
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

12

Abstract—The Economic factors are leading to the rise of

infrastructures provides software and computing facilities as a
service, known as cloud services or cloud computing. Cloud services
can provide efficiencies for application providers, both by limiting
up-front capital expenses, and by reducing the cost of ownership over
time. Such services are made available in a data center, using shared
commodity hardware for computation and storage. There is a varied
set of cloud services available today, including application services
(salesforce.com), storage services (Amazon S3), compute services
(Google App Engine, Amazon EC2) and data services (Amazon
SimpleDB, Microsoft SQL Server Data Services, Google’s Data
store). These services represent a variety of reformations of data
management architectures, and more are on the horizon.

Keywords—Data Management in Cloud, AWS, EC2, S3, SQS,
TQG.

I. INTRODUCTION
LOUD Storage provides whatever amount of storage you
require, on an immediate basis. It is persistent. It can be

accessed in a variety of ways, both in the data center where
the cloud is housed, as well as via the Internet. If you obtain
this from an external provider, it is purchased on a pay as you
go basis. You do not manage it, you use it, and the service
provider manages it."
Cloud systems should be geographically dispersed to reduce
their vulnerability due to earthquakes and other catastrophes,
which increase technical challenge on a great level of
distributed data interpretability and mobility. Data
interoperability is even more essential in the future as one
component of a multi-faceted approach to many applications;
many open challenges still remain such as cloud data security
and the efficiency of query processing in the cloud. [1][2][6].

II. AMAZON WEB SERVICES (AWS)
The functionality and properties in terms of performance

and consistency of three services of the Amazon Web
Services (AWS): S3, SQS, and EC2. Recently, Simple DB
was added to the AWS family of services; unfortunately, too
late to be studied as part of this work. AWS is currently the
most prominent provider of utility computing. AWS is used in
the remainder of this study as a basis for studying the
development of Web-based applications on utility computing.

Dr. Parvinder S. Sandhu is working as Professor in Computer Science &

Engineering department at Rayat & Bahra Institute of Engineering and Bio-
Technology, Mohali, Punjab, INDIA. Email: parvinder.sandhu@gmail.com

Tarandeep Singh is doing Doctorate from Punjab Technical University,
Punjab, India.

Other providers such as Adobe Share are beginning to

appear on the market place. The results of this work are
applicable to all utility services which provide a read/write
interface in order to persist data in a distributed system.

A. Elastic Computing Cloud (EC2)
EC2 stands for Elastic Computing Cloud. EC2 is a service

which allows clients to rent machines (CPU + disks) for a
client-specified period of time. Technically, the client gets a
virtual machine which is hosted on one of the Amazon
servers. The cost is USD 0.10 per hour (i.e., USD 72 per
month), regardless of how heavily the machine is used. One
interesting aspect of EC2 is that all requests from EC2 to S3
and SQS are free. From a performance perspective, it is
attractive to run applications on EC2 if the data is hosted on
S3 because that way the computation is moved to the data
(i.e., query shipping and stored procedures). EC2 is also
attractive to implement a distributed infrastructure such as a
global transaction counter [1].

B. Simple Storage System (S3)
S3 is Amazon’s Simple Storage System. Conceptually, it is

an infinite store for objects of variable size (minimum 1 Byte,
maximum 5 GB). An object is simply a byte container which
is identified by a URI. Clients can read and update S3 objects
remotely using a SOAP or REST-based interface; e.g., get
(uri) returns an object and put (uri, byte stream) writes a new
version of the object. A special get-if-modified-since (uri,
timestamp) method allows to retrieve the new version of an
object only if the object has changed since the specified
timestamp. This feature is useful in order to implement
caching based on a TTL protocol (Section 3.3). Furthermore,
user defined metadata (maximum 4 KB) can be associated to
an object and can be read and updated independently of the
rest of the object. This feature is useful, for instance, to record
a timestamp of the last change (Section 4.5). In S3, each
object is associated to a bucket. That is, when a user creates a
new object, the user specifies into which bucket the new
object should be placed. S3 provides several ways to scan
through objects of a bucket. For instance, a user can retrieve
all objects of a bucket or only those objects whose URIs
match a specified prefix. Furthermore, the bucket can be the
unit of security: Users can grant read and write authorization
to other users for entire buckets. Alternatively, access
privileges can be given on individual objects.

