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Abstract—This paper presents an application of particle swarm 

optimization (PSO) to the grounding grid planning which compares to 
the application of genetic algorithm (GA). Firstly, based on IEEE 
Std.80, the cost function of the grounding grid and the constraints of 
ground potential rise, step voltage and touch voltage are constructed 
for formulating the optimization problem of grounding grid planning. 
Secondly, GA and PSO algorithms for obtaining optimal solution of 
grounding grid are developed. Finally, a case of grounding grid 
planning is shown the superiority and availability of the PSO 
algorithm and proposal planning results of grounding grid in cost and 
computational time. 
 

Keywords—Genetic algorithm, particle swarm optimization, 
grounding grid.  

I. INTRODUCTION 
HE power systems occurs ground faults, the short-time 
large fault currents will make the power systems unstable 

and meantime be danger to persons. Hence, the grounding 
planning should consider the constraints of the step voltage, 
touch voltage, ground potential rise (GPR), and ground 
resistance for the sake of safety. Many studies related to 
grounding grid have been planned on the trail-and-error 
approaches [1-3]. These approaches make the mesh dimension 
of the grounding grid satisfy with constraints of the touch 
voltage, step voltage, GPR and grounding resistance from 
standards. Many standards published for grounding systems of 
power substations. ANSI/IEEE Std.80 has been widely revised 
for more than ten years and is generally followed as a standard 
for the grounding systems. This paper will calculate the step 
voltage, touch voltage, ground potential rise (GPR), and 
grounding resistance, based on ANSI/IEEE Std.80. We will 
apply the genetic algorithm (GA) and the particle swarm 
optimization (PSO) to plan the optimal grounding grid, which 
includes number of unilateral mesh, diameter of conductor 
cross-section, and depth of the grounding grid..  

II. FORMULATION OF GROUNDING GRID 
The purpose of the grounding grid planning is to determine 
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material cost, excavation cost, and weld cost considering 
factors of safety and economic cost. Thus, the paper will 
develop the grounding grid cost model including material, 
excavation, and welding effects. The method is to model the 
formula from the total volume of the grounding grid conductors, 
total length of the grounding grid conductors, and total area of 
weld. Then, the cost of grounding grid could be estimated, 
based on ANSI/IEEE Std. 80, the constraints of grounding grid 
[4]. 
 

A. Grounding Grid in EHV Substation 
The purpose of the objective function is to optimize the cost of 

the grounding grid, which is composed of material cost, 
excavation cost, and weld cost [2], shown as (1), 
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Subject to 

sGPR GPR≤  (2) 

g gsR R≤  (3) 

70s stepE E≤  (4) 

70t touchE E≤  (5) 
 

Where 
N   number of unilateral mesh 
d  diameter of grounding grid conductor 
  cross-section (m) 
h   depth of the grounding grid (m) 

pL  peripheral length of the grid (m) 

1k  coefficient of material cost 

2k  coefficient of excavation cost 

3k  coefficient of welding cost 

gR  ground resistance of the grounding grid 

sE  step voltage between a point above the outer 
  corner of the grid and a point 1 m  diagonally outside  

   the grid (V) 

tE  mesh voltage at the center of the corner mesh (V) 
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gsR  ground resistance 

70stepE  tolerable step voltage for human with 70kg  

   body weight (V) 

70touchE  tolerable touch voltage for human with 70kg  
    body weight (V) 

sGPR  constraint of the ground potential rise 
GPR  ground potential rise of  the grid, 
 

B. Constraints 
We consider the constraints of ground potential rise ( sGPR ), 

ground resistance ( gsR ), step voltage ( 70stepE ) and touch 

voltage ( 70touchE ), based on ANSI/IEEE Std.80 [4], to be the 
constraints of the optimization problem.  

 
1). sGPR  and gsR : based on ANSI/IEEE Std.80, we suppose 

the two constraints Ground potential rise sGPR  and ground 
resistance gsR corresponds to 4,500 V and 5 Ω  respectively. 
The formulas of ground potential rise and ground resistance are 
shown as (6) and (7) respectively. 

