Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II

Ahmet Tekcan, Arzu Özkoç

Abstract

Let $D \neq 1$ be a positive non-square integer and let $\delta=\sqrt{D}$ or $\frac{1+\sqrt{D}}{2}$ be a real quadratic irrational with trace $t=$ $\delta+\bar{\delta}$ and norm $n=\delta \bar{\delta}$. Let $\gamma=\frac{P+\delta}{Q}$ be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal $I_{\gamma}=[Q, \delta+P]$ and an indefinite quadratic form $F_{\gamma}(x, y)=Q(x-\gamma y)(x-\bar{\gamma} y)$ of discriminant $\Delta=t^{2}-4 n$. In the first section, we give some preliminaries form binary quadratic forms, quadratic irrationals and quadratic ideals. In the second section, we obtain some results on γ, I_{γ} and F_{γ} for some specific values of Q and P.

Keywords-Quadratic irrationals, quadratic ideals, indefinite quadratic forms, extended modular group.

I. Preliminaries.

A real quadratic form (or just a form) F is a polynomial in two variables x, y of the type

$$
\begin{equation*}
F=F(x, y)=a x^{2}+b x y+c y^{2} \tag{1}
\end{equation*}
$$

with real coefficients a, b, c. We denote F briefly by

$$
F=(a, b, c)
$$

The discriminant of F is defined by the formula $b^{2}-4 a c$ and is denoted by Δ. Moreover F is an integral form if and only if $a, b, c \in \mathbf{Z}$ and F is indefinite if and only if $\Delta>0$.

Let Γ be the modular group $\operatorname{PSL}(2, \mathbf{Z})$, i.e. the set of the transformations

$$
z \mapsto \frac{r z+s}{t z+u}, r, s, t, u \in \mathbf{Z}, \quad r u-s t=1
$$

Then Γ is generated by the transformations $T(z)=\frac{-1}{z}$ and $V(z)=z+1$. Let $U=T . V$. Then $U(z)=\frac{-1}{z+1}$. Then Γ has a representation $\Gamma=\left\langle T, U: T^{2}=U^{3}=I\right\rangle$. So

$$
\Gamma=\left\{g=\left(\begin{array}{cc}
r & s \tag{2}\\
t & u
\end{array}\right): r, s, t, u \in \mathbf{Z} \quad, r u-s t=1\right\}
$$

We denote the symmetry with respect to the imaginary axis with R, that is $R(z)=-\bar{z}$. Then the group $\bar{\Gamma}=\Gamma \cup R \Gamma$ is generated by the transformations R, T, U and has a representation $\bar{\Gamma}=\left\langle R, T, U: R^{2}=T^{2}=U^{3}=I\right\rangle$, and is called the extended modular group. So
$\bar{\Gamma}=\left\{g=\left(\begin{array}{ll}r & s \\ t & u\end{array}\right): r, s, t, u \in \mathbf{Z}, \quad r u-s t= \pm 1\right\}$.
There is a strong connection between the extended modular group and binary quadratic forms (see [5]). Most properties of

[^0] of Mathematics, Faculty of Science, Bursa-TURKIYE.
emails: tekcan@uludag.edu.tr, aozkoc@uludag.edu.tr
http://matematik.uludag.edu.tr/AhmetTekcan.htm.

binary quadratic forms can be given by the aid of the extended modular group. Gauss (1777-1855) defined the group action of $\bar{\Gamma}$ on the set of forms as follows: Let $F=(a, b, c)$ be a quadratic form and let $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$. Then the form $g F$ is defined by

$$
\begin{align*}
g F(x, y)= & \left(a r^{2}+b r s+c s^{2}\right) x^{2} \\
& +(2 a r t+b r u+b t s+2 c s u) x y \tag{4}\\
& +\left(a t^{2}+b t u+c u^{2}\right) y^{2}
\end{align*}
$$

that is, $g F$ is gotten from F by making the substitution

$$
x \rightarrow r x+t u, y \rightarrow s x+u y
$$

Moreover, $\Delta(F)=\Delta(g F)$ for all $g \in \bar{\Gamma}$, that is, the action of $\bar{\Gamma}$ on forms leaves the discriminant invariant. If F is indefinite or integral, then so is $g F$ for all $g \in \bar{\Gamma}$.

