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Quadratic Irrationals, Quadratic Ideals and
Indefinite Quadratic Forms II

Ahmet Tekcan, Arzu Özkoç

Abstract—Let D �= 1 be a positive non-square integer and let
δ =

√
D or 1+

√
D

2
be a real quadratic irrational with trace t =

δ + δ and norm n = δδ. Let γ = P+δ
Q

be a quadratic irrational for
positive integers P and Q. Given a quadratic irrational γ, there exist
a quadratic ideal Iγ = [Q, δ + P ] and an indefinite quadratic form
Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t2 − 4n. In the
first section, we give some preliminaries form binary quadratic forms,
quadratic irrationals and quadratic ideals. In the second section, we
obtain some results on γ, Iγ and Fγ for some specific values of Q
and P .

Keywords—Quadratic irrationals, quadratic ideals, indefinite qu-
adratic forms, extended modular group.

I. PRELIMINARIES.

A real quadratic form (or just a form) F is a polynomial in
two variables x, y of the type

F = F (x, y) = ax2 + bxy + cy2 (1)

with real coefficients a, b, c. We denote F briefly by

F = (a, b, c).

The discriminant of F is defined by the formula b2 − 4ac and
is denoted by Δ. Moreover F is an integral form if and only
if a, b, c ∈ Z and F is indefinite if and only if Δ > 0.

Let Γ be the modular group PSL(2,Z), i.e. the set of the
transformations

z �→ rz + s

tz + u
, r, s, t, u ∈ Z, ru − st = 1.

Then Γ is generated by the transformations T (z) = −1
z and

V (z) = z + 1. Let U = T.V . Then U(z) = −1
z+1 . Then Γ has

a representation Γ =
〈
T, U : T 2 = U3 = I

〉
. So

Γ =
{

g =
(

r s
t u

)
: r, s, t, u ∈ Z , ru − st = 1

}
. (2)

We denote the symmetry with respect to the imaginary axis
with R, that is R(z) = −z. Then the group Γ = Γ ∪ RΓ is
generated by the transformations R, T, U and has a represen-
tation Γ =

〈
R, T, U : R2 = T 2 = U3 = I

〉
, and is called the

extended modular group. So

Γ =
{

g =
(

r s
t u

)
: r, s, t, u ∈ Z, ru − st = ±1

}
. (3)

There is a strong connection between the extended modular
group and binary quadratic forms (see [5]). Most properties of
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binary quadratic forms can be given by the aid of the extended
modular group. Gauss (1777-1855) defined the group action
of Γ on the set of forms as follows: Let F = (a, b, c) be a

quadratic form and let g =
(

r s
t u

)
∈ Γ. Then the form

gF is defined by

gF (x, y) =
(
ar2 + brs + cs2

)
x2

+ (2art + bru + bts + 2csu) xy (4)
+

(
at2 + btu + cu2

)
y2,

that is, gF is gotten from F by making the substitution

x → rx + tu, y → sx + uy.

Moreover, Δ(F ) = Δ(gF ) for all g ∈ Γ, that is, the action of
Γ on forms leaves the discriminant invariant. If F is indefinite
or integral, then so is gF for all g ∈ Γ.

Let F and G be two forms. If there exists a g ∈ Γ such that
gF = G, then F and G are called equivalent. If detg = 1,
then F and G are called properly equivalent and if detg = −1,
then F and G are called improperly equivalent. A quadratic
form F is said to be ambiguous if it is improperly equivalent
to itself. An indefinite quadratic form F of discriminant Δ is
said to be reduced if∣∣∣√Δ − 2|a|

∣∣∣ < b <
√

Δ. (5)

Mollin (see [1]) considered the arithmetic of ideals in his
book. Let D �= 1 be a square free integer and let Δ = 4D

r2 ,
where

r =
{

2 D ≡ 1(mod 4)
1 otherwise.

(6)

If we set K = Q(
√

D), then K is called a quadratic number
field of discriminant Δ = 4D

r2 . A complex number is an
algebraic integer if it is the root of a monic polynomial with
coefficients in Z. The set of all algebraic integers in the
complex field C is a ring which we denote by A. Therefore
A ∩ K = OΔ is the ring of integers of the quadratic field K
of discriminant Δ. Set

wΔ =
r − 1 +

√
D

r

for r defined in (6). Then wΔ is called principal surd. We
restate the ring of integers of K as

OΔ = [1, wΔ] = Z[wΔ].

