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Abstract—Hybrid knowledge model is suggested as an underlying 

framework for product development management. It can support such 
hybrid features as ontologies and rules. Effective collaboration in 
product development environment depends on sharing and reasoning 
product information as well as engineering knowledge.  Many studies 
have considered product information and engineering knowledge. 
However, most previous research has focused either on building the 
ontology of product information or rule-based systems of engineering 
knowledge. This paper shows that F-logic based knowledge model can 
support such desirable features in a hybrid way.   
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I. INTRODUCTION 
HE collaborative product development environment 
involves product information models, domain-specific 

engineering knowledge, different domain terminologies, and 
diverse systems. The product information model includes 
semantics about properties of product related data such as 
product structures, work breakdown structure, organizational 
roles, and so on, while the engineering knowledge is about the 
rule-base including domain-specific knowledge along with 
product engineering such as product configuration, process 
planning, cost targeting, and so forth [1].  

The critical issue for effective collaboration in 
heterogeneous environment is the lack of formal and explicit 
semantics in the product information model, which could 
facilitate semantic interoperability. Over the years, a wide 
range of basic and applied research activities on product data 
exchange and integration of semantics have been conducted 
with the aim of semantic interoperability among partners 
[2]-[5]. The ontology-based approach out of many studies has 
been considered as the most suitable for integrating diverse 
engineering semantics, since the product semantics built in 
ontology language – such as the Web Ontology Language 
(OWL) [6] – can be specified in a well-defined and 
unambiguous manner. The other critical issue for 
knowledge-intensive product engineering is capturing 
domain-specific knowledge and experience, and reusing them 
in decision making procedure. To cope with this challenging 
problem, rule-based systems incorporating the knowledge of 
the experts in the form of If-Then rules have been suggested 
[7]-[9].  

Normally, ontologies and rules are expressed in different 
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knowledge representation formalism, which makes it difficult 
to interact between them. This is also likely to cause 
information to be lost during interactions. Therefore, the 
integration of ontology-based and rule-based approaches is an 
essential theme in the knowledge-based product development 
management.  

This paper presents the hybrid way to integrate the 
ontology-based and rule-based approaches without losing the 
information, by applying the F-logic approach.  

II.  PRELIMINARY 
F-logic approach combines the advantages of logic 

programming and object-oriented programming paradigm, and 
extends and subsumes predicate calculus. F-logic is also known 
to have two flavors: the first-order flavor and the logic 
programming flavor. In particular, F-logic integrates the 
paradigms of logic programming and deductive data-bases with 
the object-oriented programming paradigm. Most of the 
applications of F-logic are for the intelligent information 
systems based on the logic programming paradigm, and F-logic 
has been used to represent ontologies due to its direct support 
for object-oriented concepts, its frame based syntax, and 
extensive support for meta-programming. We provide here 
with an overview of the main features of F-logic briefly [10]. 

A.  Objects 
F-logic integrates object-oriented parading and accordingly, 

objects are basic syntactic elements. Objects can be accessed by 
object identity (OID); for instance, John, man, and son(John) 
are possible.  

B.  Methods 
Methods are specified using data-F-atoms consisting of a 

host object, a method object, and a result object. Any object is 
allowed to be appeared in any location of a data-F-atom. 
Methods may either be single-valued or multi-valued, which is 
represented by “→”;  for instance, “John[son → tom]”, which 
expresses that tom (result) is the son (method) of john (host). In 
a similar way, “John[son  → {Tom, Hans}], which states that 
Tom and Hans are sons of John, and John may have additional 
sons.  

C. Class Hierarchy 
An Isa-F-atom of the form o:c states that an object o is a 

member of class c. A subclass-F-atom of the form sc::c states 
that the class sc is a subclass of the class c; for instance, 
Tom:man denotes that Tom is an instance of the class man, and 
man::person defines that the class man is a subclass of the class 
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person.    

D.  Signature 
Signature-F-atoms specify the schema of a class. In 

particular, they declare the methods on the classes and give 
types of the arguments used by those methods, and the ranges 
of the methods. To distinguish signature-F-atoms from 
data-F-atoms, the arrow “*=>” is used instead of “→”; for 
instance, person[son *=> man]. In F-logic, we use “*=>” to 
declare a signature of an inheritable method. When a method is 
non-inheritable, “=>” is used.  

E.  F-molecules 
It is possible to collect several F-atoms into a single and 

convenient, F-molecule, such as, Jonh:man[son → Tom:man, 
daughter → Jane:woman]. 

