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Periodicity for a Food Chain Model with Functional
Responses on Time Scales
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Abstract—With the help of coincidence degree theory, sufficient
conditions for existence of periodic solutions for a food chain model
with functional responses on time scales are established.
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I. INTRODUCTION

REcently, the continuation theorem of coincidence degree
theory has been widely applied to the existence problems

of periodic solutions in differential equations and difference
equations, such as [1],[2]. However, the research methods
and results are similar. Is there a unified way to investigate
these problems. The theory of calculus on time scales, which
was initiated by Stefan Hilger in [3], well solved these
problems and unified the differential and difference analysis.
In [4],[5], Bohner and Fan systematically studied the existence
of periodic solutions of dynamic equations on time scales of
predator–prey type and competition type.

In [6], a food chain model with mixed selection of functional
responses was constructed,⎧⎪⎨

⎪⎩
Ẋ(τ) = rX

(
1 − X

K

)
− b1XY, X(0) > 0,

Ẏ (τ) = −d1Y + c1XY − b2Y Z
a1+Y

, Y (0) > 0,

Ż(τ) = −d2Z + c2Y Z
a1+Y

, Z(0) > 0.

(1)

Here the positive constants b1, d1, c1, b2, a1, d2 and c2

respectively denote the predation rate of the predator, the death
rate of the predator, the conversion rate, the maximal growth
rate of the predator, the half saturation constant, the death rate
of the super predator and the conversion factor.

For simplicity, such transformations were made in [6]: x =
X
K

, y = Y
K

, z = Z
K

and t = rτ , and system (1) is equivalent
to ⎧⎨

⎩
ẋ(t) = x(1 − x) − bxy, x(0) > 0,
ẏ(t) = −dy + cxy − pyz

1+ay
, y(0) > 0,

ż(t) = −mz + qyz
1+ay

, z(0) > 0,
(2)

where b = b1K
r

, d = d1

r
, c = c1K

r
, a = K

a1
, p = b2K

a1r
,

m = d2

r
, q = c2K

a1r
. Taking into account the periodicity of

environment, it is realistic to assume that the parameters in
(2) are periodic functions of period ω. Then we have the non-
autonomous system⎧⎪⎨
⎪⎩

ẋ(t) = x(t)(1 − x(t)) − b(t)x(t)y(t), x(0) > 0,

ẏ(t) = −d(t)y(t) + c(t)x(t)y(t) − p(t)y(t)z(t)
1+a(t)y(t) , y(0) > 0,

ż(t) = −m(t)z(t) + q(t)y(t)z(t)
1+a(t)y(t) , z(0) > 0,

(3)
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where b(t), d(t), c(t), a(t), p(t), m(t), q(t) are all positive
ω−periodic functions. By using the method in [7], we can get
the discrete analogy of the previous system⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) = x(k) exp {1 − x(k) − b(k)y(k)} ,

y(k + 1) = y(k) exp
{
−d(k) + c(k)x(k) − p(k)z(k)

1+a(k)y(k)

}
,

z(k + 1) = z(k) exp
{
−m(k) + q(k)y(k)

1+a(k)y(k)

}
.

(4)
So, we mainly consider the following system on time scales⎧⎪⎪⎨

⎪⎪⎩

xΔ(t) = 1 − ex(t) − b(t)ey(t),

yΔ(t) = −d(t) + c(t)ex(t) − p(t)ez(t)

1+a(t)ey(t) ,

zΔ(t) = −m(t) + q(t)ey(t)

1+a(t)ey(t) ,

(5)

where all the coefficients are rd-continuous positive
ω−periodic functions on time scales T. System (5) can
be reduced to (3) and (4) when T is R or Z respectively.

In this paper, we mainly explore the periodic solutions of
(5) by the continuation theorem in coincidence degree theory.
The paper is organized as follows. In the next section, we
present some preliminary results about the calculus on time
scales and the continuation theorem. In Section 3, the sufficient
conditions for the existence of periodic solutions for (5) are
obtained.

