
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1594

Abstract—Hybrid knowledge model is suggested as an underlying

framework for product development management. It can support such
hybrid features as ontologies and rules. Effective collaboration in
product development environment depends on sharing and reasoning
product information as well as engineering knowledge. Many studies
have considered product information and engineering knowledge.
However, most previous research has focused either on building the
ontology of product information or rule-based systems of engineering
knowledge. This paper shows that F-logic based knowledge model can
support such desirable features in a hybrid way.

Keywords—Ontology, rule, F-logic, product development.

I. INTRODUCTION
HE collaborative product development environment
involves product information models, domain-specific

engineering knowledge, different domain terminologies, and
diverse systems. The product information model includes
semantics about properties of product related data such as
product structures, work breakdown structure, organizational
roles, and so on, while the engineering knowledge is about the
rule-base including domain-specific knowledge along with
product engineering such as product configuration, process
planning, cost targeting, and so forth [1].

The critical issue for effective collaboration in
heterogeneous environment is the lack of formal and explicit
semantics in the product information model, which could
facilitate semantic interoperability. Over the years, a wide
range of basic and applied research activities on product data
exchange and integration of semantics have been conducted
with the aim of semantic interoperability among partners
[2]-[5]. The ontology-based approach out of many studies has
been considered as the most suitable for integrating diverse
engineering semantics, since the product semantics built in
ontology language – such as the Web Ontology Language
(OWL) [6] – can be specified in a well-defined and
unambiguous manner. The other critical issue for
knowledge-intensive product engineering is capturing
domain-specific knowledge and experience, and reusing them
in decision making procedure. To cope with this challenging
problem, rule-based systems incorporating the knowledge of
the experts in the form of If-Then rules have been suggested
[7]-[9].

Normally, ontologies and rules are expressed in different

Heejung Lee is with the Department of Industrial and Management

Engineering, Daegu University, South Korea (e-mail: 2ssol@daegu.ac.kr).
Hyo-Won Suh is with the Department of Industrial and Systems

Engineering, KAIST, South Korea.

knowledge representation formalism, which makes it difficult
to interact between them. This is also likely to cause
information to be lost during interactions. Therefore, the
integration of ontology-based and rule-based approaches is an
essential theme in the knowledge-based product development
management.

This paper presents the hybrid way to integrate the
ontology-based and rule-based approaches without losing the
information, by applying the F-logic approach.

II. PRELIMINARY
F-logic approach combines the advantages of logic

programming and object-oriented programming paradigm, and
extends and subsumes predicate calculus. F-logic is also known
to have two flavors: the first-order flavor and the logic
programming flavor. In particular, F-logic integrates the
paradigms of logic programming and deductive data-bases with
the object-oriented programming paradigm. Most of the
applications of F-logic are for the intelligent information
systems based on the logic programming paradigm, and F-logic
has been used to represent ontologies due to its direct support
for object-oriented concepts, its frame based syntax, and
extensive support for meta-programming. We provide here
with an overview of the main features of F-logic briefly [10].

A. Objects
F-logic integrates object-oriented parading and accordingly,

objects are basic syntactic elements. Objects can be accessed by
object identity (OID); for instance, John, man, and son(John)
are possible.

B. Methods
Methods are specified using data-F-atoms consisting of a

host object, a method object, and a result object. Any object is
allowed to be appeared in any location of a data-F-atom.
Methods may either be single-valued or multi-valued, which is
represented by “→”; for instance, “John[son → tom]”, which
expresses that tom (result) is the son (method) of john (host). In
a similar way, “John[son → {Tom, Hans}], which states that
Tom and Hans are sons of John, and John may have additional
sons.

C. Class Hierarchy
An Isa-F-atom of the form o:c states that an object o is a

member of class c. A subclass-F-atom of the form sc::c states
that the class sc is a subclass of the class c; for instance,
Tom:man denotes that Tom is an instance of the class man, and
man::person defines that the class man is a subclass of the class

The Hybrid Knowledge Model for Product
Development Management

Heejung Lee, and Hyo-Won Suh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1595

person.

D. Signature
Signature-F-atoms specify the schema of a class. In

particular, they declare the methods on the classes and give
types of the arguments used by those methods, and the ranges
of the methods. To distinguish signature-F-atoms from
data-F-atoms, the arrow “*=>” is used instead of “→”; for
instance, person[son *=> man]. In F-logic, we use “*=>” to
declare a signature of an inheritable method. When a method is
non-inheritable, “=>” is used.

