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Abstract—In a previously developed fast vortex method, the 

diffusion of the vortex sheet induced at the solid wall by the no-slip 
boundary conditions was modeled according to the approximation 
solution of Koumoutsakos and converted into discrete blobs in the 
vicinity of the wall. This scheme had been successfully applied to a 
simulation of the flow induced with an impulsively initiated circular 
cylinder. In this work, further modifications on this vortex method are 
attempted, including replacing the approximation solution by the 
boundary-element-method solution, incorporating a new algorithm for 
handling the over-weak vortex blobs, and diffusing the vortex sheet 
circulation in a new way suitable for high-curvature solid bodies. The 
accuracy is thus largely improved. The predictions of lift and drag 
coefficients for a uniform flow past a NASA airfoil agree well with the 
existing literature. 
 

Keywords—Resurrected core-spreading vortex method, Boundary 
element method, Vortex sheet, Over-weak vortex blobs.  

I. INTRODUCTION 
HE resurrected core-spreading vortex method [1] 

captures correctly the diffusion phenomenon by linearly 
increasing the characteristic area of the Gaussian blobs [2] and 
imposing an upper bound on the characteristic area via a 
blob-splitting technique [3] [4]. To control the total number of 
vortex blobs, an algorithm was designed to merge similar and 
nearby vortices [4]. To speed up the calculation of the 
velocities, the multipole method was implemented [1]. This fast 
resurrected core-spreading vortex method is attractive because 
it is deterministic, grid-free, efficient, and exact for uniform 
flow fields, unlike those grid-based finite-difference methods 
(such as those described by Chang & Chern [5], Lu & Shen [6], 
and Lu & Ross [7]) that make the code no longer grid-free and 
might result in excessive interpolation errors or those 
redistribution methods (such as those proposed by Degond & 
Mas-Gallic [8], Fishelov (1990) [9], and Shankar & van 
Dommelen [10][11]) that rely strongly on the remeshing 
technique.  

When the no-slip boundary conditions were present, the 
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resurrected core-spreading vortex method [1] chose to place a 
vortex sheet at the wall and solve its strength with a 
boundary-element method and constant panels [12]; 
Koumoutsakos’ analytical solution [13] was properly 
discretized to model the diffusion of the vortex sheet at a later 
time. When applied to the flow with an impulsively initiated 
circular cylinder, this vortex method performed excellently at 
early times but gradually lost its accuracy as the simulated time 
increased. A careful examination found two possible reasons. 
The first one involves the extremely weak vortex blobs that are 
generated after successive splitting processes and were deleted 
directly from the simulation. Without deleting these over-weak 
vortex blobs, the total number of vortex blobs blows up quickly 
however. The amount of circulation deleted accumulated with 
time and eventually caused unacceptable errors. The second 
reason is attributed to the employed constant panels that ignore 
the local curvature of the solid walls. In this work, the authors 
would like to explore these two error sources and possibly 
improve the accuracy. Flows past a NASA airfoil are targeted. 

The resurrected core-spreading vortex method is briefly 
reviewed in Sec. II. The generation and diffusion of the vortex 
sheet on the solid wall are modeled in Sec. III. The over-weak 
vortex blobs are handled in Sec. IV. Simulation results of 
airfoil flows are presented in Sec. V. Finally given is the 
conclusion. 

II. RESURRECTED CORE-SPREADING VORTEX METHOD 

The governing equation to be solved is 
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in which appear vorticity , velocity ( ),u u v=


 and viscosity . 

The velocity is divided into two parts, one irrotational pu


 and 

another rotational uw


. According to Leonard’s core-spreading 
method, the solution is decomposed into many discrete 
Gaussian blobs as follows 
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in which appear location jx


, core size js  and strength jG  of 
blob j; they are governed by 
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The diffusion of Eq.(1) is simulated exactly with Eqs.(3abc) 
but not convection; the associated error increases with 
increasing js  [14]. As remedy, the core size must be kept 

small. It is done in the following way. A threshold maxs for the 
core size is set first; whenever a blob has a core size ps  greater 

than maxs , this blob is replaced immediately by a thinner one 
surrounded with M others. The core size of these new blobs is 
chosen to be pas  and their strengths are determined on 
preserving the zeroth, second, and fourth moments of vorticity. 
Physically, when diffusion is concerned, the vorticity at the 
original location decreases but always remains the maximum. 
The adopted splitting method approximates this major part of 
the vorticity with a blob of half the strength and a 
circumferential vorticity with the surrounding blobs so that it 
captures the diffusion more accurately [4].  