Let F and G be two forms. If there exists a $g \in \bar{\Gamma}$ such that $g F=G$, then F and G are called equivalent. If $\operatorname{det} g=1$, then F and G are called properly equivalent and if $\operatorname{det} g=-1$, then F and G are called improperly equivalent. A quadratic form F is said to be ambiguous if it is improperly equivalent to itself. An indefinite quadratic form F of discriminant Δ is said to be reduced if

$$
\begin{equation*}
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} \tag{5}
\end{equation*}
$$

Mollin (see [1]) considered the arithmetic of ideals in his book. Let $D \neq 1$ be a square free integer and let $\Delta=\frac{4 D}{r^{2}}$, where

$$
r= \begin{cases}2 & D \equiv 1(\bmod 4) \tag{6}\\ 1 & \text { otherwise }\end{cases}
$$

If we set $\mathbf{K}=\mathbf{Q}(\sqrt{D})$, then \mathbf{K} is called a quadratic number field of discriminant $\Delta=\frac{4 D}{r^{2}}$. A complex number is an algebraic integer if it is the root of a monic polynomial with coefficients in \mathbf{Z}. The set of all algebraic integers in the complex field \mathbf{C} is a ring which we denote by A. Therefore $A \cap \mathbf{K}=O_{\Delta}$ is the ring of integers of the quadratic field \mathbf{K} of discriminant Δ. Set

$$
w_{\Delta}=\frac{r-1+\sqrt{D}}{r}
$$

for r defined in (6). Then w_{Δ} is called principal surd. We restate the ring of integers of \mathbf{K} as

$$
O_{\Delta}=\left[1, w_{\Delta}\right]=\mathbf{Z}\left[w_{\Delta}\right]
$$

In this case $\left\{1, w_{\Delta}\right\}$ is called an integral basis for \mathbf{K}. Let $I=[\alpha, \beta]$ denote the \mathbf{Z}-module $\alpha \mathbf{Z} \oplus \beta \mathbf{Z}$, i.e., the additive
abelian group, with basis elements α and β consisting of

$$
\{\alpha x+\beta y: x, y \in \mathbf{Z}\} .
$$

Note that $O_{\Delta}=\left[1, \frac{1+\sqrt{D}}{r}\right]$. In this case $w_{\Delta}=\frac{r-1+\sqrt{D}}{r}$ is called the principal surd. Every principal surd $w_{\Delta} \in O_{\Delta}$ can be uniquely expressed as

$$
w_{\Delta}=x \alpha+y \beta
$$

where $x, y \in \mathbf{Z}$ and $\alpha, \beta \in O_{\Delta}$. We call α, β an integral basis for \mathbf{K}, and denote it by $[\alpha, \beta]$. If $\frac{\alpha \bar{\beta}-\beta \bar{\alpha}}{\sqrt{\Delta}}>0$, then α and β are called ordered basis elements. Recall that two basis of an ideal are ordered if and only if they are equivalent under an element of $\bar{\Gamma}$. If I has ordered basis elements, then we say that I is simply ordered. If I is ordered, then

$$
F(x, y)=\frac{N(\alpha x+\beta y)}{N(I)}
$$

is a quadratic form of discriminant Δ (Here $N(x)$, denote the norm of x). In this case we say that F belongs to I and write $I \rightarrow F$.