II. PRELIMINARIES

For the convenience of reading, we first present some basic
definitions and lemmas about time scales and the continuation
theorem of the coincidence degree theory, more details can be
found in [8],[9].

Definition 1. A time scale T is an arbitrary nonempty closed
subset of real numbers R.

Throughout this paper, we assume that the time scale T is
unbounded above and below, such as R, Z, and

⋃
k∈Z

[2k, 2k+
1]. The following definitions and lemmas about time scales are
from [8].

Definition 2. The forward jump operator σ : T → T, the
backward jump operator ρ : T → T, and the graininess μ :
T → R

+ = [0, +∞) are defined, respectively, by
σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
and μ(t) = σ(t) − t for t ∈ T. If σ(t) = t, then t is called
right–dense(otherwise: right–scattered), and if ρ(t) = t, then
t is called left–dense(otherwise: left–scattered).

Definition 3. Assume f : T → R is a function and let t ∈ T.
Then we define fΔ(t) to be the number (provided it exists)
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with the property that given any ε > 0, there is a neighbor-
hood U of t such that

∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)
∣∣ ≤

ε|σ(t) − s|, for all s ∈ U.

In this case, fΔ(t) is called the delta (or Hilger) derivative
of f at t. Moreover, f is said to be delta or Hilger differentiable
on T if fΔ(t) exists for all t ∈ T. Obviously, if T = R, then
fΔ(t) = f ′(t); if T = Z, then fΔ(t) = f(t + 1) − f(t) =
Δf(t).

Definition 4. A function F : T → R is called an
antiderivative of f : T → R provided FΔ(t) = f(t) for all
t ∈ T. Then we define∫ s

r

f(t)Δt = F (s) − F (r) for r, s ∈ T.

Definition 5. A function f : T → R is said to be rd-
continuous if it is continuous at right-dense points in T and
its left-sided limits exist(finite) at left-dense points in T. The
set of rd-continuous functions f : T → R will be denoted by
Crd(T).

Theorem 6. Every rd-continuous function has an antideriva-
tive.

Theorem 7. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T),then
(a)

∫ b

a
[αf(t) + βg(t)]Δt = α

∫ b

a
f(t)Δt + β

∫ b

a
g(t)Δt;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)Δt ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then∣∣∣∫ b

a
f(t)Δt

∣∣∣ ≤ ∫ b

a
g(t)Δt.

Theorem 8. Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is
ω−periodic, then g(t) ≤ g(t1)+

∫ k+ω

k
|gΔ(s)|Δs and g(t) ≥

g(t2) −
∫ k+ω

k
|gΔ(s)|Δs.

For simplicity, we use the following notations throughout
the paper. Let T be ω−periodic, that is t ∈ T implies t+ω ∈ T,

k = min{R
+ ∩ T}, Iω = [k, k + ω] ∩ T,

ḡ =
1

ω

∫
Iω

g(s)Δs =
1

ω

∫ k+ω

k

g(s)Δs,

where g ∈ Crd(T) is an ω−periodic real function, i.e., g(t +
ω) = g(t) for all t ∈ T.

Now, we introduce some concepts and a useful result in [9].
Let X, Z be normed vector spaces, L : DomL ⊂ X → Z

be a linear mapping, N : X → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codimImL < +∞ and ImL is closed in
Z . If L is a Fredholm mapping of index zero and there exist
continuous projections P : X → X and Q : Z → Z such
that ImP = KerL, ImL = KerQ = Im(I −Q), then it follows
that L|DomL ∩ KerP : (I − P )X → ImL is invertible. We
denote the inverse of that map by KP . If Ω is an open bounded
subset of X , the mapping N will be called L−compact on Ω̄
if QN(Ω̄) is bounded and KP (I−Q)N : Ω̄ → X is compact.
Since ImQ is isomorphic to KerL, there exists an isomorphism
J : ImQ → KerL.