C. Simple Queueing System (SQS)
SQS stands for Simple Queueing System. SQS allows users

Tarandeep Singh, Parvinder S. Sandhu

Cloud Computing Databases: Latest Trends and
Architectural Concepts

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

13

to manage a (virtually) infinite number of queues with
(virtually) infinite capacity. Each queue is referenced by a
URI and supports sending and receiving messages via a HTTP
or REST-based interface. As of November 2007, the
maximum size of a message is 256 KB using the REST based
interface and 8 KB for the HTTP interface. Any byte stream
can be put into a message; there is no pre-defined schema.
Each message is identified by a unique id. Based on that id, a
message can be read, locked, and deleted from a queue. [1].

III. DATA MANAGEMENT IN THE CLOUD
Cloudy Despite the potential cost advantages, cloud-based

implementations of the functionality found in traditional
databases face significant new challenges, and it appears that
traditional database architectures are poorly equipped to
operate in a cloud environment. For example, a modern
database system generally assumes that it has control over all
hardware resources (so as to optimize queries) and all requests
to data (so as to guarantee consistency). Unfortunately, this
assumption limits scalability and flexibility, and does not
correspond to the cloud model where hardware resources are
allocated dynamically to applications based on current
requirements. Furthermore, cloud computing mandates a loose
coupling between functionality (such as data management)
and machines. Cloudy is a vehicle for exploring design issues
such as relaxed consistency models and the cost efficiency of
running transactions in the cloud. One key idea is to employ a
reservation pattern in which updates are reserved before they
are actually committed – in some sense, a generalization of 2-
phase commit in which the ability to commit is reserved
before the actual commit itself.

This section revisits distributed database architectures as
they are used in cloud-computing today. First, the classic
multi-tier database application architecture is described as a
starting point. Then, four variations of this architecture are
described. These variations are based on simple principles of
distributed databases such as replication, partitioning, and
caching. The interesting aspect is how these concepts have
been packaged and adopted by commercial cloud services.

A. Classical
Client → Web server + application server → DB server →

SAN (storage) : - In the classical model the client is connected
with web server and application server which implement
business logic queries on DB server and db server stores the
data on SAN.

B. Partitioning
Client → Web server + application server → DB server +

storage: - In partitioning the db server and the storage are
combined and the data is spread across different portions of
the storage.

C. Replication
The ROWA (Read Once, Write All) is implemented to

replicate all data or some partition of data if combined with

partitioning.

D. Distributed control
Client → Web server + application server + DB server →

Storage : - storage system is separated from the database
servers and the database servers access concurrently and
autonomously the shared data from the storage system.

E. Caching
Client → Web server + application server → DB server →

Storage → Mem Cache

The results of database queries are stored by dedicated
cache servers. Typically, these servers keep the query results
in their main memory so that accessing the cache is as fast as
possible. Correspondingly, the set of caching servers is
typically referred to as MemCache [2].

The tools take only the database schema as input and
generate the queries without looking at the underlying data.
Therefore, they cannot guarantee generation of queries with
certain kinds of properties. In particular, we are interested in
generating queries that satisfy cardinality constraints on
intermediate sub expressions.

The QAGen system introduces a complementary approach
towards the targeted testing problem. Instead of generating a
test query given the test database, the approach generates a
test database given the test query. To do so, QAGen
introduces symbolic query processing which necessitates the
use of constraint solvers to generate the underlying database.
The primary drawback of the approach is that it generates a
different database instance for each test case. As a result, the
storage overheads of applying this approach for large scale
testing of a new feature may be unacceptable. In addition,
QAGen suffers from the overheads of using an expensive
constraint solver which make it unacceptably slow for large
databases [5].

IV. TARGETED QUERY GENERATION (TQG) PROBLEM.
Range predicates can be modified only by changing the

constant in the expression. Thus, for example age < 50 can be
modified to age < 70 or age < 30, but not to age > 20. Queries
can be modified by altering the range predicates. This process
of modifying queries is defined as query refinement.

1) Single Cardinality Constraint
2) Multiple Constraints
3) Space Bounding
4) Scoring Cells
5) Pruning
6) Sampling Scheme : Concept of histograms (cost

base, rule base)
7) Evaluation Layer for Bounding.

V. SCHEMA-MAPPING TECHNIQUES

A. Basic Layout
The most basic technique for implementing multi-tenancy is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

14

to add a tenant ID column (Tenant) to each table and share
tables among tenants. This approach provides very good
consolidation but no extensibility.

B. Private Table Layout
The most basic way to support extensibility is to give each

tenant their own private tables. In this approach, the query-
transformation layer needs only to rename tables and is very
simple. Since the meta-data is entirely managed by the
database, there is no overhead for meta-data in the data itself.
However only moderate consolidation is provided since many
tables are required. This approach is used by some larger
services when a small number of tenants can produce
sufficient load to fully utilize the host machine [3].