Conversely let us assume that

$$
G(x, y)=A x^{2}+B x y+C y^{2}=d\left(a x^{2}+b x y+c y^{2}\right)
$$

be a quadratic form, where $d= \pm \operatorname{gcd}(A, B, C)$ and $b^{2}-4 a c=$ Δ. If $B^{2}-4 A C>0$, then we get $d>0$ and if $B^{2}-4 A C<0$, then we choose d such that $a>0$. Set

$$
I=[\alpha, \beta]=\left[a, \frac{b-\sqrt{\Delta}}{2}\right]
$$

for $a>0$ or

$$
I=[\alpha, \beta]=\left[a, \frac{b-\sqrt{\Delta}}{2}\right] \sqrt{\Delta}
$$

for $a<0$ and $\Delta>0$. Then I is an ordered O_{Δ}-ideal. Thus to every form G, there corresponds an ideal I to which G belongs and we write $G \rightarrow I$. Hence we have a correspondence between ideals and quadratic forms (for further details see [2], [3], [4], [7]).

Theorem 1.1: If $I=\left[a, b+c w_{\Delta}\right]$, then I is a non-zero ideal of O_{Δ} if and only if $c|b, c| a$ and $a c \mid N\left(b+c w_{\Delta}\right)$ [1].

Let δ denote a real quadratic irrational integer with trace $t=\delta+\bar{\delta}$ and norm $n=\delta \bar{\delta}$. Given a real quadratic irrational $\gamma \in \mathbf{Q}(\delta)$, there are rational integers P and Q such that $\gamma=$ $\frac{P+\delta}{Q}$ with $Q \mid(\delta+P)(\bar{\delta}+P)$. Hence for each

$$
\begin{equation*}
\gamma=\frac{P+\delta}{Q} \tag{7}
\end{equation*}
$$

there is a corresponding \mathbf{Z}-module

$$
\begin{equation*}
I_{\gamma}=[Q, P+\delta] \tag{8}
\end{equation*}
$$

in fact, this module is an ideal by Theorem 1.1. The conjugate of I_{γ} is defined as

$$
\bar{I}_{\gamma}=[Q, P+\bar{\delta}] .
$$

If $I_{\gamma}=\bar{I}_{\gamma}$, then I_{γ} is called ambiguous. The ideal I_{γ} in (8) is said to be reduced if and only if

$$
\begin{equation*}
P+\delta>Q \text { and }-Q<P+\bar{\delta}<0 \tag{9}
\end{equation*}
$$

So I_{γ} is ambiguous if and only if it contains both $\frac{P+\delta}{Q}$ and $\frac{P+\bar{\delta}}{Q}$, so if and only if

$$
\frac{2 P}{Q} \in \mathbf{Z}
$$

For the quadratic irrational γ, there exists an indefinite quadratic form

$$
\begin{equation*}
F_{\gamma}(x, y)=Q(x-\gamma y)(x-\bar{\gamma} y) \tag{10}
\end{equation*}
$$

Applying (10), we obtain

$$
\begin{aligned}
F_{\gamma}(x, y) & =Q(x-\gamma y)(x-\bar{\gamma} y) \\
& =Q\left[x^{2}-x y(\gamma+\bar{\gamma})+y^{2}(\gamma \bar{\gamma})\right] \\
& =Q\left[\begin{array}{c}
x^{2}-x y\left(\frac{P+\delta}{Q}+\frac{P+\bar{\delta}}{Q}\right) \\
+y^{2}\left(\frac{P+\delta}{Q} \cdot \frac{P+\bar{\delta}}{Q}\right)
\end{array}\right] \\
& =Q\left[\begin{array}{c}
x^{2}-x y\left(\frac{t+2 P}{Q}\right) \\
+y^{2}\left(\frac{P^{2}+P(\delta+\bar{\delta})+\delta \cdot \bar{\delta}}{Q}\right)
\end{array}\right] \\
& =Q\left[x^{2}-x y\left(\frac{t+2 P}{Q}\right)+y^{2}\left(\frac{P^{2}+P t+n}{Q}\right)\right] \\
& =Q x^{2}-(t+2 P) x y+\left(\frac{P^{2}+P t+n}{Q}\right) y^{2} .
\end{aligned}
$$

The discriminant of F_{γ} is

$$
\begin{aligned}
\Delta & =[-(t+2 P)]^{2}-4 Q\left(\frac{P^{2}+P t+n}{Q}\right) \\
& =t^{2}+4 t P+4 P^{2}-4 P^{2}-4 P t-4 n \\
& =t^{2}-4 n
\end{aligned}
$$

Hence one associates with γ an indefinite quadratic form F_{γ} defined as above. The opposite of F_{γ} is hence
$\bar{F}_{\gamma}(x, y)=Q x^{2}+(t+2 P) x y+\left(\frac{n+P t+P^{2}}{Q}\right) y^{2}$.

