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A Proof for Bisection Width of Grids

Kemal Efe and Gui-Liang Feng

Abstract—The optimal bisection width of r-dimensional N×

· · · × N grid is known to be Nr−1 when N is even, but when
N is odd, only approximate values are available. This paper
shows that the exact bisection width of grid is N

r
−1

N−1
when N

is odd.

Keywords—Grids, Parallel Architectures, Graph Bisection,
VLSI Layouts.

I. INTRODUCTION

OPTIMAL bisections are needed for optimal VLSI lay-
outs [3]. Let n(A) denote the number of edges which

must be cut to remove A vertices from the N × · · · × N
grid when N is odd. We show that

n(A) ≥ 2min{A, N r − A}
N − 1

Then, several open problems posed by Leighton [?] (page
269, problems 1.277, 1.279, and 1.281) follow as special
cases. For example, grid bisection (problem 1.277) is a
special case where A = Nr−1

2 , and the lower bound is

obtained as Nr−1
N−1 . We show that this value also serves as

an upper bound by showing a cut which satisfies this lower
bound. Exact values for the other two open problems are
obtained easily from this result.

II. DEFINITIONS

The following is the central problem addressed in this
paper: Given the r-dimensional N ×· · ·×N grid, find two
connected subgraphs G and H such that (1) G contains
Nr−1

2 vertices and H contains Nr+1
2 vertices; (2) If we

delete all edges, one vertex of which is in G and the other
vertex is in H , then there is no path from G to H ; (3)
the number of deleted edges is minimum.

It is useful to think that the nodes of G are colored in
black and the nodes of H are colored in white. A vertex
X in the r-dimensional grid is denoted by a vector X =
xr · · ·x1 where 0 ≤ xi ≤ N − 1, for i = 1 · · · r, and N
is odd. Let d(X, Y ) =

∑r
i=1 |xi − yi| be the Hamming

distance between X and Y . If d(X, Y ) = 1 then X and Y
are said to be adjacent. It is easily seen that if d(X, Y ) = 1
then there is exactly one i such that |xi−yi| = 1, and that
for j �= i, xj = yj. If (X, Y ) is such an edge, and yi = xi+1,
then we say that the edge (X, Y ) is a positive edge of X
in dimention i and a negative edge of Y in dimension i.
We will be interested in all positive (or negative) edges
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Fig. 1. The initial distribution of black nodes is shown in (a).
All other intersection points contain white nodes (not shown). The
situation after compressing in the horizontal dimension is shown in
(b). The canonical form is shown in (c).

which connect a black vertex to a white vertex. Then we
use “j‘s positive cut edges” to refer to all edges of the
type (X, Y ) in G where X is a black vertex, Y is a white
vertex, yj = xj + 1, and for all i �= j, xi = yi. Similarly,
we use “j‘s negative cut edges” to refer to all edges of the
type (X, Y ) where again X is a black vertex, Y is a white
vertex, yj = xj − 1, and for all i �= j xi = yi.

Given an arbitrary distribution of black and white
vertices in the grid which satisfies the required numbers,
we divide the black vertices into disjoint sets, one set
for each hyperplane in each dimension. For example S

(j)
k

is a set where the subscript k = 0, · · · , N − 1 denotes
the hyperplane of interest, and j denotes the dimension
orthogonal to that hyperplane. The set S

(j)
k contains all

black vertices of the form xr · · ·xj+1kxj−1 · · ·x1. For each
of these sets, we define a “projective image” as follows:
We say that the set P

(j)
k is a “projective image” of S

(j)
k ,

where P
(j)
k is obtained from S

(j)
k by changing the jth

symbol into a don’t care symbol “*” for every vertex
in it. For example, if xr · · ·xj+1kxj−1 · · ·x1 ∈ S

(j)
k , then

xr · · ·xj+1 ∗ xj−1 · · ·x1 ∈ P
(j)
k . Although S

(j)
k and S

(j)
k′

have no common elements for k �= k′, P
(j)
k and P

(j)
k′ may

have some common elements. For example, xr · · ·xj+1 ∗
xj−1 · · ·x1 is a projective image of xr · · ·xj+1kxj−1 · · ·x1,
as well as of xr · · ·xj+1(k + 1)xj−1 · · ·x1. These sets are
shown below for the example in Figure 1.(a).

