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Stability and Hopf bifurcation analysis in a
stage-structured predator-prey system with two time

delays
Yongkun Li and Meng Hu

Abstract—A stage-structured predator-prey system with two time
delays is considered. By analyzing the corresponding characteristic
equation, the local stability of a positive equilibrium is investigated
and the existence of Hopf bifurcations is established. Formulae are
derived to determine the direction of bifurcations and the stability
of bifurcating periodic solutions by using the normal form theory
and center manifold theorem. Numerical simulations are carried
out to illustrate the theoretical results. Based on the global Hopf
bifurcation theorem for general functional differential equations, the
global existence of periodic solutions is established.
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I. INTRODUCTION

THE predator-prey system is very important in population
modeling and has been studied by many authors (see,[1-

7]). The effect of the past history on the stability of system is
also an important problem in population biology. It is generally
recognized that some kinds of time delays are inevitable in
population interactions and tend to be destabilizing in the
sense that longer delays may destroy the stability of positive
equilibria. Time delay due to the gestation is a common
example, because generally the consumption of prey by the
predator throughout its past history governs the present birth
rate of the predator. Predator-prey systems with time delays
have received much attention in the past few years (see, [1-
4,6,7,10]).

In pioneering work [2], the author considered the periodic
solutions of a predator-prey system of Lotka-Volterra type
with a finite number of discrete delays. The model takes the
following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)
[
r1 −

m∑
j=1

a1jx(t− τ1j)

−
m∑
j=1

b1jy(t− ρ1j)
]
,

ẏ1(t) = y(t)
[
r2 −

m∑
j=1

a2jx(t− τ2j)

−
m∑
j=1

b2jy(t− ρ2j)
]
,

(1)
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where r1, r2 are real constants with ri > 0, aij , bij , τij , ρij(i
= 1, 2, j = 1, 2, . . . ,m) are nonnegative constants. Not all of
a1j and not all of b2j (j = 1, 2, . . . ,m) are zeros.

But, the author[2] ignored the stage structure of species. In
the natural world, almost all animals have the stage structure
of immature and mature. Specialized stages may exist for
dispersal or for dormancy. The vital rates (rates of survival,
development and reproduction) almost always depend on age,
size, or development stage. Stage-structured models have
received great attention in recent years.

Very recently, Gao[3] reduced system (1) to a stage structure
of immature and mature of species, and the system described
by the following form:⎧⎪⎪⎨

⎪⎪⎩

u̇(t) = u(t)[r1 − a11u(t) − a12v1(t− τ1)],
v̇1(t) = v1(t)[−r2 + a21u(t− τ2)

−a22v1(t)] + θv2(t),
v̇2(t) = bv1(t) − (θ + δ)v2(t),

(2)

where v1 and v2 denote the population of mature and immature
predator, respectively. Suppose that the rate of transition from
immature individuals to mature individuals is proportional to
the existing immature population with proportional constant
θ > 0, and the death rate of mature and immature popu-
lation are proportional to the existing mature and immature
population with proportional constants r2 > 0 and δ > 0,
respectively. Moreover, we then assume that the birth rate of
immature population is proportional to the existing mature
population with proportional constant b > 0. The predation
decreases the average growth rate of prey linearly with a
certain time delay τ1, this assumption corresponds to the
fact that predators cannot hunt prey when the predators are
infant; predators have to mature for a duration of τ1 units
of time before they are capable of decreasing the average
growth rate of the prey species; τ2 is the time delay due
to gestation, the delay in time for prey biomass to increase
predator number. System (2) is more reasonable in the natural
world. For example, frog feeds on pest, but tadpole is not able
to feed on pest.

The initial conditions for system (2) take the form

(φ(s), ψ1(s), ψ2(s)) ∈ C+ = C[(−τ, 0), R3+],
φ(0) > 0, ψ1(0) > 0, ψ2(0) > 0,

where τ = max{τ1, τ2}, R3+ = {(u, v1, v2) ∈ R3|u ≥ 0, v1 ≥
0, v2 ≥ 0}.

In [3], the authors obtained the time delay is harmless for
permanence of the stage-structured system. If a12

a22

a21
a11

< 1,
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sufficient conditions which guarantee the global stability of
positive equilibrium are given. If a12

a22

a21
a11

> 1, showed that
the unique positive equilibrium is locally asymptotically stable
when time delay is sufficiently small. But neither the direction
and stability of the local Hopf bifurcation nor the global
continuation of the local Hopf bifurcation are considered in
their paper.

Recently, great attention has been received and a large body
of work has been carried out on the existence of Hopf bifurca-
tions in delayed population models or in models of epidemic
and viral dynamics(see, for example, [1], [4], [5], [8] and
references cited therein). The stability of positive equilibria
and the existence and the direction of Hopf bifurcations were
discussed respectively in the references mentioned above.