In this case {1, wΔ} is called an integral basis for K. Let
I = [α, β] denote the Z-module αZ ⊕ βZ, i.e., the additive
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abelian group, with basis elements α and β consisting of

{αx + βy : x, y ∈ Z}.
Note that OΔ =

[
1, 1+

√
D

r

]
. In this case wΔ = r−1+

√
D

r is
called the principal surd. Every principal surd wΔ ∈ OΔ can
be uniquely expressed as

wΔ = xα + yβ,

where x, y ∈ Z and α, β ∈ OΔ. We call α, β an integral basis
for K, and denote it by [α, β]. If αβ−βα√

Δ
> 0, then α and β

are called ordered basis elements. Recall that two basis of an
ideal are ordered if and only if they are equivalent under an
element of Γ. If I has ordered basis elements, then we say
that I is simply ordered. If I is ordered, then

F (x, y) =
N(αx + βy)

N(I)

is a quadratic form of discriminant Δ (Here N(x), denote the
norm of x). In this case we say that F belongs to I and write
I → F .

Conversely let us assume that

G(x, y) = Ax2 + Bxy + Cy2 = d(ax2 + bxy + cy2)

be a quadratic form, where d = ±gcd(A, B, C) and b2−4ac =
Δ. If B2−4AC > 0, then we get d > 0 and if B2−4AC < 0,
then we choose d such that a > 0. Set

I = [α, β] =

[
a,

b −√
Δ

2

]

for a > 0 or

I = [α, β] =

[
a,

b −√
Δ

2

]√
Δ

for a < 0 and Δ > 0. Then I is an ordered OΔ-ideal. Thus to
every form G, there corresponds an ideal I to which G belongs
and we write G → I . Hence we have a correspondence
between ideals and quadratic forms (for further details see
[2], [3], [4], [7]).

Theorem 1.1: If I = [a, b + cwΔ], then I is a non-zero
ideal of OΔ if and only if c|b, c|a and ac|N(b + cwΔ) [1].

Let δ denote a real quadratic irrational integer with trace
t = δ + δ and norm n = δδ. Given a real quadratic irrational
γ ∈ Q(δ), there are rational integers P and Q such that γ =
P+δ

Q with Q|(δ + P )(δ + P ). Hence for each

γ =
P + δ

Q
, (7)

there is a corresponding Z−module

Iγ = [Q, P + δ] (8)

in fact, this module is an ideal by Theorem 1.1. The conjugate
of Iγ is defined as

Iγ = [Q, P + δ].

If Iγ = Iγ , then Iγ is called ambiguous. The ideal Iγ in (8)
is said to be reduced if and only if

P + δ > Q and − Q < P + δ < 0. (9)

So Iγ is ambiguous if and only if it contains both P+δ
Q and

P+δ
Q , so if and only if

2P

Q
∈ Z.

For the quadratic irrational γ, there exists an indefinite
quadratic form

Fγ(x, y) = Q(x − γy)(x − γy). (10)

Applying (10), we obtain

Fγ(x, y) = Q(x − γy)(x − γy)
= Q

[
x2 − xy(γ + γ) + y2(γγ)

]
= Q

⎡
⎣ x2 − xy

(
P+δ

Q + P+δ
Q

)
+y2

(
P+δ

Q .P+δ
Q

)
⎤
⎦

= Q

⎡
⎣ x2 − xy

(
t+2P

Q

)
+y2

(
P 2+P (δ+δ)+δ.δ

Q

)
⎤
⎦

= Q

[
x2 − xy

(
t + 2P

Q

)
+ y2

(
P 2 + Pt + n

Q

)]

= Qx2 − (t + 2P )xy +
(

P 2 + Pt + n

Q

)
y2.

