMS.

To start a job, the batch system of the resource [2] is used.
The job is submitted to the queue as a script. Then the job will
be started under control of the batch system.

The maximum number of jobs in the queue per user is
limited. However, many jobs must be started simultaneously
in the scope of the experiment. Also each user can start a
several experiments simultaneously. To solve this problem the
SEGL system has its own internal queues. These queues are
part of the workflow engine. There is one internal queue per
user and resource in the system. This queue is used for all
experiments of the given user on the given resource.

A data transfer from one resource to another is done via
SFTP. The agent of the destination resource receives a
command from the server. This command contains such
information as the source resource, the required data, the user
name on the source resource and the user name on the
destination resource.

Fig. 4 System communications

The agent of the destination resource creates a local SSH

connection under the user's account on the resource. We have
selected this approach, because we have some limitations or
special conditions which will be described in section VI. Then

this agent starts the data transfer from the source resource via
SFTP.

At the development stage of the system we have found one
more possibility to solve the problem of the resource queue
limitation. HPC resources have a lot of nodes and processors.
Most jobs use only part of these processors. The user has to
specify the number of cores or processors for the job. This
number can be defined as a special parameter of the job
submitting script. However, the maximum number of jobs per
user in the queue is independent on the number of used
cores/processors. If you make a common script for a few jobs,
you will be able to start multiple real jobs as one from the
viewpoint of the queue. In this case the number of real jobs
can be larger. If a user starts jobs manually, he or she has to
make such scripts manually. In the SEGL system this action
can be done automatically. The system is able to generate such
scripts merging jobs of different experiments of the same user.

VI. SPECIAL CONDITIONS
A significant requirement to the SEGL system is not to

require changes to the infrastructure of the HPC organization.
The agents which are started on the front-end machines do not
have any specific privileges in comparison with other users.
This means that a simple user account for the agent will be
created identical to the accounts of all other users. This user
account does not have root privileges and it does not belong to
any privileged groups. It cannot use Linux command
sudo[23]. Note that using root privileges or sudo command
often is impossible, because it may affect security of the
organization.

The system stores the input data and starts the jobs on the
resources under the account of the end user. Therefore all
limitations and policies of the organization will be applied to
this user. A billing of used resources and disk spaces will be
made for this end user too.

Since the system performs all actions on the resources
under the account of the end user, it is not necessary to make
any changes in the user accounting system of the organization.
All security policies, billing principles and user group policies
are remaining the same.

To start working with the system you need to have your
own user account in the system. All your resource accounts
must be added to (described in) the SEGL system. Then the
server public key must be added into the list of your
authorized keys. That is all. If user wants to stop working with
the system, he or she has to remove server certificate from the
list of the authorized certificates.

VII. USE CASE: MOLECULAR DYNAMICS SIMULATION OF
PROTEINS

Molecular Dynamics (MD) simulation is one of the
principal tools in the theoreticalstudy of biological molecules.
This computational method calculatesthe time dependent
behavior of a molecular system. MD simulations have
provided detailed information on the fluctuations and
conformational changes ofproteins and nucleic acids. These

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

187

methods are now routinely used to investigatethe structure,
dynamics and thermodynamics of biological molecules
andtheir interaction with substrates, ligands and inhibitors.

A common task for a computational biologist is to
investigate the determinants of substrate specificity of an
enzyme. On one hand, the same naturallyoccurring enzyme
converts some substrates better than others. One the
otherhand, often mutations are found, in nature or by
laboratory experiments,which change the substrate specificity,
sometimes in a dramatic way.

To understandthese effects, multiple MD simulations are
performed consisting of different enzyme-substrate
combinations. The ultimate goal is to establish ageneral,
generic molecular model that describes the substrate
specificity of anenzyme and predicts short- and long-range
effects of mutations on structure,dynamics, and biochemical
properties of the protein.

While most projects on MD simulation are still managed by
hand, largescaleMD simulation studies may involve up to
thousands of MD simulations.Each simulation will typically
produce a trajectory output file with a size ofseveral gigabytes,
so that data storage, management and analysis become
aserious challenge. These tasks can no longer be performed by
PBS andtherefore have to be automated.