The S
(j)
k sets for Figure 1.(a) are:

S
(1)
0 = {00, 30, 50}

S
(1)
1 = {01, 11, 21, 31, 41, 51, 81}

.

.

S
(1)
7 = {07, 37}

S
(1)
8 = {28, 38, 48}

S
(2)
0 = {00, 01, 05, 06, 07}

.
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.

S
(2)
8 = {81, 82, 83, 84, 85}

The P
(j)
k sets for (a) are:

P
(1)
0 = {0∗, 3∗, 5∗}

P
(1)
1 = {0∗, 1∗, 2∗, 3∗, 4∗, 5∗, 8∗}

.

.

P
(1)
7 = {0∗, 3∗}

P
(1)
8 = {2∗, 3∗, 4∗}

P
(2)
0 = {∗0, ∗1, ∗5, ∗6, ∗7}

.

.

P
(2)
8 = {∗1, ∗2, ∗3, ∗4, ∗5}

III. CANONICAL BISECTIONS

In this section we introduce the concept of canonical
bisections. First, we need to establish some preliminary
facts. Let

P
(j)
+ = {

N−2⋃
k=0

P
(j)
k } − P

(j)
N−1 (1)

and

P
(j)
− = {

N−1⋃
k=1

P
(j)
k } − P

(j)
0 . (2)

Lemma 1: |P (j)
+ | ≤ the number of all the j‘s positive

cut edges, and |P (j)
− | ≤ the number of all the j‘s negative

cut edges.
Proof: Trivially follows from definition of P

(j)
k .

Since the total number of cut edges C is equal to
∑r

j=1

( the number of j‘s positive edges + the number of j‘s
negative edges ), from Lemma 1, we have the following.

Lemma 2: C ≥ ∑r
j=1(|P (j)

+ | + |P (j)
− |).

Now we define “compresion” as follows.
Definition 1: Let xr · · ·xj+1kλxj−1 · · ·x1 ∈ G for λ =

1, 2, · · · , μ, where 0 ≤ k1 < k2 < · · · < kμ ≤ N − 1. Let
G′ be the set of all the xr · · ·xj+1�xj−1 · · ·x1 ∈ G for
� = 0, 1, · · · , μ − 1. The transformation from G to G′ is
called a compression in dimension j.

Intuitively, a compression in dimension j sorts the
vertices along the straight lines of dimension j so that the
black vertices move to smaller index values of dimension j
and the white vertices move to the larger index values of
dimension j. This process yields the G′ subgraph from G.
This is illustrated in Figure 1.(b). It can be easily checked
from this figure that |G′| = |G1|. Also, the number of cut
edges induced by G′ is not more than the number of cut
edges induced by G. For the general case we have the
following lemma.

Lemma 3: Let G′ be the new subgraph obtained from
G by compression in some dimension j. Then the number

A typical situation before compression of j−th dimension.

Positive direction for dimension−j.

Positive direction
for dimension (j−1)

After compression in j−th dimension.

Fig. 2. The effect of compression in jth dimension on the number
of cut edges in the (j − 1)st dimension.

of cut edges induced by G ≥ number of cut edges induced
by G′.

Proof: It is easily seen that |G| = |G′|, because a
compression does not change the number of vertices. First,
consider the number of cut edges in dimension j. Let p
be the number of black vertices on a dimension-j line. If
p < N then there is at least one cut edge on this line before
compression, whereas after compression there is exactly
one cut edge. Applying this reasoning to every dimension-
j line, we conclude that compression along dimension j
doesn’t increase the number of cut edges in dimension j.

