
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

713

Abstract—A self-evolution algorithm for optimizing neural

networks using a combination of PSO and JPSO is proposed. The
algorithm optimizes both the network topology and parameters
simultaneously with the aim of achieving desired accuracy with less
complicated networks. The performance of the proposed approach is
compared with conventional back-propagation networks using
several synthetic functions, with better results in the case of the
former. The proposed algorithm is also implemented on slope
stability problem to estimate the critical factor of safety. Based on
the results obtained, the proposed self evolving network produced a
better estimate of critical safety factor in comparison to conventional
BPN network.

Keywords—Neural networks, Topology evolution, Particle
swarm optimization.

I. INTRODUCTION
EVELOPING neural networks involves not only optimizing
synaptic weights but also choosing a suitable processing

function as well as optimizing the network architecture.
However, considering the combination of discrete and
continuous parameters involved, it is such an extremely
challenging task to optimize the network topology and the
network parameters at the same time [1].

Classical topology optimization methods such as
incremental learning algorithm and pruning technique are
likely to lead to a convergence at a sub-optimal network
configuration due to the manner in which the network size is
increased in the case of incremental learning and the way in
which the complexity of the network is reduced the case of the
pruning [2]. To overcome the problem associated with
aforementioned approaches, a variety of bio-inspired
evolutionary concepts of have been employed to
simultaneously optimize network topology and parameters.
These include the genetic algorithm (GA) based algorithms
such as EPNet [3] and NEAT [4]. In EPNet, a population of
networks with randomly generated topology and synaptic
weights are subjected to a series of mutation cycles. Each
mutation cycle involves parametric mutation, where the
networks’ synaptic weights are updated and structural
mutation in which the nodes or connections are added or
removed.

The mutations are carried out repeatedly until a satisfactory
network is obtained. The NEAT algorithm, on the other hand,
seeks to avoid the inefficient cross over operation associated
with EPNet by starting with a population of smallest possible
networks, then gradually increasing their complexity as
learning goes on. The downside of NEAT, however, is the
intricate cross-over procedure involved while updating the
network topology.

 A.Ismail is a research student in the Division of Civil Engineering,

University of Dundee, U.K. e-mail: asiiiuk@ gmail.com).
D-S. Jeng is a Professor in the Division of Civil Engineering, University of

Dundee, U.K. (e-mail: dsj@dundee.ac.uk).

Particle swarm optimization (PSO), another type of bio-

inspired technique, has also been successfully used in
evolving neural networks [5,6,7]. Although PSO is
computationally simpler than GA-based algorithms, the key
disadvantage of the self evolution algorithms developed based
PSO is the random generation of network topology, which
tends to compromise the computational efficiency of the
optimization process.

This paper presents an approach to network topology
evolution in which Jumping particle swarm optimization
technique (JPSO) is used to optimize the topology and
activation function while using a combination of back-
propagation and PSO techniques to optimize the network
continuous parameters. Another important feature of the
proposed technique is that, like NEAT, the complexity of the
network is gradually increased, beginning with simple
architecture. A number of synthetic functions are used to
compare the performance of the proposed optimization
technique with conventional BPN with various activation
functions. A slope stability problem is also used to further
assess the prediction quality and the complexity of the
network developed using the proposed algorithm.

II. JUMPING PARTICLE SWARM OPTIMIZATION (JPSO)
JPSO algorithm is a combinatorial optimization algorithm

proposed by developed by Martınez-Garcıa and Moreno-
Pe´rez [8] that bears some resemblance with the discrete
version of particle optimization (DPSO) developed by
Kennedy and Eberhart [9] with regards to the gravitation of
particles towards better positions, but differs from DPSO in
that the change in particle position in the case of the former is
not based on the concept of particle velocity. A particle in
JPSO updates its position by jumping from its current position
to a new position under the influence of particle’s experience,
global best position as well as its `explorative tendency. The
possible trajectories of particle jumping are shown graphically
in Figure 1. The particle’s position is updated using the
following equation:

1 1 2 3t tλ λ λ
+

= ⊗ ⊕ ⊗ ⊕ ⊗x x b g

(1)

where tx and 1t +x are the vectors of current and future
particle positions in the discrete search space. The parameters
λ1, λ2 and λ3 are probabilities of jumping randomly, towards
the best particle position and to the best swarm position
respectively. b and g are, respectively, the particle best and
global best positions. The particle position updating is carried
out as follows:

