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Abstract—The Boundary Representation of a 3D manifold con-
tains FACES (connected subsets of a parametric surface S : R2

−→

R3). In many science and engineering applications it is cumbersome
and algebraically difficult to deal with the polynomial set and
constraints (LOOPs) representing the FACE. Because of this reason, a
Piecewise Linear (PL) approximation of the FACE is needed, which is
usually represented in terms of triangles (i.e. 2-simplices). Solving the
problem of FACE triangulation requires producing quality triangles
which are: (i) independent of the arguments of S, (ii) sensitive to the
local curvatures, and (iii) compliant with the boundaries of the FACE
and (iv) topologically compatible with the triangles of the neighboring
FACEs. In the existing literature there are no guarantees for the point
(iii). This article contributes to the topic of triangulations conforming
to the boundaries of the FACE by applying the concept of parameter-
independent Gabriel complex, which improves the correctness of the
triangulation regarding aspects (iii) and (iv). In addition, the article
applies the geometric concept of tangent ball to a surface at a point to
address points (i) and (ii). Additional research is needed in algorithms
that (i) take advantage of the concepts presented in the heuristic
algorithm proposed and (ii) can be proved correct.

Keywords—surface triangulation, conforming triangulation, sur-
face sampling, Gabriel complex.

GLOSSARY

S: Parametric Surface. S : R2 → R3.

is an (infinite) 2-manifold without border.

F ,H: Faces. Connected subsets of a parametric

surface (F,H ⊂ S).

S−1(F ): Pre-image of F in parametric space

U − V .

TF : Triangulation of face F in Euclidean

space.

TUV : A triangulation in parametric space

U − V .

T = S(TUV ): Triangulation in R3 as a mapping,

via S, of the triangulation TUV

in U − V parametric space.

∂X Boundary of the set X .

L: Loop (L ⊆ ∂F ) is a 1-manifold without

border. It is a connected subset of the

boundary of F .
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t: A triangle of the triangulation T .

p, q: Points in Euclidean space. p, q ∈ R3.

u, v, w: Real parameters of a curve C(w) or a

surface S(u, v).
cl(A): Closure of the set A. cl(A) = A ∪ ∂A.

int(A): Interior of the set A. int(A) = A − ∂A.

BG(p, q, r): Gabriel Ball in R3. Spherical point set

whose center is contained in the plane pqr,

passing through the points p, q, r ∈ R3.

BG(p, q): Gabriel Ball in R3. Spherical point set

whose center is contained in the edge pq,

passing through the points p, q ∈ R3.

e: Edge of a triangle.

I. INTRODUCTION

Boundary Representations, B-Reps, are the computer for-

malization of the boundary of a body (M = ∂BODY ).

Shortly, M is a collection of SHELLs, which in turn are col-

lections of FACEs. For convenience, we will assume that the

SHELLs are 2-manifolds without border in R3. Each SHELL

is decomposed into FACEs, which must have boundary. It is

customary in geometric modeling to make a FACE F a con-

nected proper subset of one parametric surface S(u, v) ⊂ R3.

In this article we consider the b-reps as closed 2-manifolds

with continuity C2 inside each face and C0 among them.

The border of F is ∂F , which is the collection of LOOPs

Li embedded in S. Each LOOP Li is split into a sequence of

EDGEs Ei. The LOOP Li can be thought of as a 1-manifold

without border, with C∞ continuity except in a finite number

of points, where it is C0-continuous. In such locations Li is

split into EDGEs Ej , each one being a C∞ 1-manifold with

border. The problem of surface triangulation takes place in

one of such FACEs F . A PL approximation TF of face F is

required which: (a) is formed by triangles, (b) departs from

F in less than a distance ǫ, (c) has triangles as equilateral as

possible, (d) has as few triangles as possible, and, (e) each

edge ej of the triangle set has exactly two incident triangles.

Property (e) is a consequence of the fact that a B-Rep is

a 2-manifold without boundary. The triangulation T is also

a 2-manifold (of the C0 class) without boundary. Condition

(e) also holds for edges ej whose extremes lie on any loop

Li. This means, this edge ei receives a triangle from the

triangulation TF (face F ) and another from the triangulation

TH (face H).