II. Quadratics.

In [6], we derived some results concerning the quadratic irrationals γ, quadratic ideals I_{γ} and indefinite quadratic forms F_{γ} defined in (7), (8) and (10), respectively. In the present paper we consider the same problem for other values of Q and P.
Let $\delta=\sqrt{D}$ and $Q=1$. Then $t=0$ and $n=-D$. Set $P=\frac{-p}{2}$ for primes p such that $p \equiv 1,5(\bmod 6)$. Then

$$
\gamma_{1}=-\frac{p}{2}+\sqrt{D}
$$

is a quadratic irrational and hence

$$
\begin{equation*}
I_{\gamma_{1}}=\left[1, \frac{-p}{2}+\sqrt{D}\right] \tag{12}
\end{equation*}
$$

is a quadratic ideal and

$$
\begin{equation*}
F_{\gamma_{1}}(x, y)=x^{2}+p x y+\left(\frac{p^{2}-4 D}{4}\right) y^{2} \tag{13}
\end{equation*}
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:3, No:11, 2009
is a quadratic form of discriminant $\Delta=4 D$.

Theorem 2.1: γ_{1} is equivalent to its conjugate $\bar{\gamma}_{1}$ for every primes $p \equiv 1,5(\bmod 6)$.

Proof: Recall that two real numbers α and β are said to be equivalent if there exists a $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$ such that

$$
g \alpha=\beta \Leftrightarrow \frac{r \alpha+s}{t \alpha+u}=\beta
$$

The conjugate of γ_{1} is $\bar{\gamma}_{1}=\frac{-p}{2}-\sqrt{D}$. Now consider the equation

$$
\begin{equation*}
g \bar{\gamma}_{1}=\gamma_{1} \Leftrightarrow \frac{r\left(\frac{-p}{2}-\sqrt{D}\right)+s}{t\left(\frac{-p}{2}-\sqrt{D}\right)+u}=\frac{\frac{-p}{2}+\sqrt{D}}{1} \tag{14}
\end{equation*}
$$

for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$. One solution of (14) is

$$
g=\left(\begin{array}{ll}
-1 & -p \\
0 & 1
\end{array}\right) \in \bar{\Gamma}
$$

So γ_{1} is equivalent to its conjugate $\bar{\gamma}_{1}$.
Theorem 2.2: $I_{\gamma_{1}}$ is ambiguous for every $p \equiv 1,5(\bmod 6)$.
Proof: We know that an ideal I_{γ} is ambiguous if it is equal to its conjugate \bar{I}_{γ}, or in other words, if and only if $\frac{\delta+P}{Q}+\frac{\bar{\delta}+P}{Q}=\frac{t+2 P}{Q} \in \mathbf{Z}$. For $\delta=\sqrt{D}$ we have $t=0$, and hence

$$
\begin{equation*}
\frac{t+2 P}{Q}=\frac{2(-p / 2)}{1}=-p \in \mathbf{Z} \tag{15}
\end{equation*}
$$

Therefore $I_{\gamma_{1}}$ is ambiguous.
From above two theorems we can give the following corollary.

Corollary 2.3: $F_{\gamma_{1}}$ is properly equivalent to its opposite $\bar{F}_{\gamma_{1}}$ and is ambiguous for every $p \equiv 1,5(\bmod 6)$.