Therefore it is worthwhile to use an experimentmanagement
system that provides a language (GriCoL) that is ableto
describe all the necessary functionalities to design complex
MD parameterstudies. The experiment management system
must be combined with the controlof job execution in a
distributed computing environment. Fig. 5 showsthe schematic
setup of a large-scale MD simulation study. Starting from
userprovided structures of the enzyme, enzyme variants (a
total of 30) and substrates (a total of 10), in the first step the
Preparation solver block isused to generate all possible
enzyme substrate combinations (a total of 300).

This is accomplished by using the select module in the data
flow of the Preparationsolver block, which builds the
Cartesian product of all enzyme variantsand substrates.
Afterwards for all combinations the molecular system
topologyis built. These topologies describe the system under
investigation for theMD simulation program. All 300 topology
files are stored in the system database and serve as an input for
the Equilibration solver block. Forbetter statistical analysis
and sampling of the proteins' conformational space,each
system must be simulated 10 times, using a different starting
conditioneach time. Here the parameterization module of the
GriCoL language is used in the data flow of the Equilibration
solver block to generateautomatically all the necessary input
files and job descriptions for the 3000 simulations. The
Equilibration solver block now starts an equilibrationrun for
each of the 3000 systems, which usually needs days to weeks,
stronglydepending on the numbers of CPUs available and the
size of the system. Inthe equilibration run the system should
reach equilibrium. An automatic controlof the system's
relaxation into equilibrium would be of great interest tosave
calculation time.

This can be achieved by monitoring multiple
systemproperties at frequent intervals. The Equilibrium
control block is usedfor this. Once the conditions for
equilibrium are met, the equilibration phasefor this system will
be terminated and the Production solver block isstarted for
this particular system.

Fig. 5 Bio-molecular experiment

Systems that have not reached the equilibriumyet are

subjected to another round of the Equilibration solver block.
During the Production solver block, which performs a MD
simulation with a predefined amount of simulation steps,
equilibrium propertiesof the system are assembled. Afterwards
the trajectories from the production run are subjected to
different analysis tools. While some analysis tools arerun for
each individual trajectory (Analysis individual), some tools
need all trajectories for their analysis (Analysis combined).
The connection line after Preparation solver block, as well as
connection line before Analysis combined block of the control
flow is drawn in red-solid,because in these cases all tasks have
to be finished before the control flowproceeds to the next
block. The blue-dashed lines used to connect the otherblocks
indicate that as soon as one of the simulation tasks has
finished, itcan be passed to the next block. This example
shows the ability of the simple control flow to steer the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

188

laborious process of a large number of single tasks in an
intuitive way.

The benefits of using an experiment management
systemlike this are obvious. Beside the time saved for setting
up, submitting, andmonitoring the thousands of jobs, the base
for common errors like misspelling in input files is also
minimized. The equilibration control helps to
minimizesimulation overhead as simulations which have
already reached equilibriumare submitted to the production
phase while others that have not are simulatedfurther. The
storage of simulation results in the system databaseenables the
scientist to later retrieve and compare the results easily.

VIII. CONCLUSION AND FUTURE WORK
This paper describes aworkflow system called SEGL that

was developed to work in a real HPC organization without any
infrastructure changes in such organization.

The SEGL is a high-performance and modular system that
provides on the one hand, a convenient way to start complex
computational experiments and on the other hand, possibilities
to increase quality of HPC services. The implementation of
the system is based on the well-known technologies, which are
often used in HPC organizations. The use of the system in a
Molecular Dynamicssimulation shows the benefits of using
the experiment management system.

However, considerable future work remains to be
done.System performance in handling large data files and
large number of the data sets must be improved. Also we
would like to improve the user interface of the client.

The system is installed at the High Performance Computing
Center Stuttgart (HLRS) and is used to execute engineering,
biological and physical simulation experiments.

In the future we would aim to develop complex planning of
the experiment execution. To plan the experiment execution,
the system will collect, keep and analyze detail statistical
information about all resources of the organization.

REFERENCES
[1] TOP 500, http://www.top500.org
[2] C. Byun, C. Duncan, andS. Burks, “A Comparison of Job Management

Systems in Supporting HPC ClusterTools”, Presentation for SUPerG,
Vancouver, Canada, 2000.