An important aspect to control in triangulating a face F is

that having a triangulation TUV correctly covering S−1(F ) in

parametric space U−V is not a guarantee for the triangulation

T = S(TUV ) in R3 to be correct. Several problems may
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arise: (i) Fig. 1 illustrates that a completely internal triangle

[a, b, c] in parametric space U − V may not be mapped by

S to an internal triangle [S(a), S(b), S(c)] in R3. (ii) roughly

equilateral triangles t in U − V space may map to extremely

deformed triangles S(t) in R3 because of sharp warping

caused by S, (iii) neighboring triangles ti, tj , tk, .... in U −V

space mapped via S() may form a fish scale effect in R3

because of the same warping in S.

Fig. 1. Triangle abc is internal in parameter space. Triangle S(a)S(b)S(c)
is external to the surface S(r, θ) = (r cos(θ), r sin(θ), 0)

II. RELATED WORK

A. Fundamental definitions

As discussed in [1] a smooth 2-manifold with boundary

(face) F is a sub-manifold of a smooth 2-manifold S without

boundary. If the neighborhood of a point p ∈ F is homeo-

morphic to a 2 dimensional euclidean space, then we say that

the p is in the interior of F (int(F )). If the neighborhood

of a point p in F is homeomorphic to a half euclidean space

then we say that the point is in the boundary of F (∂F ). The

exterior of the submanifold F is composed by the points p ∈ S

and not in the closure of F (p /∈ cl(F )). It includes all the

points neither in the interior nor the boundary of F but still in

S. The boundary is a closed set and the interior and exterior

are open sets. In Fig. 4 the interior, boundary and exterior are

shown ( A−B denotes the difference between sets A and B).

Fig. 2. Pre-image F−1 = S−1(F ) of the face F by the parametric surface
S.

Fig. 2 displays the general situation in which a face F is

carried by a parametric surface S in R3. F is a connected

subset of S, with the boundary of F , ∂F = {L0, ..., Ln}
being the set of loops Li which limit F on S. If the function

S(u, v) is 1-1 (which can be guaranteed by a convenient

decomposition of the overall B-Rep) then there exists a pre-

image of F in parametric space U × V , that we call F−1.

Such a region can be calculated as F−1 = S−1(F ). To

do so, a point sample of ∂F formed by points pi ∈ R3

is tracked back to their pre-images (ui, vi) ∈ (U × V )
therefore rendering a connected region F−1 ⊂ (U ×V ), most

likely with holes, bounded by a set of planar Jordan curves

∂F−1 = {Γ0, ...,Γn}.

Fig. 3. Delaunay tetrahedron for points a, b, c, d ∈ R3, 2-simplex Gabriel
for a, b, c ∈ R3, 1-simplex Gabriel for a, b ∈ R3, 1-simplex Gabriel for
a, b ∈ R2.

Fig. 3 displays a short collection of Delaunay and Gabriel

complexes. A Delaunay tetrahedron in a set of points in 3D

is a tetrahedron (3-simplex) formed by four points whose

circumscribed sphere contains no other point of the set. Given

vertices vivjvk in the point set, they form a Gabriel triangle

(2-simplex) if the smallest sphere through them contains no

other point of the set. The triangle vivjvk is embedded in the

equatorial plane of such a sphere. A Gabriel edge vivj (1-

simplex) is one with vi and vj in the point set, such that the

sphere centered in (vi + vj)/2 with radius r = d(vi, vj)/2
contains no point of the sample other than vi and vj . Such a

sphere is the smallest one containing vi and vj . Each 1-simplex

Gabriel makes part of at least one 2-simplex Gabriel, and

each 2-simplex Gabriel makes part of at least one Delaunay

tetrahedra.

The present article applies the Gabriel variant (1- and 2-

simplices) to Delaunay connectivity to calculate a triangulation

for a point sample VF (sensitive to curvature and independent

of the parameterization) on the face F , carried by a paramet-

ric surface S. Section 2 reviews theoretical and algorithmic

knowledge related to triangulations and surface curvatures.