Proof: It is clear that $F_{\gamma_{1}}$ is properly equivalent to its opposite $\bar{F}_{\gamma_{1}}$ by (15) since $\frac{t+2 P}{Q}=-p \in \mathbf{Z}$. We know as above that an indefinite quadratic form F_{γ} is ambiguous if and only if the quadratic irrational γ is equivalent to its conjugate $\bar{\gamma}$. We proved in Theorem 2.1 that γ_{1} is equivalent to its conjugate $\bar{\gamma}_{1}$. So $F_{\gamma_{1}}$ is ambiguous for every $p \equiv 1,5(\bmod 6)$.

Now we can give the following theorem.
Theorem 2.4: Let $F_{\gamma_{1}}$ be the quadratic form in (13). Then

1) If $p \equiv 1(\bmod 6)$, say $p=1+6 k$ for a positive integer $k \geq 1$, then $F_{\gamma_{1}}$ is reduced if and only if $D \in\left[9 k^{2}+\right.$ $\left.3 k+1,9 k^{2}+9 k+2\right]-\left\{9 k^{2}+6 k+1\right\}$.
2) If $p \equiv 5(\bmod 6)$, say $p=5+6 k$ for a positive integer $k \geq 1$, then $F_{\gamma_{1}}$ is reduced if and only if $D \in\left[9 k^{2}+\right.$ $\left.15 k+7,9 k^{2}+21 k+12\right]-\left\{9 k^{2}+12 k+9\right\}$.

In both cases the number of these reduced forms is p.
Proof: 1) Let $p \equiv 1(\bmod 6)$, say $p=1+6 k$ and let $F_{\gamma_{1}}$ be reduced. Then by (5), we get

$$
\begin{aligned}
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} & \Leftrightarrow|\sqrt{4 D}-2| 1|\mid<p<\sqrt{4 D} \\
& \Leftrightarrow 2 \sqrt{D}-2<p<2 \sqrt{D} .
\end{aligned}
$$

Applying (16), we find that

$$
D>\frac{p^{2}}{4}=\frac{1}{4}+3 k+9 k^{2} \Leftrightarrow D \geq 9 k^{2}+3 k+1
$$

and

$$
D<\frac{(p+2)^{2}}{4}=\frac{9}{4}+9 k+9 k^{2} \Leftrightarrow D \leq 9 k^{2}+9 k+2 .
$$

So we have

$$
9 k^{2}+3 k+1 \leq D \leq 9 k^{2}+9 k+2 .
$$

But $D=9 k^{2}+6 k+1=(3 k+1)^{2}$ is a square. So we have to omit it (since D must be a square-free positive integer). Therefore we have
$D \in\left[9 k^{2}+3 k+1,9 k^{2}+9 k+2\right]-\left\{9 k^{2}+6 k+1\right\}$.
The converse is also true, that is, if $D \in\left[9 k^{2}+3 k+1,9 k^{2}+\right.$ $9 k+2]-\left\{9 k^{2}+6 k+1\right\}$, then $F_{\gamma_{1}}$ is reduced. Further the number of these reduced forms is

$$
9 k^{2}+9 k+2-\left(9 k^{2}+3 k+1\right)=6 k+1=p .
$$

2) Let $p \equiv 5(\bmod 6)$, say $p=5+6 k$ and let $F_{\gamma_{1}}$ be reduced. Then by (16), we get

$$
D>\frac{p^{2}}{4}=\frac{25}{4}+15 k+9 k^{2} \Leftrightarrow D \geq 9 k^{2}+15 k+7
$$

and
$D<\frac{(p+2)^{2}}{4}=\frac{49}{4}+21 k+9 k^{2} \Leftrightarrow D \leq 9 k^{2}+21 k+12$.
So we have

$$
9 k^{2}+15 k+7 \leq D \leq 9 k^{2}+21 k+12 .
$$

But $D=9 k^{2}+18 k+9=(3 k+3)^{2}$ is a square. So we have to omit it. Therefore we have
$D \in\left[9 k^{2}+15 k+7,9 k^{2}+21 k+12\right]-\left\{9 k^{2}+18 k+9\right\}$.
Conversely if $D \in\left[9 k^{2}+15 k+7,9 k^{2}+21 k+12\right]-\left\{9 k^{2}+\right.$ $18 k+9\}$, then clearly $F_{\gamma_{1}}$ is reduced. The number of these reduced forms is