The discriminant of Fγ is

Δ = [−(t + 2P )]2 − 4Q

(
P 2 + Pt + n

Q

)
= t2 + 4tP + 4P 2 − 4P 2 − 4Pt − 4n

= t2 − 4n.

Hence one associates with γ an indefinite quadratic form Fγ

defined as above. The opposite of Fγ is hence

F γ(x, y) = Qx2 + (t + 2P )xy +
(

n + Pt + P 2

Q

)
y2. (11)

II. QUADRATICS.
In [6], we derived some results concerning the quadratic

irrationals γ, quadratic ideals Iγ and indefinite quadratic forms
Fγ defined in (7), (8) and (10), respectively. In the present
paper we consider the same problem for other values of Q
and P .

Let δ =
√

D and Q = 1. Then t = 0 and n = −D. Set
P = −p

2 for primes p such that p ≡ 1, 5(mod 6). Then

γ1 = −p

2
+

√
D

is a quadratic irrational and hence

Iγ1 =
[
1,

−p

2
+

√
D

]
(12)

is a quadratic ideal and

Fγ1(x, y) = x2 + pxy +
(

p2 − 4D

4

)
y2 (13)
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is a quadratic form of discriminant Δ = 4D.

Theorem 2.1: γ1 is equivalent to its conjugate γ1 for every
primes p ≡ 1, 5(mod 6).

Proof: Recall that two real numbers α and β are said to

be equivalent if there exists a g =
(

r s
t u

)
∈ Γ such that

gα = β ⇔ rα + s

tα + u
= β.

The conjugate of γ1 is γ1 = −p
2 − √

D. Now consider the
equation

gγ1 = γ1 ⇔
r
(

−p
2 −√

D
)

+ s

t
(

−p
2 −√

D
)

+ u
=

−p
2 +

√
D

1
(14)

for g =
(

r s
t u

)
∈ Γ. One solution of (14) is

g =
( −1 −p

0 1

)
∈ Γ.

So γ1 is equivalent to its conjugate γ1.

Theorem 2.2: Iγ1 is ambiguous for every p ≡ 1, 5(mod 6).

Proof: We know that an ideal Iγ is ambiguous if it is
equal to its conjugate Iγ , or in other words, if and only if
δ+P

Q + δ+P
Q = t+2P

Q ∈ Z. For δ =
√

D we have t = 0, and
hence

t + 2P

Q
=

2(−p/2)
1

= −p ∈ Z. (15)

Therefore Iγ1 is ambiguous.

From above two theorems we can give the following corol-
lary.

Corollary 2.3: Fγ1 is properly equivalent to its opposite
F γ1 and is ambiguous for every p ≡ 1, 5(mod 6).

Proof: It is clear that Fγ1 is properly equivalent to its
opposite F γ1 by (15) since t+2P

Q = −p ∈ Z. We know as
above that an indefinite quadratic form Fγ is ambiguous if and
only if the quadratic irrational γ is equivalent to its conjugate
γ. We proved in Theorem 2.1 that γ1 is equivalent to its
conjugate γ1. So Fγ1 is ambiguous for every p ≡ 1, 5(mod 6).

Now we can give the following theorem.

Theorem 2.4: Let Fγ1 be the quadratic form in (13). Then
1) If p ≡ 1(mod 6), say p = 1 + 6k for a positive integer

k ≥ 1, then Fγ1 is reduced if and only if D ∈ [9k2 +
3k + 1, 9k2 + 9k + 2] − {9k2 + 6k + 1}.