F.  Rues 
One of the best features of F-logic is the usage of rules to 

derive new information from a given knowledge base. A rule 
consists of a head and a body, which are separated by “:-”, 
where the head of the rule is an F-molecules and the body is a 
Boolean combination of F-molecules or negated F-molecules. 
In particular, F-logic supports the closed world assumption, 
which is not explicitly known, is assumed to be false. This is 
also called non-monotonic.   

III. HYBRID KNOWLEDGE MODEL 
This paper presents a hybrid knowledge representation and 

reasoning approach based on F-logic, to integrate the 
ontology-based product information model and rule-based 
engineering knowledge model. The product information model 
includes the product semantics while the engineering 
knowledge model includes engineering-specific knowledge 
during the product development process. Most product 
semantics are represented by frame-based approach and some 
are defined using rules, and engineering-specific knowledge is 
mostly represented in rules. The adopted F-logic supports this 
integration. 

 
A. Generic Product Development Process 
The generic product development process can consists of 

four phases. The process begins with a concept development, 
during which the needs of the target market are identified, 
alternative product concepts are generated, and one or more 
concepts are selected. The system-level design phase includes 
the production architecture definition and the decomposition of 
the product into subsystems and components. The detail design 
phase includes the complete specification of the product 
features such as the geometry, materials, and tolerances of all of 
the parts in the product. The testing and refinement phase 
include product verification and validation, the construction 
and evaluation of multiple prototypes of the product. In 
summary, the product development process begins with the 
definition of customer requirements and proceeds thorough 
these four phases. The knowledge model enables the product 
development process to be efficient and accordingly the 

company to be competitive. Fig. 1 shows the relations between 
product development stages, product information model and 
engineering knowledge base.  

We will now describe a project in the conceptual design of 
car air purifiers. Fig. 2 illustrate rough process for car air 
purifier design. There are three major tasks such as Target Spec. 
Decision, Fan Type Selection, and Fan Design. Although each 
task could have more than one sub-tasks recursively, we do not 
focus on those sub-tasks but mainly on the three tasks. Almost 
every time there is a need to design a new air purifier, the target 
specifications should be decided to satisfy the customer 
requirements. The two most important factors among the target 
specifications are noise (dB) and air flow rate (m3/hour) and 
they have great impact on selecting fan type. Therefore, as seen 
in Fig. 3, the second task is to select proper fan type to meet 
required noise and air flow rate. Once a project manager makes 
a choice for fan type, other detailed design tasks start. Each 
detailed design tasks can be performed by geographically 
distributed partners and then sharing design information among 
participants is of significance.  

The procedure of application scenario has five steps: step1 is 
for the knowledge building by knowledge engineers, step2 is 
for the customer requirements setting, step 3 is for the product 
structure building by adding a new instance based on 
hasDirectComp method, step 4 is for product type selection 
with reasoning about both product information model and 
engineering knowledge to realize the instance from the 
customer requirements, and step 5 is for process planning of the 
selected feature.  

Fig. 1 The interaction between stages and models 

 
Fig. 2 Generic design process of a car air purifier 

 
B.  F-logic as a Hybrid Knowledge Model 
F-logic has been viewed as a natural candidate for an 

ontology language thanks to its support for object-oriented 
concepts and its frame-based syntax. A typical ontology 
includes three main components: a taxonomy of classes, 
definitions of concepts, and definitions of instances. In F-logic, 
class taxonomies are represented directly using the 
subclass-F-atom; for instance, compositePart::part. Concept 
definitions are represented using signature-F-atoms; for 
instance, compositePart[hasdirecComp{2:*} *=> part], and 
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finally instance definitions can be specified as facts using 
Isa-F-atom or data-f-atoms; for instance, Part001:part or 
CompositePart002[hasdirectComp → {Part004, Part006, 
Part007}]. In addition, derived class can be defined using rules. 
For instance, if the concepts of part are already defined, we can 
define a new concept, smallPart using the following 
statements:  

?X:smallPart :- ?X:part, ?X[size → Small], where ?X is a 
variable. 

C.  Hybrid Knowledge Model for Car Air Purifiers 
A distinctive product information model required for the 

conceptual design of car air purifiers is addressed in Table I, 
and methods can be also defined using rules; for instance, 
transitive method hasComponent can be defined as follows: 

 
?X[hasComponent → ?Z] :- 
 ?X[hasComponent → ?Y], ?Y[hasComponent → ?Z]. 
 
Domain-specific engineering knowledge is built regarding 

major decisions pertaining to the conceptual design of car air 
purifiers, which include target specification decision, fan type 
selection, and fan design. The rule formulae for each task are 
included in Table II.  

 
TABLE I 

PRODUCT INFORMATION MODEL FOR CAR AIR PURIFIERS 
Index Formulae 

I1 productPart::part. 