For other dimensions, we just consider the number of
cut edges in dimension (j − 1); other dimensions can be
considered similarly. Let n1 denote the the number of
positive cut edges in dimension (j − 1) induced by G. Let
n2 denote the number of edges not cut in dimension (j−1)
induced by G. Let n3 denote the number of negative cut
edges in dimension (j − 1) induced by G. Thus, there are
a total of n1 + n3 cut edges in dimension (j − 1).

After a compression in dimension j (see Figure 2), we
still have the original n2 edges not cut in dimension (j−1),
plus possibly more uncut edges. When n1 ≥ n3, there are
n1 −n3 induced (j − 1)‘s positive cut edges but there are
no (j − 1)‘s negative cut edges; thus the number of uncut
edges increases to n2 + n3. Conversely, if n1 ≤ n3, there
are n3 − n1 negative cut edges but no positive cut edges;
and the number of uncut edges increases to n2 +n1. Thus
we observe that the number of cut edges can only decrease
under compression.

Let G∗ be the graph which is obtained from G by a
series of compressions in all dimensions r, ..., 2, 1. We call
G∗ the canonical bisection form of G. From the above
lemmas, we have thus proven the following theorem.

Theorem 1: Suppose G∗ is a canonical bisection form
induced by G, then the number of cut edges induced by
G∗ is equal to or less than that of G.

As an example, the canonical bisection form G∗ corre-
sponding to G in Figure 1.(a) is shown in Figure 1.(c).
Due to Theorem 1, to find the minimum bisection width
of grids, we will only consider canonical bisection forms
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in this paper.
Canonical bisections satisfy a number of useful proper-

ties: Let G∗ be a canonical bisection in r-dimensional grid
with A = |G|, and let Ai = |S(j)

i | for some dimension j.
Then,

Property 1: For all j = 1, 2, · · · , r, if xr · · ·xj · · ·x1 ∈
G∗ and xj > 0 then xr · · · (xj − 1) · · ·x1 ∈ G∗. That is,
for G∗,

P
(j)
0 ⊇ P

(j)
1 ⊇ · · · ⊇ P

(j)
N−2 ⊇ P

(j)
N−1, (3)

It follows from this property that

A0 ≥ A1 ≥ · · · ≥ AN−2 ≥ AN−1. (4)

and each S
(j)
k is in the canonical bisection form in its

r-dimensional grid. Moreover,

A =

N−1∑
i=0

Ai.

for any dimension j.
Before we present the second property, we first recall

equations (1) and (2), and note that for a canonical

bisection form
⋃N−2

k=0 P
(j)
k = P

(j)
0 , and,

⋃N−1
k=1 P

(j)
k = P

(j)
1 .

Then, (1) and (2) become

P
(j)
+ = P

(j)
0 − P

(j)
N−1

and

P
(j)
− = P

(j)
1 − P

(j)
0 .

Due to (3) we have P
(j)
− = φ. Therefore |P (j)

+ | represents

the total number of cut edges in dimension j, and |P (j)
+ | =

A0 − AN−1.
From these observations we have the following property:
Property 2: Let n(A) be the number of cut edges

induced by G∗. Then:

n(A) =

N−1∑
i=0

n(Ai) + A0 − AN−1. (5)

Here n(Ai) is the number of cut edges for the ith
hyperplane in dimensions other than j. The difference
A0 − AN−1 is the number of cut edges in dimension j.

IV. LOWER BOUND

We have the following theorem as the main result of
this paper:

Theorem 2: n(A) ≥ 2min{A,Nr−A}
N−1 for odd N .

Proof: Without loss of the generality, let us consider the
case of A ≤ Nr−1

2 . Then, claim of the theorem simplifies
to

n(A) ≥ 2A

N − 1
. (6)

It can be easily checked that the theorem is true for

r = 1, i.e. 1 ≥ 2 N−1

2

N−1 . Assuming that the theorem is true
for r dimensions, we prove that it is also true for (r + 1)
dimensions.