As the duration of simulation increases, further splitting 
events occur, and the number of blobs increases rapidly. To 
contain this situation, similar (with the same sense of rotation) 
and nearby blobs should become merged into one. The strength 
(), location, and core size () of the new vortex blob are 
determined on preserving the zeroth, first and second moments 
of vorticity. By satisfying the two criteria 

2 2
0 max/ refG G <pea s                                  (4a) 

0 maxs <s                                      (4b) 

with selected error tolerance  and reference circulation refG , 
the maximum field error induced in a single merging event is 
controlled with ref. The sets of similar and nearby blobs to be 
merged are determined as follows. The entire flow domain is 
divided into equal square cells of size  maxs , and the merging 
criteria are examined over blobs in each cell; at most one 
merging event is allowed per cell per time step. The distance 
between neighboring blobs after merging is thus about 

max2hs  (the diagonal distance of the cell). Because the 
minimum core size of a blob is maxas , the overlapping ratio 
(the ratio of the core size to the distance between neighboring 
blobs) is estimated to be ( )2a h  [4].  

To speed up the calculations of velocities, the multipole 

method of Carrier et al. [15] was employed. Far-away blobs are 
viewed as point vortices, which contribution to the velocity of 
an interested blob is evaluated by a truncated Laurent series (P 
terms). The nearby blobs are grouped on taking advantage both 
of the square cells generated for merging similar and nearby 
blobs and of the concept of adaptive domain decomposition 
proposed by Carrier et al. [15].  Details about the grouping 
algorithm are referred to [1]. Errors of two kinds are associated 
with this fast method: the first arises from an approximation of 
vortex blobs by point sources, and the second is due to 
truncated terms of higher order. When the former dominates 
over the latter factor, increasing the counted terms cannot 
improve the accuracy but the computational amount. An 
optimized value of P was found to be [1] 

2
min
2 2

2 21 1opt
l

P
SR

= + = +
s

                              (5) 

where lmin is the finest subdomain size involved with the 
adaptive domain decomposition and SR minlºs . The fast 
vortex method is executed as follows. One first specifies the 
desired values of SR and 0n  (the maximum allowable number 
of vortex blobs in a group), then determines the truncated 
Laurent series according to Eq.(5), and finally sets the 
allowable maximum level for the domain decomposition as 

( )2 maxlog L SR⋅ s , with L as the size of the minimum square 
that encloses all existing vortex blobs.  

III. NO-SLIP BOUNDARY CONDITIONS 
The no-slip boundary condition is fulfilled on placing a 

vortex sheet of strength  (circulation per unit length) at the 
wall.  The strength is governed by 
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in which ext  is the stream function associated with the 
external flow, including free streams and vortex blobs, wake  is 
the total circulation inside the flow, and s and n are tangential 
and normal coordinates along the solid boundary. We 
discretized Eq.(6) with the boundary-element method and 
constant panels (panels of constant strength) [12], and solved 
with a requirement of least squared error [16]. To avoid 
fluctuations, we treated the external vortex blobs as point 
vortices when evaluating the right side of Eq.(6a). 

As time goes on, the circulation on the solid wall must 
gradually diffuse into the flow field. Due to the singularity, the 
diffusion can be approximated by 

2 0
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The exact solution of Eq.(7) is known as follows: [13] 
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Assuming a piecewise linear surface, extending the spatial 
integration to infinity, and approximating the time integration 
by the forward Euler method, Koumoutsakos proposed an 
approximation solution [13] as follows 
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in which appear the midpoint (xc,i, yc,i) of the ith panel, time 
increment t, panel strength i, panel length di, the total number 
of panels M, and error function erf. Alternatively, one may 
solve i(Eq.(8)) also by the boundary element method. We 
name these two methods as the linear method and the BE 
method. Comparisons will be made between their 
performances. 

To discretize the vorticity distribution Eq.(9) and to be 
consistent with the resurrected core-spreading vortex method, 
new blobs, called wall blobs, are generated at selected locations 
outside the solid body (having a core size of ). In the work of 
Huang et al. [1], these blobs were placed along the curved 
surface and each panel distributed its circulation to the 
neighboring ten blobs (see Fig.1(a)) and, most of all, each five 
of them were treated as if they were collinear (see Fig.1(b)). 
This approximation however causes unacceptable errors when 
the body curvature (such as at the trailing edge of an airfoil) is 
huge. In the present work, we instead place ten blobs outside 
each panel independently as shown in Fig.2. Although the total 
number of wall blobs is increased, it is reduced shortly by the 
merging process and thus hardly increases the computational 
time. 

IV. OTHER NUMERICAL ISSUES 

A. Vortex Blobs Near the Wall 
During the simulation, some vortex blobs may move, 

because of convection or splitting, toward the wall and remain 

 
(a) 

 
(b) 

Fig.1 The old locations of the wall blobs created to approximate the 
diffusion result of the vortex sheet at the wall (a) and the collinear 
approximation (b). 