,

,

,

, 1

, 1 , 2

, 3

1 2 3

*

*

*

1

i t

i t i

i t i

i t x

i t i t i x b

i t i x g

x P

x x b P

x g P

ρρ λ

λ

λ

λ λ λ

→

+ →

→

 =

= =

=

 + + =

⎧
⎪
⎨
⎪
⎩

(2)

Abdussamad Ismail, Dong-Sheng Jeng

Self-evolving Neural Networks Based on PSO
and JPSO Algorithms

D

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

714

Jumping towards best
particle position

Random Jump

Current position

Particle best
position

Global best
position

, ,*i j i jx b

, ,*i j i jx ρ

, ,*i j i jx g

Fig. 1 Graphical representation of jumping particle in topology space

in which ρ is a random binary number. The * operator is
implemented by stochastically modifying the features of the
current particle with some features of its attractor. The
updated position determined using equation (2) could be
worse than the current one, therefore a random local search is
carried out around the updated position to find a better
solution. Due to the mixed nature of optimization problem in
this work, the local search is carried out using few steps of
back-propagation algorithm. Also, the parameter
corresponding to random jump, λ1 is reduced to zero but
compensated by resetting the positions of a portion of particle
swarm at certain intervals. Thus the values of λ2 and λ3 sum up
to 1 in the present work. The proposed JPSO algorithm is
represented by the flowchart in Figure 2.

III. SELF-EVOLVING NETWORK
The proposed self evolution process begins by generating a

population of neural nets, each having a random synaptic
connections and synaptic parameters. The connection
parameters are binary, assuming a value of 1 if there is a
connection between two nodes and 0 if otherwise (Figure 3).
They are updated using a jumping particle swarm optimization
(JPSO) procedure described briefly in section 2. The synaptic
weights of individual networks in the population are updated
using a combination of PSO and BP algorithm. The advantage
of putting together the two techniques is to take the advantage
of global search capability of the former and the ability of the
later to perform local search. The algorithm involves updating
the synaptic weights using PSO for a number of iterations, and
then further updating the weights of best performing particles
in the swarm BP algorithm for few steps. This alternative use
of PSO and BP is repeated until a sufficiently accurate result
is obtained. In order to guard against the tendency of particles
convergence at suboptimal co-ordinate, duplicate particles
have their positions reset randomly at the end of each cycle of
PSO iterations. The positions of least performing particles in
the swarm population are also randomly reset in order to
improve the topology search capability, having removed the
random jumping aspect of JPSO.

Randomly generate N particles

Evaluate particles’ fitness f and determine
b and g

random
value r[0,1]

1r λ≤1 2 1rλ λ+ < ≤

[]1 0,1t ρ+ =x x*

1t + =x x* g

1t + =x x* b

1 1 2c r λ λ< ≤ +

Perform local search() ()1t tf f+ >x xYes

Accept 1t +x

() ()1t tf f+ >x x

For all particles

Reject 1t +x

Update b and g

End

Stopping
criteria
satisfied ?

No

Yes

No

Yes

No

Fig. 2 Flowchart describing JPSO algorithm

When the accuracy doesn’t improve with further training

and there is a desire to further improve it, the complexity of
the network is up scaled by adding more nodes, one node at a
time. At this point, the so far acquired information is
preserved by retaining the current particles best positions
(both topology and synaptic weights) while the topology of
the swarm members is modified. The rationale here is to
facilitate the development of simpler networks and to achieve
the desired accuracy while minimizing the computational
burden of having to deal with unnecessary large network size
as the case is with some models available in the literature [15,
16, and 17]. The algorithm of self-evolving network is
summarised in the following steps:
1. Initialize a particle swarm population of N size, with

each particle representing neural networks with a single
hidden node and randomly generated set of synaptic
weights and connection parameters.

2. Evaluate the fitness of each particle and update the best
particle and global positions.

3. Use PSO/JPSO to update particle co-ordinates for certain
number of iterations in the following sub-steps:
a. Use PSO to update the weight vector of each

particle
b. Use JPSO to update the connection parameters of

each particle.
c. Update the particle best position and the best swarm

position
4. If convergence is sufficient then go to 9. Else continue

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

715

5. Reset randomly the binary and continuous parameters of
duplicate particles. Also, reset in the same manner, the
binary parameters of certain fraction of the swarm with
poor fitness.