From the induction hypothesis, we have

n(Ai) ≥ 2min{Ai, N
r − Ai}

N − 1
. (7)

Let there be a p such that 0 ≤ p and

A0 ≥ A1 ≥ · · · ≥ Ap ≥ Nr+1
2 ,

and,
N r − 1

2
≥ Ap+1 ≥ · · · ≥ AN−1. (8)

Using (7) in (5) we have

n(A) ≥ 2(
∑p

i=0(N
r − Ai)) + 2

∑N−1
i=p+1 Ai

N − 1
+ A0 − AN−1.

(9)
To prove the theorem, we need to show that the right

hand side of (9) is greater than or equal to the right hand
side of (6). The right hand side of (6) can be written as

2A

N − 1
=

2
∑p

i=0 Ai + 2
∑N−1

i=p+1 Ai

N − 1

thus we need to show that

2(
∑

p

i=0
(Nr−Ai))+2

∑
N−1

i=p+1
Ai

N−1 + A0 − AN−1

≥ 2
∑

p

i=0
Ai+2

∑
N−1

i=p+1
Ai

N−1 .

By simplification this is equivalent to

2(p + 1)N r + (N − 1)A0 − (N − 1)AN−1 ≥ 4

p∑
i=0

Ai, (10)

where∑p
i=0 Ai +

∑N−1
k=p+1 Ak = A ≤ Nr+1−1

2 , (10.1)

A0 ≥ · · · ≥ Ap ≥ Nr+1
2 > Nr−1

2 ≥ Ap+1 ≥ · · · ≥ AN−1.
(10.2)

Then, we need to prove that (10) holds under (10.1) and
(10.2). In fact, it suffices to consider a special canonical
form where (see Figure 3):

A0 = · · · = Ap > Ap+1 = · · · = AN−2 ≥ AN−1. (10.3)

That is, we replace condition (10.2) by condition
(10.3). To see why, let the right hand side of (10) be
C = 4

∑p
i=0 Ai. Then, for a given p and its associated

C, we can construct a new canonical bisection from
with the same p, such that A∗

i = C
p+1 for i = 0, · · · , p,

and A∗
N−1 = AN−1. In this new canonical form (10)

corresponds to

2(p + 1)N r + (N − 1)A∗
0 − (N − 1)A∗

N−1

≥ 4
∑p

i=0 A∗
i = 4(p + 1)A∗

0,

which represents the case shown in Figure 3 (actually

in this case we will also have A∗
� =

∑
N−2

k=p+1
Ak

N−p−2 for
� = (p + 1), · · · , (N − 2), however A∗

� values are irrelevant
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Fig. 3. Canonical special form.

since they don’t appear in (10)). If we prove that (10) is
correct under (10.3), then the correctness of (10) trivially
follows under (10.2) since A0 ≥ A∗

0, and AN−1 = A∗
N−1.

Thus, we rewrite (10) as:

2(p+1)N r+(N−1)A0−(N−1)AN−1 ≥ 4(p+1)A0, (11)

where
(p + 1)A0 + (N − 2 − p)AN−2 + AN−1 = A ≤ Nr+1−1

2 ,
(11.1)

A0 ≥ Nr+1
2 > Nr−1

2 ≥ AN−2 ≥ AN−1. (11.2)

For cases 1 and 2 below, we assume that A = Nr+1−1
2 .

Other values of A will be considered in Case 3.
Case 1: AN−1 = 0.

In this case (11) is reduced to

2(p + 1)N r + (N − 1)A0 ≥ 4(p + 1)A0, (12)

For this case we will consider two subcases:
Subcase 1.a:

(p + 1)A0 ≤ N r(N − 1)

2
. (13)

In this subcase, since for all α, β ≥ 0, α + β ≥ 2
√

αβ,
using α = 2(p+1)N r and β = (N −1)A0, in the left hand
side of (12) we have

2(p + 1)N r + (N − 1)A0 ≥ 2
√

2(p + 1)N r(N − 1)A0.

Rewriting the right hand side of this as

4

√
(p + 1)A0

N r(N − 1)

2

and using (13)

4
√

(p + 1)A0
Nr(N−1)

2 ≥ 4
√

(p + 1)A0(p + 1)A0

= 4(p + 1)A0.

Thus, (12) is true.