E. F-molecules
It is possible to collect several F-atoms into a single and

convenient, F-molecule, such as, Jonh:man[son → Tom:man,
daughter → Jane:woman].

F. Rues
One of the best features of F-logic is the usage of rules to

derive new information from a given knowledge base. A rule
consists of a head and a body, which are separated by “:-”,
where the head of the rule is an F-molecules and the body is a
Boolean combination of F-molecules or negated F-molecules.
In particular, F-logic supports the closed world assumption,
which is not explicitly known, is assumed to be false. This is
also called non-monotonic.

III. HYBRID KNOWLEDGE MODEL
This paper presents a hybrid knowledge representation and

reasoning approach based on F-logic, to integrate the
ontology-based product information model and rule-based
engineering knowledge model. The product information model
includes the product semantics while the engineering
knowledge model includes engineering-specific knowledge
during the product development process. Most product
semantics are represented by frame-based approach and some
are defined using rules, and engineering-specific knowledge is
mostly represented in rules. The adopted F-logic supports this
integration.

A. Generic Product Development Process
The generic product development process can consists of

four phases. The process begins with a concept development,
during which the needs of the target market are identified,
alternative product concepts are generated, and one or more
concepts are selected. The system-level design phase includes
the production architecture definition and the decomposition of
the product into subsystems and components. The detail design
phase includes the complete specification of the product
features such as the geometry, materials, and tolerances of all of
the parts in the product. The testing and refinement phase
include product verification and validation, the construction
and evaluation of multiple prototypes of the product. In
summary, the product development process begins with the
definition of customer requirements and proceeds thorough
these four phases. The knowledge model enables the product
development process to be efficient and accordingly the

company to be competitive. Fig. 1 shows the relations between
product development stages, product information model and
engineering knowledge base.

We will now describe a project in the conceptual design of
car air purifiers. Fig. 2 illustrate rough process for car air
purifier design. There are three major tasks such as Target Spec.
Decision, Fan Type Selection, and Fan Design. Although each
task could have more than one sub-tasks recursively, we do not
focus on those sub-tasks but mainly on the three tasks. Almost
every time there is a need to design a new air purifier, the target
specifications should be decided to satisfy the customer
requirements. The two most important factors among the target
specifications are noise (dB) and air flow rate (m3/hour) and
they have great impact on selecting fan type. Therefore, as seen
in Fig. 3, the second task is to select proper fan type to meet
required noise and air flow rate. Once a project manager makes
a choice for fan type, other detailed design tasks start. Each
detailed design tasks can be performed by geographically
distributed partners and then sharing design information among
participants is of significance.

The procedure of application scenario has five steps: step1 is
for the knowledge building by knowledge engineers, step2 is
for the customer requirements setting, step 3 is for the product
structure building by adding a new instance based on
hasDirectComp method, step 4 is for product type selection
with reasoning about both product information model and
engineering knowledge to realize the instance from the
customer requirements, and step 5 is for process planning of the
selected feature.

Fig. 1 The interaction between stages and models

Fig. 2 Generic design process of a car air purifier

B. F-logic as a Hybrid Knowledge Model
F-logic has been viewed as a natural candidate for an

ontology language thanks to its support for object-oriented
concepts and its frame-based syntax. A typical ontology
includes three main components: a taxonomy of classes,
definitions of concepts, and definitions of instances. In F-logic,
class taxonomies are represented directly using the
subclass-F-atom; for instance, compositePart::part. Concept
definitions are represented using signature-F-atoms; for
instance, compositePart[hasdirecComp{2:*} *=> part], and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1596

finally instance definitions can be specified as facts using
Isa-F-atom or data-f-atoms; for instance, Part001:part or
CompositePart002[hasdirectComp → {Part004, Part006,
Part007}]. In addition, derived class can be defined using rules.
For instance, if the concepts of part are already defined, we can
define a new concept, smallPart using the following
statements:

?X:smallPart :- ?X:part, ?X[size → Small], where ?X is a
variable.

C. Hybrid Knowledge Model for Car Air Purifiers
A distinctive product information model required for the

conceptual design of car air purifiers is addressed in Table I,
and methods can be also defined using rules; for instance,
transitive method hasComponent can be defined as follows:

?X[hasComponent → ?Z] :-
 ?X[hasComponent → ?Y], ?Y[hasComponent → ?Z].

Domain-specific engineering knowledge is built regarding

major decisions pertaining to the conceptual design of car air
purifiers, which include target specification decision, fan type
selection, and fan design. The rule formulae for each task are
included in Table II.