6. Select best particles and update their continuous
parameters using some steps of BP. If the training is
satisfactory go to 9. Else continue.

7. If number of iterations is less than maximum number
then go back to step3. Else continue

8. Generate N particles with one additional node over the
current number of nodes. Replace all current particles
with newly generated particles while retaining the current
particle best positions (topology and synaptic weight).
Then go back to step 3.

9. Terminate algorithm and return result.

Σ

.

.

.

1x

2x

nx

.

.

O

Subsequently
added nodes

Initial hidden node

,

0 If i&j are dis-connected
1 If i&j are connected i jC

⎧
= ⎨

⎩
Fig. 3 Topology of self-evolving network

To assist the swarm of partially connected networks in the

search for best network, a parallel swarm of fully connected
networks but with the same number of nodes is
simultaneously optimized., with the former learning from the
later whenever the best swarm position in later is more
accurate.

A. Activation function

The choice of suitable activation function is crucial to a
successful development of neural networks due to its strong
influence on the complexity and accuracy of the later.
Sticking to popular processing functions like sigmoid function
as par the usual practice doesn’t guarantee optimality under all
circumstances. [10,11]. in light of this argument, a
combination of several functions is proposed as activation
function. The proposed activation function is expressed as
follows:

() ()
1

n

i i i
f k α ϕ= ∑x x (3)

where n is the number of sub-functions φi in the activation
function. iα is an adaptive coefficient; ik is a binary number. x
is the vector of inputs to the node. The function of the binary
number is to let the associated sub-function be part of the
activation function if by assuming a value of 1 and excluding
the associated sub-function by assuming a value of zero.

The coefficient iα throws some weight behind the sub-
functions making up the activation function in accordance
with their relative importance to the output of the neuron. The

iα coefficient is adjusted in the same manner as the synaptic
weights are, while the binary parameter, ki, is optimized
alongside the connectivity parameter ci. The sub-functions
considered in this work are represented by the following
equations:

Linear: ()

1

T

bϕ = +x w x (4a)

Sinusoid: () ()2
sin T bϕ = +x w x (4b)

Sigmoid: ()
3

1

1
T

be
ϕ

+
=

+ w x
x (4c)

Wavelet: () ()
()2

2

4

T
b

T a eϕ
+

= +

w x

x w x (4d)

w represents the vector of synaptic weights of input signals,
whereas a and b are the biases.

B. Error function

Mean square error (MSE), the most widely used error
function in network training, is often criticized for its
tendency to lead the network to over fitting. One of the
methods of enhancing is the weight decay, where
regularization term, a function of synaptic weights, is added to
MSE error function. The weak point of the weight decay
method is that it only reduces the values of synaptic weights to
small values without reducing the network size [12]. A
different approach was proposed by Jin et al [13], where the
regularization term is based on the number of connections
with the aim of effectively removing the redundant weights
from the network. The error term used in this paper is based
on the Jin et al's approach due to its ability to deal more
efficiently with the issue of network complexity.

IV. EXPERIMENTAL RESULTS
To demonstrate how a neural network evolves using the

proposed algorithm, function approximation and system
identification problems are considered. The nature of the
problems is described and the results of network model
simulations are discussed in the following sub-sections.

A. Wavelet function
A wavelet function of three variables, represented by

equation 10, is used in this case to generate 225 datasets with
input variables x1, x2 and x3 randomly generated and varied
from -10 to +10. 150 sets were used to develop networks,
while 75 sets of data were used for validation.

()
()

1 2 3

3

1 2 3

10 sin 2 2

2 2

x x x
f

x x xπ

+ −
=

+ − (5)

From the results summary in Table I, it can be seen that the
optimized network based on the proposed algorithm returns

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

716

the best result. It can also be observed that despite having the
smallest number of network parameters, it turns out to be the
most accurate. Relatively less accurate results are obtained in
the case of fully connected network with all functions
switched on. The performance of the networks based on
sinusoid and sigmoid activation is the lowest in the table. It
can also be noted that their performance has not improved
with increased number of neurons.