Section 3 discusses the algorithms devised and implemented

to triangulate Boundary Representations. Section 4 presents

five complex Boundary Representations with manufacturing

and organic surfaces and high genii triangulated by the imple-

mented algorithm. Section 5 concludes this article and sketches

directions for future work.

B. Curvature Measurement in Parametric Surfaces

A parametric surface is a function S : R2 → R3, which we

assume to be twice derivable in every point. The derivatives



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:8, 2008

537

are named in the following manner ([8], [16],):

Su =
∂S

∂u
; Sv =

∂S

∂v
; Suu =

∂2S

∂u2
; Svv =

∂2S

∂v2
; (1)

Suv = Svu =
∂2S

∂u∂v
; n =

Su × Sv

|Su × Sv|

with n being the unit vector normal to the surface S at

S(u, v).
The Gaussian and Mean curvatures are given by:

K =
LN − MM

EG − FF
;H =

LG − 2MF + NE

2(EG − FF )
; (2)

where the coefficients E, F , G, L, M , N are:

E = Su • Su; F = Su • Sv = Sv • Su; G = Sv • Sv; (3)

L = Suu • n; M = Suv • n; N = Svv • n;

Minimal, Maximal, Gaussian, Mean Curvatures from the

Weingarten Application

The Weingarten Application ([8]), W is an alternative way to

calculate the Gaussian and Mean curvatures.

W =

[

a11 a12

a21 a22

]

(4)

with a11, a12, a21, a22 being:

a11 =
MF − LG

EG − F 2
; a12 =

NF − MG

EG − F 2
; (5)

a21 =
LF − ME

EG − F 2
; a22 =

MF − NE

EG − F 2

The following facts allow to calculate the curvature measures

for S from the Weingarten Application: (i) The eigenvalues

k1 y k2 of W are called Principal Curvatures, with k1 being

the maximal curvature and k2 being the minimal curvature

(assume that |k1| ≥ |k2|). (ii) K = det(W ) is the Gaussian

Curvature, with K = k1 ∗ k2. (iii) 2H = trace(W ) is twice

the Mean Curvature, with H = k1+k2

2 . (iv) The maximal

and minimal curvatures are: k1 = H +
√

H2 − K and k2 =
H −

√
H2 − K.

W ∗ v = k ∗ v is the eigenpair equation for the W matrix.

The solutions for such an equation are the eigenpairs (k1, v1)
and (k2, v2). Therefore, W ∗v1 = k1∗v1 and W ∗v2 = k2∗v2.

The directions of principal curvature in U × V space are v1

and v2 (v1 = (w11, w12) and v2 = (w21, w22)). The directions

of maximal and minimal curvatures in R3 are u1 = w11∗Su+
w12 ∗ Sv and u2 = w21 ∗ Su + w22 ∗ Sv , respectively.

C. Previous Work

In [10] the surface triangulation problem is addressed. The

paper is the first to propose a surface triangulation with a 2D-

Delaunay like method, where the circle empty of points of the

sample in 2D is replaced by a sphere in 3D, defined by the

3 points and centered in the surface. The main advantage of

choosing that sphere (of the many given 3 points) is that the

algorithm can create more sampled points and triangles given

any metric like curvature. In the paper expensive operations

like surface-curve intersection are used. The triangulation is

a remeshing, because of this if the triangulation created in

parametric space or with another method is incorrect the

algorithm should also give an incorrect output or fail. In [12]

the restricted Delaunay triangulation of general topological

spaces is defined. The restricted Delaunay triangulation in

the case of a 2-manifold is the dual of the Voronoi diagram

intersected with the surface, a triangle is created in each

intersection of 3 intersected with the surface Voronoi cells.