I2 primitivePart::part 

I3 assemblyPart::part[hasDirectComp{2:*} *=> part] 

I4 
carAirPurifier::productPart[hasComponent{1:1}*=>capFanAssy
, hasComponent{1:1} *=> capCaseAssy, isInstalled{1:1}*=> 
position]. 

I5 capFanAssy:assemblyPart[hasDirectComp{1:1}*=> capFan, 
hasDirectComp{1:1}*=> capMotor]. 

I6 capCaseAssy::assemblyPart. 

I7 capFan::assemblyPart[hasDirectComp{1:1}*=>  blade, 
hasFanType{1:1} *=> fanType]. 

I8 capMotor::assemblyPart. 
I9 blade::primitivePart. 
I10 capAxialFan::capFan[hasFanType{1:1} *=> axial]. 

I11 capCrossflowFan::capFan[hasFanType{1:1} *=> crossflow]. 
I12 capSiroccoFan::capFan[hasFanType{1:1} *=> sirocco]. 
I13 capDualFan::carAirPurifier[hasComponent {2:2}*=> capFan]. 
I14 capSingleFan::carAirPurifier[hascomponent{1:1}*=> capFan] 

I15 capSingleSirocco::capSingleFan[hasComponent{1:1}*=> 
capSiroccoFan 

I16 capSingleSiroccoIn::capSingleSirocco[isInstalled{1:1}*=>inside
]. 

I17 capSingleSiroccoOut::capSingleSirocco[isInstalled{1:1} 
*=>outside]. 

I18 axial::fanType. 
I19 crossFlow::fanType. 
I20 sirocco::fanType. 
I21 inside::position. 
I22 outside::position. 

 
 
 
 
 
 
 
 

TABLE II 
DOMAIN SPECIFIC ENGINEERING KNOWLEDGE FOR CAR AIR PURIFIERS 

Index Formulae 

R1 ?X [noiseLevel → small] :- ?X:capFan[requiredNose → ?Y], ?Y > 
0, ?Y < 30. 

R2 ?X [noiseLevel → medium] :- ?X:capFan[requiredNose → ?Y], ?Y 
> 30, ?Y < 40. 

R3 ?X [airflowLevel → weak] :- ?X:capFan[requiredAirflow 
→ ?Y], ?Y > 10, ?Y < 30. 

R4 ?X [airflowLevel → medium] :- ?X:capFan[requiredAirflow 
→ ?Y], ?Y > 30, ?Y < 50. 

R5 ?X [airflowLevel → strong] :- ?X:capFan[requiredAirflow 
→ ?Y], ?Y > 50, ?Y < 100. 

R6 ?X[fanType → axial] :- ?X:capFan[noiseLevel → small, 
airflowLevel → weak] . 

R7 ?X[fanType → crossflow] :- ?X:capFan[noiseLevel → small, 
airflowLevel → medium] . 

R8 ?X[fanType → sirocco] :- ?X:capFan[noiseLevel → medium, 
airflowLevel → strong] . 

R9 ?X[installed → outside] :- ?X:carAirPurifier[hasCapFan → 
{?Y:capFan[noiseLevel → high]}]. 

R10 ?X[installed → inside] :- ?X:carAirPurifier[hasCapFan 
→ ?Y:capFan], not Y[noiseLevel → high]. 

R11 ?X[hasMaterial → steel] :- ?Y:carAirPurifier[hasComponent 
→ ?X:blade, isInstalled → inside].  

R12 ?X[hasMaterial → plastic] :- ?Y:carAirPurifier[hasComponent 
→ ?X:blade, isInstalled → outside]. 

 

D.  Product Structure Building and Type Design 
Suppose we have the following requirements for a car air 

purifier with a single fan 1) 35 decibels as noise requirements, 2) 
70 cube meters per hours as air flow requirements.  

Following the index I4 in Table I, we are asked to define 
capFanAssy and capCaseAssy. Cap01:carAirPurifier to satisfy  
the definition of carAirPurifier, FanAssy01:capFanAssy and 
CaseAssy01:capCaseAssy are guided to be added and they are 
linked with Cap01 using method hasDirectComp. 
Consequently, for FanAssy01 to be an instance of capFanAssy, 
it is guided to have one capFan and one capMotor as its direct 
component as shown in index I5. Thus, CapFan01 and 
CapMotor01 are guided to be created and they are then linked 
with FanAssy01 using method hasDirectComp. In the same 
way, Blade01 is also linked with CapFan01 using method 
hasDirectcomp. The overall product structure until now is 
depicted in Fig. 3. 