TABLE I
SUMMARY OF TRAINING AND TESTING RESULTS (WAVELET FUNCTION)
 Type of
Network

 No of
nodes

Number of
network
parameters

 N-RMSE
(training)

 N-RMSE
(testing)

Optimum
Network 1 14 0.00109 0.00112

Wave 14 84 0.013 0.03324
Sinusoid 12 60 0.08933 0.17657

 14 70 0.09038 0.22144
Sigmoid 5 25 0.07284 0.08725

 14 70 0.11123 0.14088
All
functions 3 52 0.08933 0.06149

B. Narendra-Li system
A non-linear system identification problem described by

Narendra and Li [14] is used here to assess the relative
accuracy of the proposed method. The non-linear system is
represented by the following set of equations:

()
()

()
()

()
()

()
()

()
()

() () () ()
() ()

()
() () ()[]

2 2

1 2

2

1

2

1 1

2 1

1

22

2

8

2 2 1

3

2

1 2

1 0.5 sin

1

1

1 0.5 sin

1 sin
1

cos

1 0.5 cos

x t x t

x t
y t

x

x t

x t

x t
e t

x t t

x t
x t

x t

x t x t x t e

u t

u t x t x t

+
−

 =
+

+ =

+ =

+

+ +
+

+
+

+

+ + +

⎛ ⎞
⎜ ⎟
⎝ ⎠ . (6)

where u(k) and y(k) are, respectively, the input and output
signals at time t. six inputs consisting of three past network
inputs and three past network outputs are used in order to
provide the network with enough memory to identify the
system. A total of 800 data sets are generated for training,
with u(k) as defined by the following equation:

()
2 2

sin sin , 1, 2.....
10 25

t t
u t t n

π π
 = + =

(7)

A uniformly distributed noise of ranging from -1 to +1 is
added to the output in order to test the robustness of the
model.

A testing data set consists of 400 data points generated in
the same manner as the training set, but with no noise added.
From the training and testing results in Table II, It can be seen
that despite the inferior accuracy of proposed model compared
to the performance of the wavelet network, its topology is
much simpler. The trade off by the self-evolving net between
accuracy and simplicity seems a reasonable one.

TABLE II

SUMMARY OF TRAINING AND TESTING RESULTS (NARENDRA-LI SYSTEM)
 Type of
Network

 No of
nodes

Number of
network
parameters

 N-RMSE
(training)

 N-RMSE
(testing)

Self -
evolving
Net

1 24 0.08462 0.03383

Wave 6 54 0.07563 0.02645

Sinusoid 6 48 0.08119 0.03319
Sigmoid 7 56 0.08001 0.03133
All
functions 4 107 0.07692 0.03322

C. Slope stability problem
Stability of slopes is one of the key geotechnical

engineering design problems that has been extensively studied
for decades. The slope stability is commonly assessed by
evaluating the factor of safety against failure. The factor of
safety of a slope is defined as the ratio between the forces that
resist and forces that overcome the resistance to slope failure
along a possible slip surface. The widely used method of
estimating the safety factor is the limit equilibrium method of
slices, in which the sliding tendency of a mass of soil that
exists within the envelope bounded by the slope and a
potential failure surface investigated. A typical section
through is shown in figure 4. Some of the versions of limit
equilibrium method include Bishop’s simplified method [15],
Janbu’s method [16] and Morgenstern and Price[17]. One of
the challenges associated with this method is how to locate the
slip surface corresponding to the worst factor of safety. The
conventional practice is based on trial and error, where
analysis is repeated for number of trial slip surfaces, out of
which the surface giving rise to minimum safety factor is
selected. In the present work, a self –evolving neural network
is used to directly estimate the critical factor of safety based
on inputs such as the geometrical properties of the slope, soil
shear strength parameters as well as the effects of seepage.
The idea is to make slope stability check simpler, faster but
accurate.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

717

Fig. 4 Section through an earth slope (method of slices)

1. Input parameters
The stability of a slope in a homogeneous soil depends on

the slope geometry (height and angle of slope), the soil
properties (cohesion, angle of internal friction and unit
weight) and. The factor of safety (F.S) as a function of various
controlling variables mentioned above can be stated as
follows:

(). tan , , , cot , w
Hc

F S f H
H

φ β
γ

=
 (8)

where φ , c and γ are the friction angle, cohesion and unite
weight of the slope material respectively. H is the slope
height; β the slope angle; and Hw the height of water behind
the slope. The parameters on the right hand side of equation 8
serve as inputs to the network, F.S being the output.