TABLE I

PRODUCT INFORMATION MODEL FOR CAR AIR PURIFIERS
Index Formulae

I1 productPart::part.

I2 primitivePart::part

I3 assemblyPart::part[hasDirectComp{2:*} *=> part]

I4
carAirPurifier::productPart[hasComponent{1:1}*=>capFanAssy
, hasComponent{1:1} *=> capCaseAssy, isInstalled{1:1}*=>
position].

I5 capFanAssy:assemblyPart[hasDirectComp{1:1}*=> capFan,
hasDirectComp{1:1}*=> capMotor].

I6 capCaseAssy::assemblyPart.

I7 capFan::assemblyPart[hasDirectComp{1:1}*=> blade,
hasFanType{1:1} *=> fanType].

I8 capMotor::assemblyPart.
I9 blade::primitivePart.
I10 capAxialFan::capFan[hasFanType{1:1} *=> axial].

I11 capCrossflowFan::capFan[hasFanType{1:1} *=> crossflow].
I12 capSiroccoFan::capFan[hasFanType{1:1} *=> sirocco].
I13 capDualFan::carAirPurifier[hasComponent {2:2}*=> capFan].
I14 capSingleFan::carAirPurifier[hascomponent{1:1}*=> capFan]

I15 capSingleSirocco::capSingleFan[hasComponent{1:1}*=>
capSiroccoFan

I16 capSingleSiroccoIn::capSingleSirocco[isInstalled{1:1}*=>inside
].

I17 capSingleSiroccoOut::capSingleSirocco[isInstalled{1:1}
*=>outside].

I18 axial::fanType.
I19 crossFlow::fanType.
I20 sirocco::fanType.
I21 inside::position.
I22 outside::position.

TABLE II
DOMAIN SPECIFIC ENGINEERING KNOWLEDGE FOR CAR AIR PURIFIERS

Index Formulae

R1 ?X [noiseLevel → small] :- ?X:capFan[requiredNose → ?Y], ?Y >
0, ?Y < 30.

R2 ?X [noiseLevel → medium] :- ?X:capFan[requiredNose → ?Y], ?Y
> 30, ?Y < 40.

R3 ?X [airflowLevel → weak] :- ?X:capFan[requiredAirflow
→ ?Y], ?Y > 10, ?Y < 30.

R4 ?X [airflowLevel → medium] :- ?X:capFan[requiredAirflow
→ ?Y], ?Y > 30, ?Y < 50.

R5 ?X [airflowLevel → strong] :- ?X:capFan[requiredAirflow
→ ?Y], ?Y > 50, ?Y < 100.

R6 ?X[fanType → axial] :- ?X:capFan[noiseLevel → small,
airflowLevel → weak] .

R7 ?X[fanType → crossflow] :- ?X:capFan[noiseLevel → small,
airflowLevel → medium] .

R8 ?X[fanType → sirocco] :- ?X:capFan[noiseLevel → medium,
airflowLevel → strong] .

R9 ?X[installed → outside] :- ?X:carAirPurifier[hasCapFan →
{?Y:capFan[noiseLevel → high]}].

R10 ?X[installed → inside] :- ?X:carAirPurifier[hasCapFan
→ ?Y:capFan], not Y[noiseLevel → high].

R11 ?X[hasMaterial → steel] :- ?Y:carAirPurifier[hasComponent
→ ?X:blade, isInstalled → inside].

R12 ?X[hasMaterial → plastic] :- ?Y:carAirPurifier[hasComponent
→ ?X:blade, isInstalled → outside].

D. Product Structure Building and Type Design
Suppose we have the following requirements for a car air

purifier with a single fan 1) 35 decibels as noise requirements, 2)
70 cube meters per hours as air flow requirements.

Following the index I4 in Table I, we are asked to define
capFanAssy and capCaseAssy. Cap01:carAirPurifier to satisfy
the definition of carAirPurifier, FanAssy01:capFanAssy and
CaseAssy01:capCaseAssy are guided to be added and they are
linked with Cap01 using method hasDirectComp.
Consequently, for FanAssy01 to be an instance of capFanAssy,
it is guided to have one capFan and one capMotor as its direct
component as shown in index I5. Thus, CapFan01 and
CapMotor01 are guided to be created and they are then linked
with FanAssy01 using method hasDirectComp. In the same
way, Blade01 is also linked with CapFan01 using method
hasDirectcomp. The overall product structure until now is
depicted in Fig. 3.