Theorem 9. (Continuation Theorem) Let L be a Fredholm
mapping of index zero and N be L−compact on Ω̄.Suppose
(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is
such that u /∈ ∂Ω;
(b) QNu 	= 0 for each u ∈ ∂Ω ∩ KerL and the Brouwer
degree deg{JQN, Ω ∩ KerL, 0} 	= 0.
Then the operator equation Lu = Nu has at least one solution
lying in DomL ∩ Ω̄.

III. EXISTENCE OF PERIODIC SOLUTIONS

In this section, we will prove the theorem related to system
(5).

Theorem 10. If a(t), b(t), c(t) , d(t) ,p(t) and q(t) are all
positive rd–continuous ω−periodic functions on time scales
T, and the following assumptions hold,
(H1) 1 − bMeM3 > 0,

(H2)
(
1 − bM

bL eωc̄e2ω
)

cL > e2ωdM ,

where M3 = ln 1
bL + ωc̄e2ω, then (5) has at least one

ω−periodic solution.

Proof: Let X = Z = {(x, y, z)T ∈ C(T, R3) :
x(t + ω) = x(t), y(t + ω) = y(t), z(t + ω) = z(t), ∀t ∈
T}, ‖ (x, y, z)T ‖= maxt∈Iω

|x(t)| + maxt∈Iω
|y(t)| +

maxt∈Iω
|z(t)|, (x, y, z)T ∈ X or Z. Then X and Z are both

Banach spaces when they are endowed with the above norm
‖ · ‖. Let

N

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ N1

N2

N3

⎤
⎦ =

⎡
⎢⎢⎣

1 − ex(t) − b(t)ey(t)

−d(t) + c(t)ex(t) − p(t)ez(t)

1+a(t)ey(t)

−m(t) + q(t)ey(t)

1+a(t)ey(t)

⎤
⎥⎥⎦ ,

L

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ xΔ

yΔ

zΔ

⎤
⎦ , P

⎡
⎣ x

y
z

⎤
⎦ = Q

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ x̄

ȳ
z̄

⎤
⎦ .

Then KerL = L ω
c , ImL = L ω

0 , and dim KerL = 3 =
codim ImL. Since ImL is closed in Z , then L is a Fred-
holm mapping of index zero. It is easy to find that P and
Q are continuous projections such that ImP = KerL and
ImL = KerQ = Im(I − Q). Furthermore, the generalized
inverse (to L) KP : ImL → KerP ∩DomL exists and is given
by

KP

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎢⎣

∫ t

k
N1(s)Δs − 1

ω

∫ k+ω

k

∫ t

k
N1(s)ΔsΔt∫ t

k
N2(s)Δs − 1

ω

∫ k+ω

k

∫ t

k
N2(s)ΔsΔ∫ t

k
N3(s)Δs − 1

ω

∫ k+ω

k

∫ t

k
N3(s)ΔsΔt

⎤
⎥⎦ .

Thus

QN

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎢⎢⎣

1
ω

∫ k+ω

k

(
1 − ex(t) − b(t)ey(t)

)
Δt

1
ω

∫ k+ω

k

(
−d(t) + c(t)ex(t) − p(t)ez(t)

1+a(t)ey(t)

)
Δt

1
ω

∫ k+ω

k

(
−m(t) + q(t)ey(t)

1+a(t)ey(t)