 

g GGPR R I= ⋅  (6) 

1 1 11
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Where 

ρ  soil resistivity ( mΩ ⋅ ) 

TL  total length of grounding conductor (m) 

A  total area enclosed by the grounding grid ( 2m ) 

GI  maximum grid current ( A ) 
 

2). Step Voltage 70stepE and Touch Voltage 70touchE : We 
calculate the two constraints, Step Voltage and Touch Voltage, 
shown as (8) and (9) respectively [4], based on IEEE Std.80. 
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Where 

sC  surface layer derating factor 

sρ  layer resistivity surface ( mΩ ⋅ ) 

sh  surface layer thickness ( m ) 

st  duration of fault current ( sec ) 
 
Moreover, from ANSI/IEEE Std.80, the formulas of 

maximum step voltage and maximum touch voltage are shown 
as (11) and (12) respectively [4]. 
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iK  correction factor for the grid geometry 

sK  spacing factor for the step voltage 

mK  spacing factor for the mesh voltage 

iiK  corrective weighting factor that adjusts for the  
  effects of inner conductors on the corner mesh 

hK  corrective weighting factor that emphasizes the 
   effects of the grid depth 
n   geometric factor composed of the grid 

cL  total length of the conductor in the horizontal 
  ( m ) 
D  spacing between parallel conductors ( m ) 

0h  grid reference depth, 0 1 mh =  
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C. Diameter of Grid Conductor Cross-section 
According to ANSI/IEEE Std.80, the minimum size of the 

ground conductor is expressed as a formula of the current 
duration, shown as (13). Therefore, the minimum diameter of 
grid conductor cross-section is calculated by (14). Practically, 
we would select an area which is larger than 2mm

A  the 

cross-section of ground conductor. 
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Where 

I    fault current of the grid conductor ( kV ) 
2mm

A  conductor cross-section ( 2mm ) 

mT    maximum allowable temperature ( o C ) 

rT   ambient temperature ( o C ) 

0α   thermal coefficient of the resistivity at 0 oC   

    ( o1/ C ) 

rα   thermal coefficient of the resistivity at  

    reference temperature rT  ( o1/ C ) 

rρ   resistivity of the ground conductor at 
   reference temperature rT  ( mμΩ ⋅ ) 

ct   duration of current ( sec ) 

mind  minimum diameter of grid conductor 
   cross-section ( m ) 
TCAP  thermal capacity per unit volume 
    ( 2 oJ (cm C)⋅ ) 
 

III. GENETIC ALGORITHM 
Genetic Algorithm (GA) is firstly introduced by John 

Holland in 1975 [5]. GA is a class of stochastic algorithm based 
on the biological evolution in the natural world. The 
technological process employs three operators: 1) selection and 
reproduction, 2) crossover and 3) mutation. GA would 
eliminate lowly fit individuals from the current population and 
retain highly fit individuals in new population. The process is 
continually implemented until the diversity of individuals 
restrains. Thus, we expect to find one or more highly fit 
individuals [5]-[8]. The optimal individual is the optimum 
solution of the problem. Fig. 1 presented a flowchart of genetic 
algorithm. 

The steps of genetic algorithms (GA) are presented as the 
following description; see Fig. 1 [5]. 

Step 1) Generate popun the population size of individuals. 

Step 2) Calculate each of the fitness value of individuals. 

Step 3) If stopping criterion is satisfied (e.g., maximum 
iteration number), then the procedure would go to the 
end; otherwise, proceed to step (4). 

Step 4) reproduce individuals by using the method of roulette 
wheel selection. 

Step 5) If the random number is smaller than cP , individuals 
will proceed crossover operator; otherwise, proceed 
step (6). 

Step 6) If the random number is smaller than mP , individuals 
will implement mutation operator otherwise, proceed 
step (7). 

Step 7) Replace current population, then implement back to 
step (2).  

 
Fig. 1. Flowchart of genetic algorithm. 
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A. Population Initialization 
GA randomly produces popun  strings within the range from 0 

to 1. These numbers are rounded to make up an individual, that 
is, a binary string. Every binary string respectively represents 
an individual. Each chromosome consists of several genes, and 
each gene is represented by 0 or 1, shown as Fig. 2. Moreover, 
the decoded individuals express the solutions of optimization 
problem [6]. 