2. Database
The database used in the present work consists of 455 sets

of data obtained from the results of slope stability analysis
carried out on homogeneous slopes using Slope/W slope
stability analysis software. A wide range of soil properties as
well as slope geometrical parameters is represented in the
database. Table III provides the summary of the database
characteristics.

TABLE III

STATISTICAL PROPERTIES OF SLOPE DATABASE

Parameter xmax xmin μ σ

φ 60 0 28.2857 24.1377

C 200 0 53.011 63.8241

H 40 5 12.3517 8.3143

cot β 2.4 1 1.1613 0.3017

Hw 25 0 2.2813 4.5598

F.S 15.595 0.102 3.0923 3.2773

3. Networks Training and validation
The database was split into training and testing sets. A total

of 303 data sets were used for training, while the remaining
152 sets were earmarked for testing. To facilitate
generalization, the data is divided in such a way that both the
training and testing data statistically belong to the same
population. For the sake of comparison, the conventional
BPN networks were also trained, alongside the proposed self-
evolving network.

Results of the optimized network predictions are plotted
against the training and testing data in the scattergrams shown
in Figures 5(a) and 5(b) respectively. It can be seen from the
figures that the network gives a good correlation with both
training and testing data (R2 =0.9935 for training and R2=
0.9918 for testing). The performance of the optimized
network is compared BPN networks with various types of
activation functions in Table IV. It is evident from the results
that the proposed model outperforms the other networks not
only because it returns minimum error in both training and
testing, but also due to its relatively few parameters.

0

4

8

12

16

0 4 8 12 16

Pr
ed
ic
te
d
sa
fe
ty
 fa
ct
or

Actual safety factor

R2 = 0.99186
N‐RMSE = 0.01866

Fig. 5(a) Comparison of Actual safety factor versus self-evolving model

predictions (training data)

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

718

0

4

8

12

16

0 4 8 12 16

Pr
ed
ic
te
d
sa
fe
ty
 fa
ct
or

Actual safety factor

R2 = 0.99350
N‐RMSE = 0.01775

Fig. 5(b) Comparison of of Actual safety factor versus self-evolving model

predictions (testing data)

TABLE IV
SUMMARY OF TRAINING AND TESTING RESULTS FOR VARIOUS TYPES OF

NETWORK (SLOPE STABILITY PROBLEM)
 Type of
Network

 No of
nodes

Number of
network
parameters

 N-RMSE
(training)

 N-RMSE
(testing)

Self-
evolving
Network

2 26 0.01775 0.01866

Wave 5 40 0.03315 0.10842
Sinusoid 7 49 0.07921 0.97808
Sigmoid 7 49 0.04359 0.11247
All
functions 3 72 0.01432 0.03694

Further comparison was also made between self evolving

network based on equation (4) and a simpler activation
function represented by the following equation:

() () 2

1 2 1 1 2

1

i
n

wT

i
f k k xα α= + ∏x w x (9)

where n is the number of inputs. Other parameters are defined
in section 2. The training and testing results of the two
networks are put together in Table V. It can be noticed from
the table that although the more complicated network is more
accurate, the accuracy of the network based on a combination
of linear and product unit processing functions is reasonable.
The ability of the latter to achieve such a precision with much
simpler topology is particularly impressive.

TABLE V
PERFORMANCE COMPARISON OF TWO SELF-EVOLVING MODELS (SLOPE

STABILITY PROBLEM)
 Activation
functuion

 No of
nodes

Number of
network
parameters

 N-RMSE
(training)

 N-RMSE
(testing)

Equation (4) 2 26 0.01775 0.01866

Equation (8) 2 9 0.02349 0.0257

V. CONCLUSION

The task of simultaneous optimization of the topology and
synaptic weights of neural networks is desirable but highly
challenging. This paper proposes an algorithm to optimize
both the architecture and synaptic weights of a neural network
at the same time. The key features, which make the proposed
algorithm distinct from other methods available in the
literature, are the ability to grow from a very small network to
a complex without a loss of information while maintaining the
capability of exploring the search space. A data generated
from a wavelet function and Narendra-Li system and slope
stability analysis were used to compare the prediction
capability of networks based on the proposed self –evolution
algorithm and conventional BPN networks. The results
showed that self evolution algorithm produces much smaller
network sizes without compromising accuracy. With regards
to slope stability problem, the predictions of self evolving
network based on a combination of linear and product unit
processing functions gives are remarkably accurate,
considering the few parameters associated with the network.