2) If p ≡ 5(mod 6), say p = 5 + 6k for a positive integer
k ≥ 1, then Fγ1 is reduced if and only if D ∈ [9k2 +
15k + 7, 9k2 + 21k + 12] − {9k2 + 12k + 9}.

In both cases the number of these reduced forms is p.

Proof: 1) Let p ≡ 1(mod 6), say p = 1 + 6k and let Fγ1

be reduced. Then by (5), we get∣∣∣√Δ − 2|a|
∣∣∣ < b <

√
Δ ⇔

∣∣∣√4D − 2|1|
∣∣∣ < p <

√
4D

⇔ 2
√

D − 2 < p < 2
√

D. (16)

Applying (16), we find that

D >
p2

4
=

1
4

+ 3k + 9k2 ⇔ D ≥ 9k2 + 3k + 1

and

D <
(p + 2)2

4
=

9
4

+ 9k + 9k2 ⇔ D ≤ 9k2 + 9k + 2.

So we have

9k2 + 3k + 1 ≤ D ≤ 9k2 + 9k + 2.

But D = 9k2 + 6k + 1 = (3k + 1)2 is a square. So we have
to omit it (since D must be a square-free positive integer).
Therefore we have

D ∈ [9k2 + 3k + 1, 9k2 + 9k + 2] − {9k2 + 6k + 1}.
The converse is also true, that is, if D ∈ [9k2+3k+1, 9k2+

9k + 2] − {9k2 + 6k + 1}, then Fγ1 is reduced. Further the
number of these reduced forms is

9k2 + 9k + 2 − (9k2 + 3k + 1) = 6k + 1 = p.

2) Let p ≡ 5(mod 6), say p = 5+6k and let Fγ1 be reduced.
Then by (16), we get

D >
p2

4
=

25
4

+ 15k + 9k2 ⇔ D ≥ 9k2 + 15k + 7

and

D <
(p + 2)2

4
=

49
4

+ 21k + 9k2 ⇔ D ≤ 9k2 + 21k + 12.

So we have

9k2 + 15k + 7 ≤ D ≤ 9k2 + 21k + 12.

But D = 9k2 + 18k + 9 = (3k + 3)2 is a square. So we have
to omit it. Therefore we have

D ∈ [9k2 + 15k + 7, 9k2 + 21k + 12] − {9k2 + 18k + 9}.
Conversely if D ∈ [9k2+15k+7, 9k2+21k+12]−{9k2+

18k + 9}, then clearly Fγ1 is reduced. The number of these
reduced forms is

9k2 + 21k + 12 − (9k2 + 15k + 7) = 6k + 5 = p.

Now let δ = 1+
√

D
2 and Q = 1. Then t = 1 and n = 1−D

4 .
Set P = −(p+1)

2 for primes p such that p ≡ 1, 5(mod 6). Then

γ2 =
−p +

√
D

2
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is a quadratic irrational and hence

Iγ2 =

[
1,

−p +
√

D

2

]
(17)

is a quadratic ideal and

Fγ2(x, y) = x2 + pxy +
(

p2 − D

4

)
y2 (18)

is a quadratic form of discriminant Δ = D.

Theorem 2.5: γ2 is equivalent to its conjugate γ2 for every
p ≡ 1, 5(mod 6).

Proof: The conjugate of γ2 is γ2 = −p−√
D

2 . Now
consider the equation

gγ2 = γ2 ⇔
r
(
−p −√

D
)

+ s

t
(
−p −√

D
)

+ u
=

−p +
√

D

1
(19)

for g =
(

r s
t u

)
∈ Γ. One solution of (19) is

g =
( −1 −p

0 1

)
∈ Γ.

So γ2 is equivalent to its conjugate γ2.

Theorem 2.6: Iγ2 is ambiguous for every p ≡ 1, 5(mod 6).

Proof: Recall that t = 1 for δ = 1+
√

D
2 . So

t + 2P

Q
=

1 + 2(−(p+1)
2 )

1
= −p ∈ Z.