 
Fig. 2. Initial Population of GA for α  variables. 

 

B. Binary Code and Decoded Integer 
Since GA represents an individual as a binary string, each 

individual needs to be decoded [6], [9] before evaluating. The 
models of the binary code and decoded integer are shown as 
(15) and (16) respectively. 
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Where 

binaryL  number of genes in chromosome 

jX   value of j -th variable function 

max, jX  maximum value of j -th variable  

min, jX  minimum value of j -th variable  

,code jX coded value of j -th variable  

 

C. Fitness Function 
Each individual is evaluated with fitness function. Generally, 

GA takes an objective function as the fitness function for the 
optimization problem without any constraint. However, the 
optimization problem in this paper needs to consider the 
constraints of the grounding grids. When the individuals do not 
satisfy the safe limits, they need to be penalized for reducing 
their fitness. Considering the constraints of the grounding 
grids, the fitness function is shown as (17). 
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Where 

( )Ob ⋅  objective function of optimization problem, 
ε   constant, making the denominator of  ( )Fit ⋅ to be a  
   positive value 

pη   coefficient of p th constraint 

pλΔ  1~4λΔ are the violation degree of (2)-(5)  

   respectively 
 

D. Selection and Reproduction 
Each individual is probably selected for mating. Highly fit 

individuals have a higher probability of being selected than less 
fit individuals [6]. There are normally two types of selection in 
GA, including the roulette wheel selection and the tournament 
selection. This paper uses the roulette wheel selection to choose 
a pair of individuals for reproduction. The number of the 
reproduced individuals is rounded iR . It randomly selects two 
individuals from the individuals reproduced by roulette wheel 
selection for mating. To avoid losing superior genes, we retain 
the optimal individual to a new population. The type of 
retaining optimal individual is termed elitist strategy [6],[7]. 
The roulette wheel selection is shown as the following 
equation. 
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Where 

iR   the number of i -th reproduced individual,\ 

popun  population size 

iFit   fitness value of i -th individual 

E. Crossover 
If the random number in [0,1] is smaller than cP , the two 

randomly-selected individuals will exchange a part of their 
genes which is divided by crossover point [7]. The position of 
crossover point is randomly produced before crossover 
operator.  

 

 
Fig. 3. Type of one-point crossover. 

 
Conversely, the random number in [0,1] is bigger than the 

cP , the two individuals will not exchange their genes. cP  is a 
predefined number in [0,1] as the threshold of crossover 
occurring. The type of one-point crossover is shown as Fig. 3.  
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F. Mutation 
If the individuals are extremely similar, the solutions of the 

optimal problem would focus in the local search. If the situation 
comes too early, then it is harmful to the global optimum 
solution [6,7,8]. Therefore, it needs the mutation operator to 
increase the diversity of the individuals for expanding 
searching space. The type of mutation operator is that a few 
genes of the individual changes from 0 to 1 and from 1 to 0. If 
the random number in [0,1] is smaller than mP , the mutation 
operator will occur. Conversely, the random number in [0,1] is 
bigger than mP , the mutation operator will not occur. mP  is a 
predefine number in [0,1] as the threshold of mutation 
occurring. 

IV. PARTICLE SWARM OPTIMIZATION 
Particle swarm optimization (PSO) is firstly introduced by 

Kennedy and Eberhart [9] in 1995. PSO is a population-based 
searching algorithm that uses social behavior of birds within a 
swarm. Every bird recalls its flying experience which is the 
shortest distance between food and itself. Birds communicate 
their flying experience with each other, and then these 
behaviors lead all birds into the location of food, so called 
Swarm Intelligence [9],[10]. Numerous experts assume some 
simple rules for modeling this kind of social behavior and 
employ three kinds of vector to simulate this complex social 
behavior [11]. The basic flowchart of particle swarm 
optimization is presented in Fig. 4. 

Given the description of social behavior above, the 
simulation step of the particle swarm optimization (PSO) is 
shown as follows. 