)
Δt

⎤
⎥⎥⎦ ,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:7, 2008

384

KP (I − Q)N

⎡
⎣ x

y
z

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

k
N1(s)Δs − 1

ω

∫ k+ω

k

∫ t

k
N1(s)ΔsΔt − (t − k

− 1
ω

∫ k+ω

k
(t − k)Δt)N̄1∫ t

k
N2(s)Δs − 1

ω

∫ k+ω

k

∫ t

k
N2(s)ΔsΔt − (t − k

− 1
ω

∫ k+ω

k
(t − k)Δt)N̄2∫ t

k
N3(s)Δs − 1

ω

∫ k+ω

k

∫ t

k
N3(s)ΔsΔt − (t − k

− 1
ω

∫ k+ω

k
(t − k)Δt)N̄3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Obviously, QN and KP (I −Q)N are continuous. According
to Arzela–Ascoli theorem, it is easy to show that KP (I −
Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X and
QN(Ω̄) is bounded. Thus, N is L−compact on Ω̄.

Now, we are to build up the suitable open bounded subset
Ω for the application of the continuation theorem. For the
operator equation Lu = λNu, where λ ∈ (0, 1), we have⎧⎪⎪⎨

⎪⎪⎩

xΔ(t) = λ
(
1 − ex(t) − b(t)ey(t)

)
,

yΔ(t) = λ
(
−d(t) + c(t)ex(t) − p(t)ez(t)

1+a(t)ey(t)

)
,

zΔ(t) = λ
(
−m(t) + q(t)ey(t)

1+a(t)ey(t)

)
.

(6)

Assume that (x, y, z)T ∈ X is a solution of system (6) for
a certain λ ∈ (0, 1). Integrating (6) on both sides from k to
k + ω, we get⎧⎪⎪⎨
⎪⎪⎩

ω =
∫ k+ω

k
ex(t)Δt +

∫ k+ω

k
b(t)ey(t)Δt,∫ k+ω

k
c(t)ex(t)Δt =

∫ k+ω

k
d(t)Δt +

∫ k+ω

k

p(t)ez(t)

1+a(t)ey(t) Δt,∫ k+ω

k
m(t)Δt =

∫ k+ω

k

q(t)ey(t)

1+a(t)ey(t) Δt.
(7)

From (6) and (7), we have
∫ k+ω

k

|xΔ|Δt < ω+

∫ k+ω

k

ex(t)Δt+

∫ k+ω

k

b(t)ey(t)Δt = 2ω,

∫ k+ω

k

|zΔ|Δt <

∫ k+ω

k

m(t)Δt+

∫ k+ω

k

q(t)ey(t)

1 + a(t)ey(t)
Δt = 2m̄ω.

Since (x(t), y(t), z(t))T ∈ X , there exist ξi, ηi ∈ Iω, i =
1, 2, 3, such that

x(ξ1) = min
t∈Iω

{x(t)}, y(ξ2) = min
t∈Iω

{y(t)}, z(ξ3) = min
t∈Iω

{z(t)},

(8)
x(η1) = max

t∈Iω

{x(t)}, y(η2) = max
t∈Iω

{y(t)}, z(η3) = max
t∈Iω

{z(t)}.

(9)
From the first equation of (7), we get

1 > ex(ξ1) + b(ξ1)e
y(ξ1),

then
ex(ξ1) < 1,

and
x(ξ1) < 0,

thus

x(t) ≤ x(ξ1) +

∫ k+ω

k

|x(t)|Δt ≤ 2ω := M1.

As a result, the following inequalities hold∫ k+ω

k

|yΔ|Δt <

∫ k+ω

k

c(t)ex(t)Δt < ωc̄e2ω.

By the first equation of (7), we have

ey(ξ2)bL < 1,

and
y(ξ2) < ln

1

bL
.

So,

y(t) ≤ y(ξ2) +

∫ k+ω

k

|yΔ(t)|Δt < ln
1

bL
+ ωc̄e2ω := M3.

According to the third equation of (7),

mL < qMey(η2),

and

y(η2) > ln
mL

qM
,

thus,

y(t) ≥ y(η2) −

∫ k+ω

k

|yΔ(t)|Δt > ln
mL

qM
− ωc̄e2ω := M4.