$$
9 k^{2}+21 k+12-\left(9 k^{2}+15 k+7\right)=6 k+5=p .
$$

Now let $\delta=\frac{1+\sqrt{D}}{2}$ and $Q=1$. Then $t=1$ and $n=\frac{1-D}{4}$. Set $P=\frac{-(p+1)}{2}$ for primes p such that $p \equiv 1,5(\bmod 6)$. Then

$$
\gamma_{2}=\frac{-p+\sqrt{D}}{2}
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934

Vol:3, No:11, 2009
is a quadratic irrational and hence

$$
\begin{equation*}
I_{\gamma_{2}}=\left[1, \frac{-p+\sqrt{D}}{2}\right] \tag{17}
\end{equation*}
$$

is a quadratic ideal and

$$
\begin{equation*}
F_{\gamma_{2}}(x, y)=x^{2}+p x y+\left(\frac{p^{2}-D}{4}\right) y^{2} \tag{18}
\end{equation*}
$$

is a quadratic form of discriminant $\Delta=D$.
Theorem 2.5: γ_{2} is equivalent to its conjugate $\bar{\gamma}_{2}$ for every $p \equiv 1,5(\bmod 6)$.

Proof: The conjugate of γ_{2} is $\bar{\gamma}_{2}=\frac{-p-\sqrt{D}}{2}$. Now consider the equation

$$
\begin{equation*}
g \bar{\gamma}_{2}=\gamma_{2} \Leftrightarrow \frac{r(-p-\sqrt{D})+s}{t(-p-\sqrt{D})+u}=\frac{-p+\sqrt{D}}{1} \tag{19}
\end{equation*}
$$

for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$. One solution of (19) is

$$
g=\left(\begin{array}{ll}
-1 & -p \\
0 & 1
\end{array}\right) \in \bar{\Gamma}
$$

So γ_{2} is equivalent to its conjugate $\bar{\gamma}_{2}$.
Theorem 2.6: $I_{\gamma_{2}}$ is ambiguous for every $p \equiv 1,5(\bmod 6)$.
Proof: Recall that $t=1$ for $\delta=\frac{1+\sqrt{D}}{2}$. So

$$
\frac{t+2 P}{Q}=\frac{1+2\left(\frac{-(p+1)}{2}\right)}{1}=-p \in \mathbf{Z}
$$

Therefore $I_{\gamma_{2}}$ is ambiguous.
From above two theorems we can give the following corollary.

Corollary 2.7: $F_{\gamma_{2}}$ is properly equivalent to its opposite $\bar{F}_{\gamma_{2}}$ and is ambiguous for every $p \equiv 1,5(\bmod 6)$.

Proof: We know that an indefinite quadratic form F_{γ} is ambiguous if and only if the quadratic irrational γ is equivalent to its conjugate $\bar{\gamma}$. We proved in Theorem 2.5 that γ_{2} is equivalent to its conjugate $\bar{\gamma}_{2}$. So $F_{\gamma_{2}}$ is ambiguous for every $p \equiv 1,5(\bmod 6)$.

Now we can give the following theorem.
Theorem 2.8: Let $F_{\gamma_{2}}$ be the quadratic form in (18). Then

1) If $p \equiv 1(\bmod 6)$, say $p=1+6 k$ for a positive integer $k \geq 1$, then $F_{\gamma_{2}}$ is reduced if and only if $D \in\left[36 k^{2}+\right.$ $\left.12 k+2,36 k^{2}+36 k+8\right]-\left\{36 k^{2}+24 k+4\right\}$.
2) If $p \equiv 5(\bmod 6)$, say $p=5+6 k$ for a positive integer $k \geq 1$, then $F_{\gamma_{2}}$ is reduced if and only if $D \in\left[36 k^{2}+\right.$ $\left.60 k+26,36 k^{2}+84 k+48\right]-\left\{36 k^{2}+72 k+36\right\}$.
In both cases the number of these reduced forms is $4 p+2$.