Step 1) Generate equivalent popun  quantity of position and  

   velocity randomly, and record iPbest , ipbest ,  
   gbest  and Gbest . 
Step 2) Calculate each fitness value of particles. 
Step 3) If stopping criterion is satisfied (e.g., maximum 
   iteration number), then the procedure would go to the  
   end; otherwise, proceed to step (4). 
Step 4) Update iPbest and ipbest . 
Step 5) Update gbest  and Gbest . 
Step 6) Update particles position and velocity by employing 
   equation (21) and (22), then go back to step (2). 

 

A. Population Initialization 
The process of population initialization of the PSO is 

introduced as follows. PSO randomly produces popun  particles, 

population size, in the k -dimensional searching space, and 
each particle includes position iX  and velocity iV , where iX  
is the position of i -th particle in the search space, 

1( ,..., ,..., )i i ij ikX X X X= , and iV  is the velocity of i -th 

particle in the search space , 1( ,..., ,..., )i i ij ikV V V V= . Both of 

position iX  and velocity iV  are matrixes in the paper. The 

dimension of the searching space expresses the number of 
variables in the objective function [11]. The position iX  of 
each particle represents a solution of the problem and the 
velocity iV  of each particle represents its displacement in the 
searching space.  

 
Fig. 4. Algorithm of particle swarm optimization. 

 

B. Fitness Function 
Each particle is estimated by the fitness function. If the 

fitness value of the particle is higher, the particle is better fit. 
On the contrary, if the fitness of the particle is lower, the 
particle is less fit. To satisfy the constraints of the grounding 
grid, mentioned on page 1 and 2, the fitness function is shown 
as the following equation. 
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Where 

( )Ob ⋅  objective function of optimization problem. 
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ε   a constant that lets the denominator of ( )Fit ⋅ be a 
   positive. 

pη   coefficient of p -th constrain. 

pλΔ   1~4λΔ are respectively the violations of (2)-(5). 

 

C. Update Velocity and Position 
Corresponding to the behavior of flying birds, every particle 

retains its optimal fitness value and position according to its 
accumulated flying experiences, referring to ipbest  and 

iPbest  respectively. At the same time, each particle acquires 
the optimal fitness value and position by sharing the 
experiences of others. By comparing with the experiences of 
others, the fittest value and position will be selected, referring 
to gbest and Gbest respectively. Therefore, each particle is 
guided to its previous velocity, iPbest , and Gbest . The inertia 
weight method, shown as the following equation, is applied to 
update velocity and position of the particles [11], [12].  

 

1

2

1 ( )

        2 ( )

new
ij ij ij ij

j ij

V w V c rand Pbest X

c rand Gbest X

= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −
 (20) 

new
ij ij ijX X V= +  (21) 

 
Where 

max max min max( )w w iter w w iter= − ⋅ −   

1( ,..., ,...., )i i ij ikPbest Pbest Pbest Pbest=   

1( ,..., ,...., )j kGbest Gbest Gbest Gbest=   

iPbest  the optimal position of the i -th particle 
Gbest  the optimal position of entire particles 

1 2,  c c   acceleration coefficient 
w   coefficient of the inertia weight 

minw  minimum coefficient of the inertia weight 

maxw  maximum coefficient of the inertia weight 
iter   current iteration number 

maxiter  maximum iteration number 
 

D. Bound of Velocity and Position 
The positions of particles exceed the searching space after 

updating should be limited to the bounds of the k -dimensional 
search space, presented in (22). In order to control excessive 
roaming of particles outside the searching space, each velocity 
of particle should have the bounds of velocity [11], [12]. The 
corrected velocities are shown as (23). 
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Where 

max max, min,( ) 2j j jV X X= −   

max, jX  maximum value of j -th variable 

min, jX  minimum value of j -th variable 

max, jV  maximum velocity of j -th dimension 

V. SIMULATION OF GROUNDING PLANNING 
The data of the substation 115/13 kV  obtained from 

ANSI/IEEE Std.80-2000 is a case study of 70m×70m square 
grid of equal space without ground rods [4]. Moreover, the 
constraints such as sGPR GPR≤ , g gsR R≤ , 70s stepE E≤ , 

and 70t touchE E≤  are considered. The related data of the 
substation are as Table 1. 