However, the existence of these periodic solutions remain
valid only in a small neighborhood of the critical value, and the
investigated models include only one time delay. It is natural to
ask if these non-constant periodic solutions which are obtained
through local Hopf bifurcation can still exist for large values
of the parameters τ and how about if the system with two
time delays.

To this aim, motivated by the above discussion, in this paper,
we will consider the system (2) to discuss these problems.

The organization of this paper is as follows. In the next
section, by choosing the time delay τ (= τ1 + τ2) as a
parameter and analyzing the associated characteristic equation
of a linearized system, we investigate the linear stability of
the positive equilibrium for system (2). In addition, we get
sufficient conditions for the existence of Hopf bifurcations. In
Section 3, we derive formulae to determine the direction of
bifurcations and the stability of bifurcating periodic solutions
by using the normal form theory and center manifold theorem.
In Section 4, numerical simulations are carried out to illustrate
the theoretical results. In Section 5, based on the global
Hopf bifurcation theorem for general functional differential
equations, we investigate the global existence of periodic
solutions by using degree theory methods.

II. LOCAL STABILITY AND HOPF BIFURCATIONS

In this section, we discuss the stability of a positive equi-
librium and the existence of Hopf bifurcations for system (2).

Let
ũ = a11u, ṽ1 = a22v1, ṽ2 =

a22
b
v2,

then system (2) becomes⎧⎨
⎩

˙̃u1(t) = ũ(t)[r1 − ũ(t) − αṽ1(t− τ1)],
˙̃v1(t) = ṽ1(t)[−r2 + βũ(t− τ2) − ṽ1(t)] + γṽ2(t),
˙̃v2(t) = ṽ1(t) − ηṽ2(t),

(3)

where

α =
a12
a22

, β =
a21
a11

, γ = bθ, η = θ + δ.

If the following holds:
(H1) (r2 − r1β)η < γ < ( r1α + r2)η,
then system (3) has a unique positive equilibrium z∗ = (u∗,
v∗1 , v

∗
2), where

u∗ = r1 − αv∗1 , v
∗
1 = ηv∗2 , v

∗
2 =

γ + r1βη − r2η

η2(1 + αβ)
.

Let ū = ũ − u∗, v̄∗1 = ṽ1 − v∗1 , v̄2 = ṽ2 − v∗2 . Dropping
the bars, system (3) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇(t) = (r1 − 2u∗ − αy∗1)u(t) − αu∗v1(t− τ1)
−u2(t) − αu(t)v1(t− τ1),

v̇1(t) = βv∗1u(t− τ2) + (−r2 + βu∗ − 2v∗1)v1(t)
+γv2(t) − v21(t) + βv1(t)u(t− τ2),

v̇2(t) = v1(t) − ηv2(t),

(4)

Let x(t) = u(t − τ2), y1(t) = v1(t), y2(t) = v2(t), then
system (4) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = (r1 − 2x∗ − αy∗1)x(t) − αx∗y1(t− τ)
−x2(t) − αx(t)y1(t− τ),

ẏ1(t) = βy∗1x(t) + (−r2 + βx∗ − 2y∗1)y1(t)
+γy2(t) − y21(t) + βy1(t)x(t),

ẏ2(t) = y1(t) − ηy2(t),

(5)

where τ = τ1 + τ2.
The characteristic equation of system (5) at the origin is of

the form

λ3 + p2λ
2 + p1λ+ p0 + (q1λ+ q0)e−λτ = 0, (6)

where

p0 = ηx∗y∗1 , p1 = x∗y∗1 + γx∗

η + ηx∗ + ηy∗1 ,
p2 = x∗ + y∗1 + γ

η + η, q0 = ηαβx∗y∗1 , q1 = αβx∗y∗1 .

When τ = 0, equation (6) becomes

λ3 + p2λ
2 + (p1 + q1)λ+ p0 + q0 = 0, (7)

in which

p2 = x∗ + y∗1 +
γ

η
+ η > 0, p0 + q0 = ηx∗y∗1 + ηαβx∗y∗1 > 0,

p2(p1 + q1) − (p0 + q0)

=
(
x∗ + y∗1 +

γ

η
+ η

)(
x∗y∗1 +

γx∗

η
+ ηx∗ + ηy∗1 + αβx∗y∗1

)

−(ηx∗y∗1 + ηαβx∗y∗1) > 0.

By Hurwitz criterion, we know that all roots of equation (7)
have negative real parts.

When τ > 0, noting that iω(ω > 0) is a root of (6) if and
only if ω satisfies{

q1ω cos 2ωτ − q0 sin 2ωτ = ω3 − p1ω,

q1ω sin 2ωτ + q0 cos 2ωτ = p2ω
2 − p0.