Fig. 3 Product structure of car air purifier

Next, we need to select fan type to satisfy the requirements of

noise and air flow. The factual knowledge of fan type,
“noiseLevel → medium” and “airFlowLevel → strong” can be
derived from index R2 and the type of CapFan01 is determined
to be Sirocco from index R8 in Table II. From these results,
CapFan01 is re-conceptified into capSiroccoFan because

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:12, 2012

1597

capFan01 has Sirocco:FanType satisfying the definition of
capSiroccoFan as shown in index I11. Additionally,
hasDirectComp::hasComponent and the transitivity axiom of
hasComponent conclude that Cap01 also has components
CapFan01 and CapMotor01. From this, Cap01 is
re-conceptified into capSingleFan. At this moment, Cap01 is
also re-conceptified into capSingleSirocco concept since
Cap01 has one fan and its type is Sirocco. Installation place of
Cap01 is decided by its noise, that is, if its noise is high, it
should be installed outside. We know that the Cap01 is installed
inside the car because its noise is not proved to be high, i.e.,
negation under closed world assumption. By re-concept
reasoning, Cap01 is re-conceptified into CapSingleSiroccoIn,
the most specific concept to which Cap01 belongs. The
summary result is shown in Fig. 4 and Table III.

Fig. 4 Product type design of car air purifier

TABLE III

HYBRID REASONING FOR PRODUCT TYPE DESIGN
reasoning Answer Justification

Conversion ?X [noiseLevel → medium],
?X [airflowLevel → strong] R2, R5

Fan Type
Selection ?X[fanType → sirocco] R8

Re-Concept CapFan01: capSiroccoFan I12
Re-Concept Cap01: capSingleFan I14
Re-Concept Cap01: capSingleSirocco I15

Installation Place
Selection ?X[installed → inside] R10

Re-Concept Cap01: capSingleSiroccoIn I16

IV. CONCLUSION
In the collaborative product development environment, the

two main types of product knowledge are the product
information model and the domain-specific rule model. The
product information model includes ontological semantics
regarding the properties of the product, such as its structure,
material, and features. The domain-specific rule model, on the
other hand, includes specific knowledge (expressed as specific
rules) along with product engineering tasks such as the
configuration, material selection, and process planning of a
product.

Normally, these two models have been expressed in different
knowledge representation formalisms, which make it difficult
to interact between them. This paper presents a hybrid way to

integrate the ontology-based and rule-based approach by aping
the F-logic approach.

ACKNOWLEDGMENT
This research was supported by the National Research

Foundation of Korea funded by the Korea government (No.
2010-0022827)

REFERENCES
[1] J. D. Noh, H. W. Suh, and H. J. Lee, “Hybrid knowledge representation

and reasoning with ontology and rules for product engineering,” ASME,
IDETC/CIE, 2009.

[2] S. R. Gorti, A. Gupta, G. J. Kim, R. D. Sriram, and A. Wong, “An
object-oriented representation for product and design processes,”
Computer-Aided Design, vol. 30, no. 7, pp. 489-501, 1998.

[3] R. Sudarsan, S. J. Fenves, R. D. Sriram, and F. Wang, “A product
information modeling framework for product lifecycle management,”
Computer-Aided Design, vol. 37, no. 13, pp. 1399-1411, 2005.

[4] L. Patil, D. Dutta, and R. D. Sriram, “Ontology-Based Exchange of
Product Information Semantics,” IEEE Trans. On Automation Science
and Engineering, vol. 2, no. 3, pp. 213-225, 2005.

[5] M. Dong, D. Yang, and L. Su, “Ontology-based service product
configuration system modeling and development,” Expert Systems with
Application, vol. 38, pp. 11770-11786, 2011.

[6] M. K. Smith, C. Welty, and D. L. McGuinness, OWL Web ontology
language guide, W3C recommendation, http://www.w3.org/TR/2004/
REC-owl-guide-20040210/, 2004.

[7] K. Y. Kim, H. Yang, and D. W. Kim, Mereotopological assembly joint
information representation for collaborative product design,” Robotics
and Computer-Integrated Manufacturing, vol. 24, no. 6, pp. 744-754,
2006.

[8] R. Studer, V. R. Benjamins, and D. Fensel, Knowledge Engineering:
Principle and methods,” Data&Knowledge Engineering, vol. 25, no. 1-2,
pp. 161-197, 1998.

[9] S. Staab and R. Studer (eds.), Handbook on Ontologies, International
Handbooks on Information Systems, Springer-Verlag, Berlin, Heidelberg,
2009. pp. 45-70.

[10] K. T. Ulrich and S. D. Eppinger, Product Design and Development,
McGraw-Hill, 2000.