Another contribution of the paper is to show that Chew’s

algorithm is a restricted Delaunay triangulation. [3] and [4]

treat the reconstruction of curves in 2D and surfaces in 3D

respectively. Good properties about the sampling are given,

showing how the curvature and the local feature size (the

smallest distance to the medial axis) have a lot to do with

the possibility of reconstructing surfaces without having any

other information but sampled points. The paper introduces

the ǫ-sample (a sample that depends in the local feature size),

a very important concept in the triangulation of surfaces that

gives some properties to allow the research of good topology

and geometry. In [15] the intrinsic Delaunay triangulation of

a Riemannian manifold is shown to be well defined in terms

of geodesics. A smooth surface embedded in R3 can define

a Riemannian manifold, and these have the property that if

all the calculations and definitions are done in a small subset

of the manifold (as they can be done with a good sampling

condition) the Delaunay triangulation and the Voronoi diagram

are defined exactly as with the euclidean metric and are dual.

In [2] the Gabriel complex is defined for Rn. For a set of

points in R3 the Gabriel complex is composed of triangles

whose smallest defined circumsphere is free of points in the

set. The advantage with [10] is that if it uses it as a 2D-

Delaunay like triangulation, it does not need information about

the surface. The Umbrella filter algorithm described produces

topologically correct triangulations.

In [5] a study of the complexity of the Delaunay tri-

angulations in surfaces is made, giving lower bounds for

well distributed points in surfaces. In [9] An algorithm to

sample and triangulate a surface that has correct topology

and geometry is presented, but it uses computer expensive

and not common operations. In [6] the concept of loose ǫ-

sample is developed, it can be achieved using operations that

are accessible but computer expensive. In [7] analogous for

ǫ-samples and loose ǫ-samples are presented for Lipschitz

surfaces. Lipschitz surfaces are more general than smooth

surfaces.

In [18] an algorithm to triangulate b-reps is presented. In

the algorithm all the triangulation occurs in parametric space

and is mapped to R3. In [17] an algorithm to triangulate

surfaces according to curvature and with boundary isosampled

is presented. From unorganized points the problem remains

unsolved. [1] is focused in the notion of envelope that is the

covering of a 3-manifold created with spheres of λ size and

centered in the points of the surface. From the envelope a sur-

face with boundaries can be reconstructed, but this approach

does not conserve the original points sampled in the boundary,

and parameters are needed. In practice the envelope approach

does not seem to produce topologically correct results. We

dispose of information about the surface and boundaries and

use another approach to the problem.
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Fig. 4. Interior, boundary and exterior of a submanifold F with respect to
a manifold S.

Fig. 5. Gabriel 1- and 2-simplices on face F

III. METHODOLOGY

The implemented algorithm to triangulate a face F mounted

onto a parametric surface S (Fig. 4) has the following layout,

whose details will be discussed later: (1) Calculate the pre-

image F−1 of the face F through the function S (Fig. 2). (2)

Initialize the vertex set VT with a curvature-sensitive sample of

the loops L0, ..., Ln of the face boundary ∂F . (3) Sprinkle the

face F with vertices vi achieving a vertex density proportional

to the local curvature of F , Kmax, inserting those vertices in

set VT . (4) Calculate a Gabriel connectivity T for the vertex

set VT .

A. Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive

sample of an Edge E. Unlike previous approaches ([18]) such

a sample is not an iso-distance one. Instead, the sampling

interval at point p on the underlying curve C is sensitive to

the largest of the maximal curvatures of S1 and S2 in such

a point p (line 6). Notice that the curvature of the curve C

at p needs not to be considered in addition to the surface

curvatures because it will be always less than or equal to the

surface maximal curvatures (Kmax(S1, p),Kmax(S2, p)).
Fig. 6 displays the geometrical idea behind lines 7 and 8 of

the algorithm: the radius of curvature r is the inverse of the

curvature k. A circle tangent to a curve with such a curvature

may be approximated by a regular polygon of Nsides sides.

Algorithm 1 Sample of the Edge E between Faces F1 and

F2

S1(u, v), S2(u, v): Underlying surfaces for Faces F1 and F2.

C(λ): Underlying Curve for E.

Λ0,Λf : Parameters of the extremes of E in curve C.

VE : Output. Sequence of point sample of E.

Kmax(S, p)): Maximal curvature of Surface S at point p.

Nsides: Number of sides of a regular polygon.