Subcase 1.b:

N r(N − 1)

2
< (p + 1)A0 ≤ N r+1 − 1

2
(14)

In this subcase, since Nr+1
2 ≤ A0 ≤ N r, (14) can be

rewritten as

N r(N − 1)

2N r
≤ p + 1 ≤ N r+1 − 1

N r + 1
,

thus N−1
2 ≤ p + 1.

We analyze this case under three subcases.
Subcase 1.b.i: When A0 = N r, since N+1

2 N r > Nr+1−1
2

it follows that (p + 1) < N+1
2 , but since N−1

2 ≤ p + 1, it
must be that (p +1) = N−1

2 , or (N − 1) = 2(p +1). Using
this in the left hand side of (12) we obtain

2(p+1)N r+(N−1)A0 = 2(p+1)A0+2(p+1)A0 = 4(p+1)A0.

Therefore (12) is true.
Subcase 1.b.ii: When A0 = Nr+1

2 , since from (14) we

assumed (p + 1)A0 > Nr(N−1)
2 , then

(p + 1) >
N r(N − 1)

2
.

2

N r + 1
= (N − 1) − N − 1

N r + 1
.

Thus p + 1 > N − 2. On the other hand, since p + 1
cannot be larger than N − 1, we have p + 1 = N − 1.
Using these in the left hand side of (12), we have

2(N − 1)N r + (N − 1).Nr+1
2

= (N − 1)
(

5
2N r + 1

2

)
> 4(N − 1)

(
Nr+1

2

)
= 4(p + 1)A0.

Thus, (12) is again true.
Subcase 1.b.iii: It now remains to show that (12) is true
when Nr+1

2 < A0 < N r. Define x = A0, y = p + 1,
a = 2N r, and b = N − 1. Using these in (12), we obtain

ay + bx ≥ 4xy.

We already showed in Cases 1.b.i and 1.b.ii that this is
true when x = N r and x = Nr+1

2 . Note also that xy =
(p +1)A0, and this can be written as xy = c, with c = xy
being a parameter between

N r(N − 1)

2
≤ xy ≤ N r+1 − 1

2
.

The shaded region in Figure 5 is the area of interest for
Case 1.b.iii; the two bounding points of x = N r and x =
Nr+1

2 were already shown above. The question faced here
is that, between these points, for all other values of c = xy
is it also true.

Note that (12) can be written as

z(x, y) = ay + bx − 4xy ≥ 0 (15)

and we need to show that this is true. This function is in
the form shown in Figure 4. To prove that (15) is true, it
suffices to show that z(x, y) curve is above the xy plane
in the shaded region of Figure 5.

By using y = c/x in (15), we obtain

z(x,
c

x
) =

ac

x
+ bx − 4c.
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x

z

y

Fig. 4. Plot of equation (15)

Nr(N−1)__________
2

c=xy=

N__________
r+1

2
c=xy= − 1

NrNr+ 1________
2

x

y=c/x

c = c*

Fig. 5. Shaded region represents the area of interest in Case 1.b.iii.

Choose any fixed value c = c∗ in the range

N r(N − 1)

2
≤ c∗ ≤ N r+1 − 1

2
.

Then we have

z∗(x,
c∗

x
) =

ac

x
+ bx − 4c∗.

This has derivative

δz∗

δx
= −ac

x2
+ b

which is equal to zero when x =
√

ac∗

b
=

√
2Nrc∗

N−1 , and

the function z∗(x, c∗

x
) is minimum at this value of x (for

x > 0). Since we assumed above that c∗ ≥ Nr(N−1)
2 , using

this, and after simplification, we obtain x ≥ N r. This
implies that the minimum value of (15) is on the right of
the x = N r point in Figure 5. Since Case 1.b.i already
proved that (12) is true for x = A0 = N r, implying that
(15) is true when x = A0 = N r, then it follows that (12)
is true when Nr+1

2 < A0 < N r.
Combining these three subcases, in Case 1.b, theorem

is true.
Combining the cases 1.a and 1.b, in Case 1, theorem is

true.