[3] OpenSSH, http://www.openssh.com/
[4] I. Taylor, E. Deelman, D. Gannon, andM. Shields, Workflows for e-

Science. Springer Press, 2007.
[5] N. Currle-Linde, F. Boes, P. Adamidis, and M. Resch, “GriCoL: A

Language for Scientific Grids”, In Proceedings of the 2nd IEEE
International Conference on e-Science and Grid Computing (E-
SCIENCE '06), Amsterdam, Netherlands, 2006.

[6] M. Sonntag, N. Currle-Linde, K. Goerlach, and D. Karastoyanova,
“Towards Simulation Workflows With BPEL: Deriving Missing
Features from GriCoL”, In Proceedings of the 21st IASTED
International Conference on Modelling and Simulation,Banff, Alberta,
Canada, 2010.

[7] I. Foster, I. Kesselman, andS. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations”,Int. J. High Perform. Comput.
Appl. 15 3, 2001.

[8] R. Baker, D. Yu, andT. Wlodek, A Model for Grid User Management,
Computing in High Energy and Nuclear Physics. La Jolla, California,
USA, 2003.

[9] T. Antoni, W. Bühler, H. Dres, G. Grein, andM. Roth, “Global grid user
support – building a worldwide distributed user support infrastructure”,
Journal of Physics: Conference Series, 2008.

[10] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-
Science: An overview of workflow system features and
capabilities”,Future Generation Computer Systems, Volume: 25, Issue:
5 (2009), 528-540.

[11] C. Goble and D. De Roure, “The impact of workflow tools on data-
centric research”, In Data Intensive Computing: The Fourth Paradigm
of Scientific Discovery, T. Hey, S. Tansley, and K. Tolle, Ed. Microsoft
Research, 137-145, 2009

[12] S. Callaghan, E. Deelman, D. Guntere, G. Juve, P. Maechling, C.
Brooks, K. Vahi, K. Milner, R. Gravesc, E. Field, D. Okaya, and T.
Jordan,“Scaling up workflow-based applications”,Journal of Computer
and System Sciences, 428-446, 2010

[13] V. S. Kumar, P. Sadayappan, G. Mehta, K. Vahi, E. Deelman, V.
Ratnakar, J. Kim, Y. Gil, M. W. Hall, T. M. Kurc, and J. H. Saltz,“An
integrated framework for performance-based optimization of scientific
workflows”, In Proceedings of the 18th ACM international symposium
on High performance distributed computing (HPDC '09) (Munich,
Germany, June 11-13, 2009), 177-186.

[14] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M.
Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek, “ASKALON:
A Grid Application Development and Computing Environment”, In 6th
International Workshop on Grid Computing (New York 2005), 122-131.

[15] M. Wieczorek, R. Prodan, and T. Fahringer,Scheduling of Scientific
Workflows in the ASKALON Grid Environment.ACM SIGMOD Record,
2005.

[16] Y. Dorozhko, T. Krasikova, Y. Yudin, N. Currle-Linde, andM. Resch,
“An Abstract Language and Environment for the Creation and Execution
of Experiments over Distributed Computers”, InProceedings. of the
International Scientific Conference Simulation-2010, Kiev, Ukraine,
2010.

[17] H. Bouziane, N. Currle-Linde, C. Perez, andM. Resch, “Analysis f
Component Model Extensions to support the GriCoL Language”, In
Making grids Work, pp 45-59, Springer, 2008.

[18] GLUE Specification v. 2.0, http://www.ogf.org/documents/GFD.147.pdf
[19] Job Submission Description Language (JSDL) Specification, Version

1.0, http://www.gridforum.org/documents/GFD.56.pdf
[20] B. Armstrong, H. Bae, R. Eigenmann, F. Saied, M. Sayeed, andY.

Zheng, “HPC Benchmarking and Performance valuation with Realistic
Applications”, 2006 SPEC Benchmark Workshop (spec), 2006.

[21] Java WebStart Overview, http://www.oracle.com/technetwork/java/
javase/overview-137531.html

[22] Lustre Cluster FS, http://www.lustre.org/
[23] sudo command, http://www.gratisoft.us/sudo/sudo.man.html