1: VE = {}
2: λ = Λ0

3: while λ ≤ Λf do

4: p = C(λ)
5: VE = VE ∪ {p}
6: k = max(Kmax(S1, p),Kmax(S2, p))
7: r = 1/k

8: δ = polygon determined arc(r,Nsides)
9: ∆λ = dist to param(δ)

10: λ = λ + ∆λ

11: end while

Fig. 6. Locally planar curve and local curvature. Approximation by regular
polygon of N sides.

The arc δ determined by such a polygon is considered as a

good euclidean sampling distance for the curve C at p (line

8). Such an euclidean distance must be transformed to a local

parameter distance δλ at C(λ) (line 9).

Fig. 7. Goal Point Population on face F

B. Face Sampling. Vertex Sprinkle on Face F

Algorithm 2 constructs the vertex set VF of the triangu-

lation sought for face F . The initialization of VF (line 1)

is done with the vertices sampled on the boundary loops of

F , ∂F = {L0, ..., Ln}, as per algorithm 1. Such vertices

correctly sample ∂F . However, the interior int(F ) still must
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Fig. 8. Curvature-sensitive Sprinkle Airbrush F

Algorithm 2 Sprinkle triangulation vertices on Face F

F : Input. Face to triangulate.

F−1: pre-image of Face F in space U × V

S(u, v): Underlying surface for Face F .

∂F = {L0, ..., Ln}: Loops Bounding the Face F .

Nf : Number of tolerated failures.

VF : Output. Vertex set sampled on Face F .

1: VF = sampling of boundary ∂F

2: fails = 0
3: while fails ≤ Nf do

4: generate parameter pair (u, v) ∈ F−1

5: k = Kmax(S(u, v))
6: r = 1/k

7: p = S(u, v)
8: R = polygon side(r,Nsides)
9: if ∄q ∈ VF such that q ∈ B(p,R) then

10: if ∃vivj , a segment of the boundary, such that p ∈
BG(vi, vj) then

11: fail = fail + 1
12: else

13: VF = VF ∪ {p}
14: fail = 0
15: end if

16: else

17: fail = fail + 1
18: end if

19: end while

be sampled. To do so, trial vertices are generated inside the

pre-image F−1 in U × V space (line 4) and their image via

S is calculated (line 7). Such a trial vertex p may be rejected

if (a) it is too close to other vertices already accepted in VF

(line 11) or (b) if it is contained in the smallest ball defined

by a pair of vertices consecutive on a loop Lj . The closeness

criteria is dictated by the maximal curvature Kmax(S(u, v))
at p = S(u, v) (line 5). In the case (a) each already accepted

vertex in Vf is tested for inclusion inside a ball B(p,R)
centered at p with radius R = polygon side(r,Nsides) (line

9). In the case (b) each segment vivj in the sample of the

border is tested as a Gabriel segment (1-simplex) with respect

to the candidate p. If every segment of the border is Gabriel

with respect to p, we assume that p is not too close to the

border (line 10). A segment is said to be sampled in the

boundary, if its two end vertices are consecutive in a loop

Lj ∈ ∂F . If tests (a) and (b) are passed, p is accepted in VF

(line 13). Fig. 6 depicts that the value for R is computed as

the cord of the Nsides-regular polygon inscribed in the circle

with radius 1/k. Function polygon side(r,Nsides) equals to

2r sin(π/Nsides). Fig. 5 displays the two tests mentioned in

items (a) and (b) above.

C. Face Triangulation. Gabriel Connectivity on Vertex Set VT .

Algorithm 3 Triangle Connectivity in the set VF

VF : Input. Vertex set sampled on Face F .

Queue: List of triangle edges to expand.

∂F = {L0, ..., Ln}: Loops Bounding the Face F .

T : Output. Triangulation.