(8)

In view of (8), by a direct calculation, we have

ω6 + h2ω
4 + h1ω

2 + h0 = 0, (9)

where

h0 = p20 − q20 , h1 = p21 − q21 − 2p0p2, h2 = p22 − 2p1.

For equation (9), assume
(H2) αβ > 1

holds, we have

h0 = (ηx∗y∗1)
2 − (ηαβx∗y∗1)

2 < 0,

h1 = (x∗y∗1 +
γx∗

η
+ ηx∗ + ηy∗1)

2 − (αβx∗y∗1)
2
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−2(ηx∗y∗1)(x
∗ + y∗1 +

γ

η
+ η)

=
2γy∗1(x

∗)2

η
+
γ2(x∗)∗y∗1

η2

+(2γ + η)(x∗)2 + η2(y∗1)
2 > 0,

h2 = (x∗ + y∗1 +
γ

η
+ η)2 − 2(x∗y∗1 +

γx∗

η
+ ηx∗ + ηy∗1)

= (x∗)2 + (y∗)2 +
γ2

η2
+ η2 + 2γ +

2γy∗1
η

> 0.

Hence, equation (9) has only one positive real root ω0.
Let

τj =
1
ω0

arcsin
p2q1 − q0)ω30 + (p1q0 − p0q1)ω0

q21ω
2
0 + q20

+
2πj
ω0

,

(10)
where j = 0, 1, 2, . . . , then equation (6) has a pair of purely
imaginary roots ±iω0 with τ = τj .

Lemma 1. For equation (6), if (H1) and (H2) hold, then we
have the following transversal condition

Re
( dλ

dτ

∣∣∣∣
λ=iω0

)
> 0.

Proof: Differentiating both sides of (6) with respect to τ
yields

[3λ2+2p2λ+p1+(q1−τ(q1λ+q0))e−λτ ]
dλ
dτ

= λ(q1λ+q0)e−λτ .

For convenience, we study (dλ/dτ)−1 instead of dλ/dτ . We
have

(
dλ
dτ

)−1
=

3λ2 + 2p2λ+ p1 + q1e
−λτ

λ(q1λ+ q0)e−λτ
− τ

λ

= − 3λ2 + 2p2λ+ p1
λ(λ3 + p2λ2 + p1λ+ p0)

+
q1

λ(q1λ+ q0)
− τ

λ
.

Hence,

Re
(dλ
dτ

)−1∣∣
λ=iω0

=
3ω40 + 2h2ω20 + h1

q21ω
2
0 + q20

> 0.

Therefore,

sign
{
Re

(dλ
dτ

)∣∣
λ=iω0

}
= sign

{
Re

(dλ
dτ

)−1∣∣
λ=iω0

}
> 0.

This completes the proof of Lemma 1.

Lemma 2. ([9]) Assume (H1) and (H2) hold, then
(i) when τ ∈ [0, τ0), all roots of equation (6) have strictly

negative real parts.
(ii) when τ = τ0, equation (6) has a pair of conjugate purely

imaginary roots ±iω0, and all other roots have strictly
negative real parts.

(iii) when τ > τ0, equation (6) has at least one root with
positive real part.

Applying Lemma 2, we have the following result.

Theorem 1. For system (5), if (H1) and (H2) are satisfied,
then

(i) when τ ∈ [0, τ0), the zero solution is asymptotically
stable;

(ii) when τ > τ0, the zero solution is unstable;
(iii) τ = τj , (j = 0, 1, 2, . . .) are the values of Hopf

bifurcations, where τj are defined by (10).

III. DIRECTION AND STABILITY OF HOPF BIFURCATIONS

In the previous section, we obtained conditions under which
a family of periodic solutions bifurcate from the positive
equilibrium at the critical values τj(j = 0, 1, 2, . . .). In this
section, we study the direction of bifurcations and the stability
of bifurcating periodic solutions. The method we used here is
based on the normal form theory and center manifold theory
introduced by Hassard et al. in [13].

Now, we re-scale the time by t = sτ , x̂1(s) = x1(sτ),
x̂2(s) = x2(sτ), ŷ(s) = y(sτ), τ = τ0 + μ, μ ∈ R, and still
denote by x1(t) = x̂1(s), x2(t) = x̂2(s), y(t) = ŷ(s), then
system (5) can be written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = (τ0 + μ)[(r1 − 2x∗ − αy∗1)x(t) − αx∗y1(t− 1)
−x2(t) − αx(t)y1(t− 1)],

ẏ1(t) = (τ0 + μ)[βy∗1x(t) + (−r2 + βx∗ − 2y∗1)y1(t)
+γy2(t) − y21(t) + βy1(t)x(t)],

ẏ2(t) = (τ0 + μ)[y1(t) − ηy2(t)].
(11)

For ϕ = (ϕ0, ϕ1, ϕ2)T ∈ C[−1, 0] = C([−1, 0], R3), define a
family of operators

Lμϕ = B1ϕ(0) +B2ϕ(−1), (12)

where

B1 = (τ0 + μ)

⎡
⎣ r1 − 2x∗ − αy∗1 0 0

βy∗1 −r2 + βx∗ − 2y∗1 γ
0 1 −η

⎤
⎦ ,

B2 = (τ0 + μ)

⎡
⎣ 0 −αx∗ 0

0 0 0
0 0 0

⎤
⎦ .