Proof: 1) Let $p \equiv 1(\bmod 6)$, say $p=1+6 k$ and let $F_{\gamma_{2}}$ be reduced. Then by (5), we get

$$
\begin{aligned}
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} & \Leftrightarrow|\sqrt{D}-2| 1|\mid<p<\sqrt{D} \\
& \Leftrightarrow \sqrt{D}-2<p<\sqrt{D}
\end{aligned}
$$

Applying (20) we get

$$
D>p^{2}=1+12 k+36 k^{2} \Leftrightarrow D \geq 36 k^{2}+12 k+2
$$

and
$D<(p+2)^{2}=9+36 k+36 k^{2} \Leftrightarrow D \leq 36 k^{2}+32 k+8$.
So

$$
36 k^{2}+12 k+2 \leq D \leq 36 k^{2}+36 k+8
$$

But $D=36 k^{2}+24 k+4=(6 k+2)^{2}$ is a square. So we have to omit it. Therefore we have
$D \in\left[36 k^{2}+12 k+2,36 k^{2}+36 k+8\right]-\left\{36 k^{2}+24 k+4\right\}$.
Conversely if $D \in\left[36 k^{2}+12 k+2,36 k^{2}+36 k+8\right]-$ $\left\{36 k^{2}+24 k+4\right\}$, then $F_{\gamma_{2}}$ is reduced. Further the number of these reduced forms is

$$
36 k^{2}+36 k+8-\left(36 k^{2}+12 k+2\right)=24 k+6=4 p+2
$$

2) Let $p \equiv 5(\bmod 6)$, say $p=5+6 k$ and let $F_{\gamma_{2}}$ be reduced.

Then by (20), we get

$$
D>p^{2}=25+60 k+36 k^{2} \Leftrightarrow D \geq 36 k^{2}+60 k+26
$$

and
$D<(p+2)^{2}=49+84 k+36 k^{2} \Leftrightarrow D \leq 36 k^{2}+84 k+48$.
So we have

$$
36 k^{2}+60 k+26 \leq D \leq 36 k^{2}+84 k+48
$$

But $D=36 k^{2}+72 k+36=(6 k+6)^{2}$ is a square. So we have to omit it. Therefore we have
$D \in\left[36 k^{2}+60 k+26,36 k^{2}+84 k+48\right]-\left\{36 k^{2}+72 k+36\right\}$.
The converse is also true, that is, if $D \in\left[36 k^{2}+60 k+\right.$ $\left.26,36 k^{2}+84 k+48\right]-\left\{36 k^{2}+72 k+36\right\}$, then $F_{\gamma_{2}}$ is reduced. The number of these reduced forms is
$36 k^{2}+84 k+48-\left(36 k^{2}+60 k+26\right)=24 k+22=4 p+2$.

References

[1] R.A. Mollin. Quadratics. CRS Press, Boca Raton, New York, London, Tokyo, 1996.
[2] R.A. Mollin and K. Cheng. Palindromy and Ambiguous Ideals Revisited. Journal of Number Theory 74(1999), 98-110.
[3] R.A. Mollin. Jocabi symbols, ambiguous ideals, and continued fractions. Acta Arith. 85(1998), 331-349.
[4] R.A. Mollin. A survey of Jocabi symbols, ideals, and continued fractions. Far East J. Math. Sci. 6(1998), 355-368.
[5] A. Tekcan and O. Bizim. The Connection Between Quadratic Forms and the Extended Modular Group. Mathematica Bohemica 128(3)(2003), 225-236.
[6] A. Tekcan and H. Özden. On the Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms. Irish Math. Soc. Bull. 58(2006), 69-79.
[7] A. Tekcan. Some Remarks on Indefinite Binary Quadratic Forms and Quadratic Ideals. Hacettepe J. of Maths. and Sta. 36(1)(2007), 27-36.

[^0]: Ahmet Tekcan and Arzu Özkoç are with the Uludag University, Department