 
TABLE I DATA OF THE115/13 kV SUBSTATION 

 
Based on the formula of ANSI/IEEE Std.80, we calculated 

the maximum grid current 1.908 AGI = . Suppose the ground 
conductor material is the cooper-clad steel wire. We employ 
(13) and (14) to calculate the minimum diameter of ground 
conductor cross-section min 0.0065 md = . Practically, mind =  
0.01 m will be selected for steady state of the ground 
conductor. We suppose that sGPR  and gsR are 4,500 and 5 Ω  
respectively, based on ANSI/IEEE Std.80. Moreover, formulas 
(8) and (9) are employed to calculate the tolerable step voltage 
and touch voltage, 70touchE , and then 70 830.3 VstepE =  and 

70touchE =  2655.3 V  is obtained. In this study, we suppose that 

three variables of the objective function are N , d  and h  
respectively, where [1,32]N ∈ , [0.1,0.01]d ∈ , and 

[0.25,2.5]h ∈ . 

9% at 15MVA, 115/13 kVZ =  

Fault duration, ft  0.5 s 
Positive sequence equivalent 
system impedance, 1Z (115kV side)  4.0+j10.0Ω 

Zero sequence equivalent system 
impedance, 0Z (115kV side)  10.0+j40.0Ω 

Current division factor, fS  0.6 
Soil resistivity, ρ  300.0 Ω-m 
Crushed rock resistivity (wet), sρ  2,500.0 Ω-m 

Thickness of crushed rock surfacing, sh  0.102 m 
Transformer impedance, 1Z (13kV side)  0.034+j1.014Ω 

Transformer impedance, 0Z (13kV side)  0.034+j1.014Ω 
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The grounding results obtained by applying the PSO method 
and GA method are shown as Tables 2, 3, 4 and 5. In Table 2 
and 3, all the constraints of grounding grid satisfy the IEEE Std. 
80, including step voltage, touch voltage, ground potential rise 
(GPR), and grounding resistance. In Table 4 and Table 5, the 
three parameters and cost of grounding grid, and computational 
time of GA and PSO methods are demonstrated. The three 
parameters of grounding grid do not show significant 
difference and the cost of GA method is only slightly higher 
than PSO method. Nevertheless, it is noted that the 
computational time of GA method is considerably more than 
PSO method. 

 
TABLE II CHARACTERISTIC OF GROUNDING GRID (SIZE = 25) 

 
TABLE III CHARACTERISTIC OF GROUNDING GRID (SIZE = 100) 

 
TABLE IV OPTIMAL RESULTS OF GROUNDING GRID DESIGN (SIZE = 25) 

Iteration number = 800 and population size = 25 
Algorithms GA PSO 

Number of unilateral mesh 5 5 
Depth of the grounding grid (m) 2.90 3.02 

Diameter of conductor 
cross-section (m) 0.034 0.033 

Cost of the grounding grid 
(USD) 178,005 177,726 

CPU time (ms) 2,114 1,013 
 
The cost and computational time of Table 2 is presented in 

Table 4 in which we can observe that the cost utilized the PSO 
method, USD 178,005, is lower than the utilized GA method, 
USD 177,726, 0.16%. On the other hand, the cost and 
computational time of Table 3 is demonstrated in Table 5 in 
which we can examine that the cost utilized the PSO method, 
USD 177,783, is lower than the utilized GA method, USD 
177,726, 0.03%. However, by comparing to the methods of 
PSO and GA, as shown in Table 4 and 5, population size 25 
reveals the computational time of GA method, 2,114ms, is two 
times greater than that of PSO method, 1,013ms. 
Correspondingly, the computational time of population size 
100 by applying methods of GA, 8109ms, and PSO, 3981ms, 
also demonstrates the same situation. That is, the computational 
time of GA method is two times greater than that of PSO 
method in both 25 and 100 population size.  