ACKNOWLEDGMENT
The authors are highly appreciative of financial support by

Petroleum Technology Development Fund, Federal Republic
of Nigeria.

REFERENCES
[1] Miller, G. F., Todd, P. M. and Hegde, S. U. (1989). “Designing neural

networks using genetic algorithms.” Proc. 3rd Int. Conf. Genetic
Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA:
Morgan Kaufmann, pp. 379–384.

[2] Angeline, P. J., Saunders, G. M. and Pollack, J. B. (1994). “ An
evolutionary algorithm that constructs recurrent neural networks, IEEE
Transactions on Neural Networks, 5, 54/65

[3] Yao, X. and Liu, Y. (1997). “A New Evolutionary System for Evolving
Artificial Neural Networks.” IEEE Transactions on Neural Networks, 8-
3:694-713

[4] Stanley, K. and Miikkulainen, R. (2002). “Evolving Neural Networks
through Augmenting Topologies.” Evolutionary Computation, 10(2): 99-
127

[5] Xian-Lun T., Yon-Guo L. and Ling Z. (2007). “A hybrid particle swarm
algorithm for the structure and parameter optimization of feedforward
neural networks. “ LNCS 4493:213-218.

[6] Yu, J., Wang, S. and Xi, L. (2008). “Evolving artificial neural networks
using an improved PSO and DPSO.” Neurocomputing, 71:1054–1060

[7] Kiranyaz, S., Ince, T., Yildirim, A. and Gabbouj, M.
(2009).”Evolutionary artificial neural networks by multi-dimensional
particle swarm optimization.” Neural Networks (2009) in press.

[8] Mat`ınez Garc`ıa ,F. J. and Moreno P´erez J. A. (2008) “Jumping Frogs
Optimization: a New Swarm Method for Discrete Optimization.” ,
Technical Report DEIOC 3/2008, Department of Statistics, O.R. and
Computing, University of La Laguna, Tenerife, Spain

[9] Kennedy, J. and Eberhart, R. C. (1997). “A Discrete Binary Version of
the Particle Swarm Algorithm.” Proceedings of IEEE Conference on
Systems, Man, and Cybernetics, iscataway, New Jersey,USA. 4104–
4109.

[10] Sopena, J.M., Romero, E. and Alquezar, R. (1999); “Neural networks
with periodic and monotonic activation functions: a comparative study in
classification problems.” Ninth International Conference on Artificial
Neural Networks (ICANN ‘99). 1:323 - 328.

International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:9, 2012

719

[11] Wong, K.-W., Leung, C.S. and Chang, S.-J. (2002). “Use of periodic and
monotonic activation functions in multilayer feedforward neural
networks trained by extended Kalman filter algorithm.” IEEE
Proceedings. Image Signal Processing, 149 (4), 217 – 224.

[12] Jin, Y., Okabe, T. and Sendhoff, B. (2004). "Neural network
regularization and ensembling using multi-objective evolutionary
algorithms." Congress on Evolutionary Computation (CEC’04), IEEE

[13] Reed , R.D. and Marks, R.J. (1999). Neural Smithing. The MIT Press
[14] Narendra, K. S. and Li, S.-M.(1996). Neural networks in control

systems. In P. Smolensky,M. C. Mozer, and D. E. Rumelhart, editors,
Mathematical Perspectives on Neural Networks, chapter 11, pages 347–
394. Lawrence Erlbaum Associates

[15] Bishop, A .W. (1955). “The use of the slip circle in the stability analysis
of slopes.” Geotechnique, 5: 7-17.

[16] Janbu, N.(1973). Slope Stability Computations. Embankment Dam
Engineering - Casagrande Volume, R.C. Hirschfeld and S.J. Poulos,
eds., John Wiley and Sons, New York, pp 47-86.

[17] Morgensternn.,R ., and Price,V .E. (1967). “A numerical method for
solving the equations of stability of general slip surfaces.” Computer
Journal, 9: 388-393.