Case 2: AN−1 �= 0.
By the same reason which allowed us to write (10.3) for

(10.2), we can assume here that AN−2 = AN−1 in (11)
without loss of generality. In this case, (11) becomes

2(p + 1)N r ≥ (4p + 5 − N)A0 + (N − 1)AN−1, (16)

where
(p + 1)A0 + (N − 1 − p)AN−1 = Nr+1−1

2 , (16.1)

A0 ≥ Nr+1
2 > Nr−1

2 ≥ AN−1. (16.2)

Then we can write (16) as

f(A0, p + 1, AN−1)

= 2(p + 1)N r − (4p + 5 − N)A0 − (N − 1)AN−1 ≥ 0,

Subcase 2.a: A0 = N r.
In this subcase, since (p + 1)A0 < Nr+1−1

2 , we have
p + 1 ≤ N−1

2 .

Subcase 2.a.i: If p + 1 = N−1
2 , from equation (16.1) we

obtain AN−1 = Nr−1
N+1 , and from (8) we have

n(A) ≥ N + 1

2
n(AN−1) + N r − N r − 1

N + 1
. (17)

It suffices to show that the right hand side of (17) is

greater than Nr+1−1
N−1 , directly proving Theorem 2 when

A = Nr+1−1
2 . Note that

N + 1

2
n(AN−1) + N r − N r − 1

N + 1
≥ N r+1 − 1

N − 1

simplifies to

n(AN−1) ≥ 4(N r − 1)

N2 − 1
.

N

N + 1
,

or, by using AN−1 = Nr−1
N+1 , we obtain

n(AN−1) ≥ 4AN−1

N − 1
.

N

N + 1
.

Let a = r
√

r!AN−1. Then, AN−1 = ar

r! and by induction

on r with AN−1 = Nr−1
N+1 , a lower bound for n(AN−1) is

obtained as n(AN−1) ≥ ar−1

(r−1)! . Using this, it remains to
show that

ar−1

(r − 1)!
≥ 4AN−1

N − 1
.

N

N + 1
.

Multiplying both sides of this by a/r,after simplification
we obtain

r ≥ 4Na

N2 − 1
. (18)

By using a = r
√

r!AN−1 in (18), with AN−1 ≤ Nr−1
N+1

the reader can check that it is also true for all values of
r, N > 0. Thus, in subcase 2.a.i, the theorem is true.
Subcase 2.a.ii: p + 1 = 1.

Note that p + 1 > 0, since p + 1 = 0 implies that A0 <
N r, contradicting with the basic assumption of subcase
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2.a. If p + 1 = 1, then from (15.1) we obtain AN−1 =
Nr(N−2)−1

2(N−1) . Using this in (15), we have

2N r ≥ (5 − N)N r + (N − 1)
N r(N − 2) − 1

2(N − 1)

We can ignore the (-1) in the numerator of the second term
on the right hand side as it will strengthen the claim of
this inequality. After simplification, we obtain N ≥ N+4

2 ,
which is true when N > 3.
Subcase 2.a.iii: 1 < p + 1 < N−1

2 .
Using A0 = N r in (16), we obtain

AN−1 ≤ N r

N − 1
((N − 1) − 2(p + 1)). (19)

Note that this is in the form y ≤ b−ax, with y = AN−1,
and x = p + 1, with a and b constants.

The proofs of cases 2.a.i and 2.a.ii implies that (19) is
true when p+1 = N−1

2 and when p+1 = 1. Between these
two values AN−1 decreases linearly as (p + 1) increases.
Therefore, in case 2.a.iii theorem is true.

Combining the cases 2.a.i, 2.a.ii, and 2.a.iii, in Case 2.a
theorem is true.
Case 2.b: A0 = Nr+1

2 .
In this case, as before, we have N−1

2 ≤ (p+1) ≤ N − 1.

If (p + 1) = N−1
2 we have AN−1 = Nr−1

2 . Using these
in (17) we obtain

(N−1)N r−(2(N−1)−N+1)
N r + 1

2
−(N−1)

N r − 1

2
≥ 0

where the left hand side evaluates to 0 and (17) is true.