 
Fig.2 The new locations of the wall blobs created to approximate the 
diffusion result of the vortex sheet at the wall. 
 
too close to the wall such that their Gaussian tails extend into 
the interior of the solid body, causing significant errors. To fix 
it, a blob satisfying the following criterion: 

*1rr r 
 

                                  (10) 

in which r is the distance from the wall and  is the core size of 
the blob, is judged too close to the wall and will be eliminated 
from the simulation after it gives up its circulation to nearby 
wall blobs.  

B. Over-weak Vortex Blobs 
After successive splitting processes, there can appear a huge 

number of extremely weak vortex blobs. These blobs affect 
little the flow field but cost a huge amount of computations. In 
the previous solver [1], a threshold (tolerance) was prescribed 
and any blob which strength was smaller than this threshold 
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was deleted directly from the simulation. Error thus 
accumulates as time increases and eventually becomes 
unacceptable because of the abandonment of the circulation. As 
remedy, we herein distribute the circulation of any over-weak 
blob equally to its neighboring blobs before deleting it. The 
neighboring blobs are selected by taking advantage of the grid 
generated for merging similar and nearby blobs in the 
following order of priority: 1) blobs with the same sense of 
rotation and residing in the same cell as the over-weak blob 
does, 2) blobs with the same sense of rotation and within the 8 
cells enclosing the cell the over-weak blob resides, and 3) blobs 
with the opposite sense of rotation and residing in the same cell 
as the over-weak blob does. Fig. 3 shows the drag coefficient of 
the flow induced with an impulsively initiated circular cylinder 
with ReD=UD/= 3000. The time increment ist= 0.005 and 
tolerance=5×107UD. The drag coefficient is computed as 
follows 

,
1 1
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i i c m m m
i m
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where appears the total number of vortex blobs in the flow, N. 
Fig. 3 reveals a much better agreement between this modified 
scheme with Ploumhans and Winckelmans’ [17] than the 
original one. The instantaneous vorticty contours at tU/D=5 are 
shown in Fig.4. Locations of over-weak vortex blobs at this 
time are also indicated. In the figure, blue dots are those blobs 
going to give up their circulations to other blobs in the same 
cell and green ones are those going to give up their circulations 
to blobs in the neighboring 8 cells. 

V.  NACA0012 AIRFOIL 
We finally chose the NACA0012 airfoil to test the 

performance of the newly designed wall blobs, i.e. to test the 
capability of the modified solver in simulating flows over body 
with high curvature. Two angles of attack, 12 and 27, were 
first simulated. Both have a Reynolds number of Re=Uc/=100, 
where c is the chord. The drag and lift coefficients were 
calculated after the simulations reached steady. The results are 
listed in Table I, compared with those of Srinath & Mittal [18]. 
The linear method seemingly performs better than the BE 
method. The errors are under 5%. Fig. 5 shows the steady 
vorticity distributions. Slight vortex shedding is observed when 
the angle is 27; the oscillating amplitude in the drag/lift 
coefficient is still very small. The life and drag coefficients 
against the angle of attack are shown in Figs. 6 and 7 
respectively. The present method predicts well in the lift 
coefficients, in agreement with those of Srinath & Mittal [18] 
but slightly over-predicts the drag coefficients. 

VI. CONCLUSION 
We improved the accuracy of an existing resurrected 

core-spreading vortex method and extended its applications to 
flows past solid bodies with high curvatures. The over-weak  

TABLE I.  The drag and lift coefficients calculated. 
 Srinath & Mittal linear BE 

CD CL CD CL CD CL 
12o 0.478 0.583 0.498 0.612 0.503 0.661
27o

0.667 0.815 0.686 0.806 0.682 0.798

 
 

 
Fig.3 A comparison between the calculated drag coefficients. 

 
 

 

 
Fig.4 The vorticity contours and the distribution of the over-weak 

vortex blobs at tU/D=5. 
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Fig. 5 The color contour of vorticity for a uniform flow past a NACA0012 airfoil. The angle of attack is 12 (top) and 27 
(bottom). 

Fig. 6 The lift coefficient against the angle of attack for the 
NACA0012 airfoil.  

Fig.7  The drag coefficient against the angle of attack for the 
NACA0012 airfoil. 

 
vortex blobs are not eliminated until their circulations are 
properly distributed to the neighboring blobs. The no-slip 
boundary conditions are satisfied by placing a vortex sheet on 
the solid wall, which strength is calculated by the boundary 
element method. The diffusion of this vortex sheet is either 
modeled by an approximation solution or solved by the 
boundary element method. The present study shows the former 
performs better and well in predicting the lift and drag 
coefficients for a uniform flow past a NASA airfoil with an 
angle of attack ranging from 3 to 27. 
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