1: seed = triangle in interior(F )
2: {(v0, v1), (v1, v2), (v2, v0)} = edges of triang(seed)
3: Queue = {(v0, v1), (v1, v2), (v2, v0)}
4: T = { seed}
5: while (Queue 6= Φ) do

6: edge to expand = extract(Queue)
7: if edge to expand is not part of the sample of the

boundary then

8: (v0, v1) = vertices(edge to expand)
9: vnew = vert for Gabriel 2 Simplex(VF , v0, v1)

10: T = T ∪ {(v0, v1, vnew)}
11: if ((v0, vnew) ∈ Queue) ∧ ((vnew, v1) ∈ Queue)

then

12: Queue = Queue − {(v0, vnew), (vnew, v1)}
13: else if ((v0, vnew) ∈ Queue) then

14: Queue = Queue − {(v0, vnew)}
15: Queue = Queue ∪ {(v1, vnew)}
16: else if ((vnew, v1) ∈ Queue) then

17: Queue = Queue − {(vnew, v1)}
18: Queue = Queue ∪ {(vnew, v0)}
19: else

20: Queue = Queue ∪ {(v1, vnew), (vnew, v0)}
21: end if

22: end if

23: end while

Algorithm 3 builds the connectivity inside the vertex set VF .

The algorithm seeks to complete edges (v0, v1) already known

to belong to the triangulation T (line 6) with an additional

vertex vnew to build a Gabriel Triangle (v0, v1, vnew) (line 9).

Any internal Gabriel triangle is the first formed triangle

(lines 1,4). It is also a seed to initialize the Queue of edges

potentially able to span Gabriel triangles.

If the edge extracted from the Queue is part of the

boundary, it is not expanded any more (line 7). All the

edges part of the boundary will be found because they are

1-simplex Gabriel and make part of a 2-simplex Gabriel. If

a Gabriel triangle (v0, v1, vnew) can be built, it is added to

the triangulation T (line 10). If a Gabriel triangle can be

built using only an existing edge (v0, v1) and a new vertex

vnew, the general situation is that the new edges (v0, vnew) and

(vnew, v1) should be queued to be eventually expanded (line

20). However, this is not always the case, since such a triangle
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may use 1 or 2 additional edges already in the queue. In the

first case, it is filling a corner (lines 13-18). In the second case,

it is filling a triangular hole (lines 11,12). In such special cases

additional edges (1 or 2 besides the expanded one) should be

taken away from the queue.

IV. RESULTS

Several Boundary Representations B-Reps were used to test

the implemented algorithm, proposed in this article. Such B-

reps have genii 3 or superior, and present faces F whose

underlying surfaces S are parametric ones of the NURBS or

Spline types. An Nf = 1000 maximal number of failed trials

was used to stop the sprinkle of vertices on F (generation

of the set VF ). The number of sides for the approximating

polygon was Nsides = 30. Figs. 9, 10 and 11 show complex B-

Reps. Other examples of B-reps triangulated include a model

of a pre-columbian fish in Fig. 13, a support of an axle in Fig.

14, and a stub axle in Fig. 15.

The attention of the reader is called to the fact that the

connectivity construction is a process completely independent

of the vertex generation one. Since the vertex generation

algorithm (Sprinkle) is the most critical one, the execution

time was recorded for such an aspect.

For the models Pump and Hands, Figs. 12(a) and 12(b)

show execution times, corresponding to the vertex generation

process. Fig. 12(c) shows the comparison of vertex generation

times for such runs.

Fig. 9. Pump carter [13]. Colormap according to quality of triangles.

V. CONCLUSIONS AND FUTURE WORK

The proposed algorithm for generating triangulation vertex

sets and to calculate the connectivity among them proved

to function correctly, even for very extreme geometries and

topologies. Several aspects of the algorithm must be ad-

dressed: the continuity of triangle sizes at the Face Edges,

the possibility of undertaking re-meshing of already existing

triangulations and its related endeavor: the level of detail,

applied to Finite Element Analysis. Additional research is

needed in algorithms that (i) take advantage of the concepts

presented in the heuristic algorithm proposed and (ii) can be

proved correct.

Fig. 10. 2 hands with 3 genus, scanned and reconstructed using RainDrop
Geomagic. Colormap according to the size of the triangles

Fig. 11. Other view of the 2 hands with 3 genus. Colormap according to
the quality of the triangles.
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