If p+1 = N −1, then again since A = Nr+1−1
2 , we have

AN−1 = Nr−N
2 , and by using these, (17) is trivially true.

Combining the cases 1 and 2, the theorem is true when
A = Nr+1−1

2 , corresponding to the dark shaded area in
Figure 5.

Case 3: A < Nr+1−1
2 .

To consider this case, first note that (11) is equivalent
to

N r ≥ 2A0 +
N − 1

2(p + 1)
(AN−1 − A0). (20)

Here the left hand side is constant (i.e. independent of
A), and is shown above to be larger than the right hand

side when A = Nr+1−1
2 . We now show that it is also larger

than the right hand side when Nr+1
2 < A < Nr+1−1

2 . The

case for A ≤ Nr+1
2 is included in subcase 2.a.i above, and

the theorem is true for all values of A.
To prove the case for Nr+1

2 < A < Nr+1−1
2 , we define

the corresponding problem as follows: prove that

N r ≥ 2A∗
0 +

N − 1

2(p∗ + 1)
(A∗

N−1 − A∗
0). (21)

where A∗
0 = A0, A∗

N−1 = AN−1, p∗ ≤ p, and Aj∗ ≤ Aj

for (p∗ + 1) ≤ j ≤ (N − 2). Comparing the right hand
sides of (20) and (21), we need to show that

2A0+
N − 1

2(p + 1)
(AN−1−A0) ≥ 2A∗

0+
N − 1

2(p∗ + 1)
(A∗

N−1−A∗
0)

which will imply that the theorem is true because the left
hand side is known to be less that N r. After simplifying
this, we have

AN−1 − A0

p + 1
≥ A∗

N−1 − A∗
0

p∗ + 1

which is true since (AN−1 − A0) = (A∗
N−1 − A∗

0), both of
(AN−1−A0) and (A∗

N−1−A∗
0) are negative, and (p∗+1) ≤

(p + 1).
This completes the proof of Theorem 2.
As a result, we have the following lower bound.
Corollary 1: Bisection width of r-dimensional N ×· · ·×

N grid is at least Nr−1
N−1 when N is odd.

V. UPPER BOUND

Theorem 3: Let G1 be any subgraph of the r-
dimensional N × · · · × N grid where N is odd and
|G1| = Nr−1

2 . There exists a canonical bisection form G∗
1

obtained from G1 with n(|G∗
1|) = Nr−1

N−1 .
Proof: This bisection is obtained as follows. Consider the
black vertices of the grid as 0 and the white vertices as 1.
Thus G1 contains all the 0‘s and no 1‘s. Then sort these
0‘s and 1‘s in the “snake-order.”

Once the sorting is completed, all of the 0‘s are at the
lowest N−1

2 hyperplanes (orthagonal to rth dimension),
and all of the 1‘s are at the highest N−1

2 hyperplanes.
The “middle” hyperplane contains half 0‘s and half 1‘s
(within a difference of one).

Now cut every edge (X, Y ) of the grid where X contains
a 0 and Y contains a 1. Due to snake-order, all of the
straight lines in dimension r are cut. There are N r−1

straight lines in this dimension. Since the “middle” hy-
perplane contains half 0‘s and half 1‘s (within a difference
of one), and it is also sorted in the snake-order, then all
of the dimension-(r− 1) lines in it are also cut. There are
N r−2 dimension-(r − 1) lines in the middle hyperplane.
Continuing recursively, the total number of cut edges is

N r−1 + N r−2 + · · · + 1 =
N r − 1

N − 1
,

This completes the proof.

VI. CONCLUSIONS

Optimal bisections for 2-dimensional grids with “holes”
have been studied in [2]. For regular grids in multiple
dimensions with odd N , the problem has been open for
at least 25 years since the publication of [?].

This paper shows that when N is odd, n(A) ≥
2 min{A,Nr−A}

N−1 edges must be cut to separate A vertices
from the grid. Optimal bisections for torus and other
related networks can be easily obtained from this result.
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