C. Extension Table Layout
The above two layouts can be combined by splitting off the

extensions into separate tables. Because multiple tenants may
use the same extensions, the extension tables as well as the
base tables should be given a Tenant column. A Row column
must also be added so the logical source tables can be
reconstructed. At run-time, reconstructing the logical source
tables carries the overhead of additional joins as well as
additional I/O if the row fragments are not clustered together.
On the other hand, if a query does not reference one of the
tables, then there is no need to read it in, which can improve
performance. This approach provides better consolidation than
the Private Table Layout, however the number of tables will
still grow in proportion to the number of tenants since more
tenants will have a wider variety of basic requirements [3].

D. Universal Table Layout
Generic structures allow the creation of an arbitrary number

of tables with arbitrary shapes. A Universal Table is a generic
structure with a Tenant column, a Table column, and a large
number of generic data columns. The data columns have a
flexible type, such as VARCHAR, into which other types can
be converted. The nth column of each logical source table for
each tenant is mapped into the nth data column of the
Universal Table. As a result, different tenants can extend the
same table in different ways. By keeping all of the values for a
row together, this approach obviates the need to reconstruct
the logical source tables. However it has the obvious
disadvantage that the rows need to be very wide, even for
narrow source tables, and the database has to handle many
null values. While commercial relational databases handle
nulls fairly efficiently, they nevertheless use some additional
memory. Perhaps more significantly, fine-grained support for
indexing is not possible: either all tenants get an index on a
column or none of them do. As a result of these issues,
additional structures must be added to this approach to make it
feasible [3].

E. Pivot Table Layout
A Pivot Table is an alternative generic structure in which

each field of each row in a logical source table is given its
own row. In addition to Tenant, Table, and Row columns as

described above, a Pivot Table has a Col column that specifies
which source field a row represents and a single data-bearing
column for the value of that field. The data column can be
given a flexible type, such as VARCHAR, into which other
types are converted, in which case the Pivot Table becomes a
Universal Table for the Decomposed Storage Model. A better
approach however, in that it does not circumvent typing, is to
have multiple Pivot Tables with different types for the data
column. To efficiently support indexing, two Pivot Tables can
be created for each type: one with indexes and one without.
Each value is placed in exactly one of these tables depending
on whether it needs to be indexed. This approach eliminates
the need to handle many null values. However it has more
columns of meta-data than actual data and reconstructing an n-
column logical source table requires (n − 1) aligning joins
along the Row column. This leads to a much higher runtime
overhead for interpret-ing the meta-data than the relatively
small number of joins needed in the Extension Table Layout.
Of course, like the Decomposed Storage Model, the
performance can benefit from selectively reading in a small
number of columns [3].

F. Chunk Table Layout
The third generic structure, called a Chunk Table, that is

particularly effective when the base data can be partitioned
into well known dense subsets. A Chunk Table is like a Pivot
Table except that it has a set of data columns of various types,
with and without indexes, and the Col column is replaced by a
Chunk column. A logical source table is partitioned into
groups of columns, each of which is assigned a chunk ID and
mapped into an appropriate Chunk Table. In comparison to
Pivot Tables, this approach reduces the ratio of stored
metadata to actual data as well as the overhead for
reconstructing the logical source tables. In comparison to
Universal Tables, this approach provides a well-defined way
of adding indexes, breaking up overly-wide columns, and
supporting typing. By varying the width of the Chunk Tables,
it is possible to find a middle ground between these extremes.
On the other hand, this flexibility comes at the price of a more
complex query-transformation layer [3].

G. Chunk Folding
As the technique called Chunk Folding where the logical

source tables are vertically partitioned into chunks that are
folded together into different physical multi-tenant tables and
joined as needed. The database’s “meta-data budget” is
divided between application-specific conventional tables and a
large fixed set of Chunk Tables [3].

VI. KEYWORD QUERY SPECIFICATION
NUITS supports several advanced keyword queries as well

as simple keyword queries. Keyword Specification followed
by the discussions on advanced keyword queries. [4]

A. Simple keyword: A simple keyword is just a keyword, for

example database.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:1, 2011

15

B. Typed keyword: Users do not need to know the underneath
relational database schema when they issue keyword
queries. But, because a keyword may appear in any
attributes and in any relations, the results may be large
and include many users do not need. In order to restrict
the search space, typed keywords are introduced in
NUITS which allows users to specify a keyword with a
type. Here a type can be either relation-name or attribute-
name. For example, Paper: database means that a
keyword of database appearing in the Paper relation. In
addition, we introduce a wildcard * for any possible
keyword. For instance, if a user is interested in any
authors who wrote a paper on database, he/she can issue a
2 keyword query with Author:* and database. Since
casual users may not know the exact relation or attribute
name, NUITS supports aliases. The same query in the
above example can also be written as Writer:* and
database, as long as the alias ”Writer” has been
configured in advance by system administrators.