Therefore Iγ2 is ambiguous.

From above two theorems we can give the following corol-
lary.

Corollary 2.7: Fγ2 is properly equivalent to its opposite
F γ2 and is ambiguous for every p ≡ 1, 5(mod 6).

Proof: We know that an indefinite quadratic form Fγ is
ambiguous if and only if the quadratic irrational γ is equivalent
to its conjugate γ. We proved in Theorem 2.5 that γ2 is
equivalent to its conjugate γ2. So Fγ2 is ambiguous for every
p ≡ 1, 5(mod 6).

Now we can give the following theorem.

Theorem 2.8: Let Fγ2 be the quadratic form in (18). Then
1) If p ≡ 1(mod 6), say p = 1 + 6k for a positive integer

k ≥ 1, then Fγ2 is reduced if and only if D ∈ [36k2 +
12k + 2, 36k2 + 36k + 8] − {36k2 + 24k + 4}.

2) If p ≡ 5(mod 6), say p = 5 + 6k for a positive integer
k ≥ 1, then Fγ2 is reduced if and only if D ∈ [36k2 +
60k + 26, 36k2 + 84k + 48] − {36k2 + 72k + 36}.

In both cases the number of these reduced forms is 4p + 2.

Proof: 1) Let p ≡ 1(mod 6), say p = 1 + 6k and let Fγ2

be reduced. Then by (5), we get∣∣∣√Δ − 2|a|
∣∣∣ < b <

√
Δ ⇔

∣∣∣√D − 2|1|
∣∣∣ < p <

√
D

⇔
√

D − 2 < p <
√

D. (20)

Applying (20) we get

D > p2 = 1 + 12k + 36k2 ⇔ D ≥ 36k2 + 12k + 2

and

D < (p + 2)2 = 9 + 36k + 36k2 ⇔ D ≤ 36k2 + 32k + 8.

So
36k2 + 12k + 2 ≤ D ≤ 36k2 + 36k + 8.

But D = 36k2 +24k +4 = (6k +2)2 is a square. So we have
to omit it. Therefore we have

D ∈ [36k2 + 12k + 2, 36k2 + 36k + 8] − {36k2 + 24k + 4}.
Conversely if D ∈ [36k2 + 12k + 2, 36k2 + 36k + 8] −

{36k2 + 24k + 4}, then Fγ2 is reduced. Further the number
of these reduced forms is

36k2 + 36k + 8 − (36k2 + 12k + 2) = 24k + 6 = 4p + 2.

2) Let p ≡ 5(mod 6), say p = 5+6k and let Fγ2 be reduced.
Then by (20), we get

D > p2 = 25 + 60k + 36k2 ⇔ D ≥ 36k2 + 60k + 26

and

D < (p + 2)2 = 49 + 84k + 36k2 ⇔ D ≤ 36k2 + 84k + 48.

So we have

36k2 + 60k + 26 ≤ D ≤ 36k2 + 84k + 48.

But D = 36k2 + 72k + 36 = (6k + 6)2 is a square. So we
have to omit it. Therefore we have

D ∈ [36k2 + 60k + 26, 36k2 + 84k + 48] − {36k2 + 72k + 36}.
The converse is also true, that is, if D ∈ [36k2 + 60k +

26, 36k2+84k+48]−{36k2+72k+36}, then Fγ2 is reduced.
The number of these reduced forms is

36k2 + 84k + 48− (36k2 + 60k + 26) = 24k + 22 = 4p + 2.
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[6] A. Tekcan and H. Özden. On the Quadratic Irrationals, Quadratic Ideals
and Indefinite Quadratic Forms. Irish Math. Soc. Bull. 58(2006), 69–79.

[7] A. Tekcan. Some Remarks on Indefinite Binary Quadratic Forms and
Quadratic Ideals. Hacettepe J. of Maths. and Sta. 36(1)(2007), 27–36.