 

TABLE V OPTIMAL RESULTS OF GROUNDING GRID DESIGN (SIZE = 100) 

Iteration number = 800 and population size = 100 

Algorithms GA PSO 

Number of unilateral mesh 5 5 

Depth of the grounding grid (m) 2.94 3.02 

Diameter of conductor 
cross-section (m) 0.034 0.033 

Cost of the grounding grid 
(USD) 177,783 177,726 

CPU time (ms) 8,109 3,981 

 
Furthermore, Table 6 presents the methods of GA and PSO 

based on different iteration and population size and 
demonstrates the results of 100 trails. The grounding cost 
utilized the GA and PSO methods by worst cost, optimal cost, 
mean cost and mean time in variable population sizes, 25, 50, 
75, and 100 are shown in Table 6, in which the cost with PSO 
method is lower (177,726 USD), in population size being 25 
and 200 iterations, than that with GA method (177,783 USD), 
in population size being 50 and 200 iterations. And the 
computational time with the PSO method is only 50% of that 
with the GA method under the identical conditions of iteration 
and population size. In addition, the iteration number 200, 400, 
600, and 800 is dependent on the results when the PSO method 
is applied. The mean cost of GA method is larger than that of 
PSO method under identical conditions. We can say that the 
PSO method is superior to the GA method in the cost and 
computational time. 

Table 6 Cost and computational time of GA and PSO  
In Figs. 5 and 6, the convergent rate with the GA method is 

slower than that with the PSO method. The curve utilized the 
GA method is presented as ladder-like shape and the PSO 
method is demonstrated a steeper shape, regardless of the 
population size. The convergent speed with the PSO method is 
faster and steadier than that with the GA method. 

The possible reason may be the different approaches which 
prevents individual/particles from stagnating. The GA method 
increases the diversity of population to prevent individuals 
from stagnating. If GA does not mutate for several generations, 
the result will lead individuals toward a local optimum 
prematurely. The PSO method employs inertia velocity and 
results in the positions of particles change consecutively to 
avoid particles from being trapped.  

Comparing with the PSO and GA methods, we found that 
PSO method is more efficient when expending searching space. 
Although the increase of population size of the GA method 
reaches lower cost, the convergence is relatively worse. On the 
contrary, the population size of the PSO method barely affects 
the curve of convergence, shown as Figs. 5 and 6. Therefore, 
the effect on population size of GA method is significant. 

Iteration number = 800 and population size = 25 
GPR (V) gR (Ω) sE (V) tE (V) Constraints 

(IEEE Std.80) 4,500 5 2,655 830.3 
GA 4,052 2.12 99.12 830.3 
PSO 4,042 2.11 96.75 830.3 

Iteration number = 800 and population size = 100 
GPR (V) gR (Ω) sE (V) tE (V) Constraints 

(IEEE Std.80) 4,500 5 2,655 830.3 
GA 4,049 2.12 98.38 829.7 
PSO 4,042 2.11 96.75 830.3 
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Fig. 5. Cost curve of grounding grids for GA and PSO (Population 

size=25). 
 

 
Fig. 6. Cost curve of grounding grids for GA and PSO (Population 

size=100). 
 

VI. CONCLUSION 
This paper mainly applies both theories of GA and PSO 

methods to discuss the research of optimal grounding grid. The 
result of the simulation reveals that the GA and PSO methods 
are practicable approaches of grounding optimization design. 
Different from the traditional grounding grid design, namely, 
trial-and-error approach, the PSO and GA methods are not only 
planed to meet the requirements of constraints but also save 
great amount of time.  

Although the grounding grid cost of PSO method is only 
slightly smaller than the cost of GA method, there still exits 
some advantages and disadvantages between PSO method and 
GA method, e.g., 1) the complexity of algorithm, 2) 
computational time, 3) demand of population size, and 4) 
steady state of optimal solution. Different from the 
reproduction, crossover, and mutation of GA method for 
proceeding solution improvement based on biological 
evolution mechanism, PSO method describes behavior of 
particle movement based on simplified mathematical equation. 
The complexity of GA method is much greater compared to 
that of PSO method. As for computational time, each iteration 
of GA method is greater than that of PSO method. Under the 
identical conditions of iteration number and population size, 
PSO method requires only half computational time of GA. As 
for the population size, GA requires more population size 
compared to PSO to reach to the approximate grounding grid 
cost. As for the steady state of optimal solution, the difference 

between mean cost and optimal cost of grounding grid by 
employing PSO method is closer than employing that of GA 
method. The grounding grid planning of PSO is steadier than 
that of GA method. 

Based on the advantages mentioned above, we expect the 
future application of the PSO method can be a more complex 
shape to conduct a speedy and accurate grounding grid design 
system. 
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