C. Conditional keyword: NUITS allows users to specify
conditions associated with a keyword. For exam database
year>2000 specifies a condition associated with the
keyword database. The condition means that, if a tuple
containing the keyword database has an attribute called
year, its value must be greater than 2000. Instead of >, the
other comparators such as <, ≤, =, ≥ and _= can also be
used. Note: a keyword can be associated with multiple
conditions. In addition, NUITS provides a special

operator ~ for approximation keyword. For example,

database year ~ 2000 means that the tuple-connection-
trees with nodes (tuples) containing a numerical value of
year, which is closer to year 2000, will be given a smaller
cost [4] .

VI. TREE CLUSTERING

The search engine will report the top-k minimal cost tuple
connection trees. However, a potential problem is how to
select such a parameter k. When k is small, a user may not be
able to find the expected tuple-connection-trees. When k is
large, a user may find it difficult because there are too many
such trees. In order to assist users to find the needed tuple-
connection-trees, in NUITS, we propose to cluster the similar
trees into clusters. Two trees, ti and tj , are in the same cluster,
if ti and tj are isomorphic to each other. Here, we consider
trees as labeled trees at the schema level. Then, ti and tj are
isomorphic to each other, if there is a one-to one mapping
from nodes of ti to nodes of tj. [4]

a) Structural-Level Clustering: The structural-level
clustering is to cluster trees using the tree isomorphic

b) Content-Level Clustering: The content-level clustering
further clusters tuple-connection-trees if the size of the
cluster is larger than a user given threshold, after
structural-level clustering. The content-level clustering
is based on keyword frequencies and content similarity.

VII. CONCLUSION
Cloud based applications need high scalability and

availability at low and controlled cost. In the 1960s, most of
the database applications were used to maintain cash flow i.e.
simple debit and credit transactions. For any organization it
was easy to spend a large portion of the IT budged on
database software and administration. In the meantime,
applications have been changed and there is tremendous
growth in data and databases only solve a relatively small
fraction of problem. As of today, utility computing is not
limited only to the single database system for support and high
performance, it requires many interactive applications. The
purpose of this paper is to show some latest database
architecture concepts. The paper tried to do that for Web-
based applications such as, e.g. an online Mobile recharge
system, Using Mobile as Wallet (Mollet) for shopping, the
result was a new problem statement, and not surprisingly a
new architecture and a different packaging of database
functionality. In this scenario there must be link between
banking application, Mobile application and web application
so that the transaction can took place from Web to mobile ,
mobile to mobile and mobile to bank for the cash flow. It will
make easy the track sale, purchase and tax calculation. This is
possible when all the database applications are linked and this
can be possible via Cloud.

REFERENCES
[1] Matthias Brantner, “Building a Database on S3,” Proceeding of Systems

Group, ETH Zurich, Pages 251-263, June 9–12, 2008.
[2] Donald Kossmann Tim Kraska Simon Loesing, “An Evaluation of

Alternative Architectures for Transaction,” Proceeding of Systems
Group, Department of Computer Science, ETH Zurich, Switzerland
Pages 579 - 590, June 6–11, 2010

[3] Chaitanya Mishra,Nick Koudas, Calisto Zuzarte, “Generating Targeted
Queries for Database Testing,” SIGMOD’08, June 9–12, 2008,
Vancouver, BC, Canada Pages 499 - 510,.

[4] Shan Wang, Zhaohui Peng, Jun Zhang Lu Qin, Sheng Wang , Jeffrey Xu
Yu, Bolin Ding , “NUITS: A Novel User Interface for Efficient
Keyword Search over Databases,” Proceeding of VLDB ‘06, September
12-15, 2006, Seoul, Korea. Pages 1143 - 1146.

[5] Gustavo Alonso Donald Kossmann Timothy Roscoe Nesime
Tatbul,Andrew Baumann Carsten Binnig Peter Fischer Oriana Riva Jens
Teubner, “The ETH Zurich Systems Group and Enterprise Computing
Center,” In preceding of ETH Zurich, Zurich 8092, Switzerland Pages
94 - 99 SIGMOD Record, December 2008

[6] Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A.
Brewer, Michael J. Carey, “The Claremont Report on Database
Research,” Proceeding of Claremont Resort in Berkeley Pages 9 - 19 ,
September 2008.