 

 
Fig. 3 Product structure of car air purifier 

 
Next, we need to select fan type to satisfy the requirements of 

noise and air flow. The factual knowledge of fan type, 
“noiseLevel → medium” and “airFlowLevel → strong” can be 
derived from index R2 and the type of CapFan01 is determined 
to be Sirocco from index R8 in Table II. From these results, 
CapFan01 is re-conceptified into capSiroccoFan because 
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capFan01 has Sirocco:FanType satisfying the definition of 
capSiroccoFan as shown in index I11. Additionally, 
hasDirectComp::hasComponent and the transitivity axiom of 
hasComponent conclude that Cap01 also has components 
CapFan01 and CapMotor01. From this, Cap01 is 
re-conceptified into capSingleFan. At this moment, Cap01 is 
also re-conceptified into capSingleSirocco concept since 
Cap01 has one fan and its type is Sirocco. Installation place of 
Cap01 is decided by its noise, that is, if its noise is high, it 
should be installed outside. We know that the Cap01 is installed 
inside the car because its noise is not proved to be high, i.e., 
negation under closed world assumption. By re-concept 
reasoning, Cap01 is re-conceptified into CapSingleSiroccoIn, 
the most specific concept to which Cap01 belongs. The 
summary result is shown in Fig. 4 and Table III.  

 

 
Fig. 4 Product type design of car air purifier 

 
TABLE III 

HYBRID REASONING FOR PRODUCT TYPE DESIGN 
reasoning Answer Justification 

Conversion ?X [noiseLevel → medium], 
?X [airflowLevel → strong] R2, R5 

Fan Type 
Selection ?X[fanType → sirocco] R8 

Re-Concept CapFan01: capSiroccoFan I12 
Re-Concept Cap01: capSingleFan I14 
Re-Concept Cap01: capSingleSirocco I15 

Installation Place 
Selection ?X[installed → inside] R10 

Re-Concept Cap01: capSingleSiroccoIn I16 

IV. CONCLUSION 
In the collaborative product development environment, the 

two main types of product knowledge are the product 
information model and the domain-specific rule model. The 
product information model includes ontological semantics 
regarding the properties of the product, such as its structure, 
material, and features. The domain-specific rule model, on the 
other hand, includes specific knowledge (expressed as specific 
rules) along with product engineering tasks such as the 
configuration, material selection, and process planning of a 
product.  

Normally, these two models have been expressed in different 
knowledge representation formalisms, which make it difficult 
to interact between them. This paper presents a hybrid way to 

integrate the ontology-based and rule-based approach by aping 
the F-logic approach.  

ACKNOWLEDGMENT 
This research was supported by the National Research 

Foundation of Korea funded by the Korea government (No. 
2010-0022827) 

REFERENCES   
[1] J. D. Noh, H. W. Suh, and H. J. Lee, “Hybrid knowledge representation 

and reasoning with ontology and rules for product engineering,” ASME, 
IDETC/CIE, 2009. 

[2] S. R. Gorti, A. Gupta, G. J. Kim, R. D. Sriram, and A. Wong, “An 
object-oriented representation for product and design processes,” 
Computer-Aided Design, vol. 30, no. 7, pp. 489-501, 1998. 

[3] R. Sudarsan, S. J. Fenves, R. D. Sriram, and F. Wang, “A product 
information modeling framework for product lifecycle management,” 
Computer-Aided Design, vol. 37, no. 13, pp. 1399-1411, 2005. 

[4] L. Patil, D. Dutta, and R. D. Sriram, “Ontology-Based Exchange of 
Product Information Semantics,” IEEE Trans. On Automation Science 
and Engineering, vol. 2, no. 3, pp. 213-225, 2005. 

[5] M. Dong, D. Yang, and L. Su, “Ontology-based service product 
configuration system modeling and development,” Expert Systems with 
Application, vol. 38, pp. 11770-11786, 2011. 

[6] M. K. Smith, C. Welty, and D. L. McGuinness, OWL Web ontology 
language guide, W3C recommendation, http://www.w3.org/TR/2004/ 
REC-owl-guide-20040210/, 2004. 

[7] K. Y. Kim, H. Yang, and D. W. Kim, Mereotopological assembly joint 
information representation for collaborative product design,” Robotics 
and Computer-Integrated Manufacturing, vol. 24, no. 6, pp. 744-754, 
2006. 

[8] R. Studer, V. R. Benjamins, and D. Fensel, Knowledge Engineering: 
Principle and methods,” Data&Knowledge Engineering, vol. 25, no. 1-2, 
pp. 161-197, 1998. 

[9] S. Staab and R. Studer (eds.), Handbook on Ontologies, International 
Handbooks on Information Systems, Springer-Verlag, Berlin, Heidelberg, 
2009. pp. 45-70.  

[10] K. T. Ulrich and S. D. Eppinger, Product Design and Development, 
McGraw-Hill, 2000. 