By the first equation of (7),

xx(η1) > 1 − bMeM3 ,

and
x(η1) > ln(1 − bMeM3),

thus, from the assumption (H1), we have the following esti-
mation

x(t) ≥ x(η1)−

∫ k+ω

k

|xΔ(t)|Δt > ln(1−bMeM3)−2ω := M2.

From the second equation of (7),

pLez(ξ3) < (1 + aMeM3)cMeM1

and
pMez(η3) > cLex(ξ1) − dM > cLeM2 − dM ,

so, according to (H2), we can get

z(ξ3) < ln
(1 + aMeM3)cMeM1

pL
,

and

z(η3) > ln
cLeM2 − dM

pM
.

Thus,

z(t) ≤ z(ξ3) +

∫ k+ω

k

|zΔ(t)|Δt

< ln
(1 + aMeM3)cMeM1

pL
+ 2ωm̄ := M5,

z(t) ≥ z(η3) −

∫ k+ω

k

|zΔ(t)|Δt

> ln
cLeM2 − dM

pM
− 2ωm̄ := M6.
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From above, we have

max
t∈[k,k+ω]

|x(t)| ≤ max {|M1| , |M2|} := R1,

max
t∈[k,k+ω]

|y(t)| ≤ max {|M3| , |M4|} := R2,

max
t∈[k,k+ω]

|z(t)| ≤ max {|M5| , |M6|} := R3.

Clearly, R1 R2 and R3 are independent of λ. Let M = R1 +
R2 + R3 + R0, where R0 is taken sufficiently large such that
for the following algebraic equations⎧⎪⎨

⎪⎩
1 − ex − ωb̄ey = 0,

ωc̄ex − ωd̄ −
∫ k+ω

k

p(t)ez

1+a(t)ey Δt = 0,

ωm̄ −
∫ k+ω

k

q(t)ey

1+a(t)ey Δt = 0,

(10)

every solution (x∗, y∗, z∗)T of (10) satisfies
‖ (x∗, y∗, z∗)T ‖< M . Now, we define Ω =
{(x1(t), x2(t), x3(t))

T ∈ X, ‖ (x1(t), x2(t), x3(t))
T ‖< M}.

Then it is clear that Ω verifies the requirement (a) of Theorem
9. If (x1(t), x2(t), x3(t))

T ∈ ∂Ω ∩ KerL = ∂Ω ∩ R
2,

then (x1(t), x2(t), x3(t))
T is a constant vector in R

2 with
‖ (x1(t), x2(t), x3(t))

T ‖= |x1| + |x2| + |x3| = M . The
following inequality holds all along

QN

⎡
⎣ x

y
z

⎤
⎦ 	=

⎡
⎣ 0

0
0

⎤
⎦ .

Moreover, define

φ(x, y, z, μ) =

⎡
⎢⎣

−ex − ωb̄ey

−
∫ k+ω

k

p(t)ez

1+a(t)ey Δt

−
∫ k+ω

k

q(t)ey

1+a(t)ey Δt

⎤
⎥⎦+μ

⎡
⎣ 1

ωc̄ex − ωd̄
ωm̄

⎤
⎦ ,

where μ ∈ [0, 1] is a parameter. If (x, y, z)T ∈ ∂Ω ∩ KerL,
then φ(x, y, z, μ) 	= 0. In addition, we can easily see that the
algebraic equation φ(x, y, z, 0) = 0 has a unique solution in
R

3. Thus the invariance of homotopy produces

deg(JQN, Ω ∩ KerL, 0) = deg(QN, Ω ∩ KerL, 0)

= deg(φ(x, y, z, 1), Ω ∩ KerL, 0)

= deg(φ(x, y, z, 0), Ω ∩ KerL, 0)

= 1.

By now, we have verified that Ω fulfills all requirements of
Theorem 9, therefore, system (5) has at least one ω−periodic
solution in DomL ∩ Ω̄. The proof is complete.
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