And define

f(μ, ϕ) = (τ0 + μ)

⎡
⎣−ϕ21(0) − αϕ1(0)ϕ2(−1)

−ϕ22(0) + βϕ2(0)ϕ1(0)
0

⎤
⎦ .

By the Riesz representation theorem, there exists a matrix
whose components are bounded variation functions η(θ, μ) :
[−1, 0] → R3, such that Lμϕ =

∫ 0
−1 dη(θ, μ)ϕ(θ), for ϕ ∈ C.

In fact, we can choose

η(θ, μ) = (τ0 + μ)B1(ϕ1(0), ϕ2(0), ϕ3(0))T δ(θ)
−(τ0 + μ)B2δ(θ + 1), (13)

where δ is the Dirac delta function.
For ϕ = (ϕ0, ϕ1, ϕ2)T ∈ C1[−1, 0], define

A(μ)ϕ =
{
ϕ̇(θ) , θ ∈ [−1, 0),∫ 0
−1 dη(s, μ)ϕ(s) , θ = 0,

R(μ)ϕ =
{

0 , θ ∈ [−1, 0),
f(μ, ϕ) , θ = 0.

Hence, equation (11) can be rewritten as

U̇t = A(μ)Ut +R(μ)Ut, (14)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1155

where U = (x1, x2, y)T. For ψ ∈ C1[0, 1], define

A∗ψ(s) =

{
−ψ̇(s), s ∈ [−1, 0),∫ 0
−1 dη

T (t, 0)ψ(−t), s = 0.
(15)

For ϕ ∈ C([−1, 0] , C3) and ψ ∈ C([0, 1] , (C3)∗), define a
bilinear inner product

< ψ,ϕ >= ψ̄T(0)ϕ(0) −
0∫

θ=−1

θ∫

ξ=0

ψ̄T(ξ − θ)dη(θ)ϕ(ξ)dξ,

(16)
where η(θ) = η(θ, 0). Then, A = A(0) and A∗ are adjoint
operators. By the discussion in Section 2 and transformation
t = sτ , we know that ±iτ0ω0 are eigenvalues of A. Thus,
they are also eigenvalues of A∗. We first need to calculate
the eigenvector of A(0) and A∗ corresponding to iω0τ0 and
−iω0τ0, respectively.

Suppose that q(θ) = (1, q2, q3)Teiτ0ω0θ and q∗(s) =
D(1, q∗2 , q

∗
3)

Teiτ0ω0s are eigenvectors of A and A∗ correspond-
ing to iτ0ω0 and −iτ0ω0, respectively. By the definition of
A(0) and A∗ and (12-13), we can obtain

q2 =
r1 − 2x∗ − αy∗1 − iω0

αx∗e−iτ0ω0
,

q3 =
r1 − 2x∗ − αy∗1 − iω0
(η + iω0)αx∗e−iτ0ω0

,

q∗2 =
2x∗ − r1 + αy∗1 − iω0

βy∗1
,

q∗3 =
γ(2x∗ − r1 + αy∗1 − iω0)

(η − iω0)βy∗1
.

In order to assure < q∗(θ), q(θ) >= 1, we need to
determine the value of D. From (16), we have

< q∗(s), q(θ) >
= D̄(1, q̄∗2 , q̄

∗
3)(1, q2, q3)

T

−
0∫

θ=−1

θ∫

ξ=0

D̄(1, q̄∗2 , q̄
∗
3)

×e−iτ0ω0(ξ−θ)dη(θ)(1, q2, q3)T eiτ0ω0ξdξ

= D̄

{
1 + q2q̄

∗
2 + q3q̄

∗
3

−
0∫

θ=−1
(1, q̄∗2 , q̄

∗
3)θe

iτ0ω0θdη(θ)(1, q2, q3)T
}

= D̄
{
1 + q2q̄

∗
2 + q3q̄

∗
3 + τ0αq2x

∗e−iτ0ω0
}
.

Thus, we can choose D as

D = [1 + q̄2q
∗
2 + q̄3q

∗
3 + τ0αq̄2x

∗eiτ0ω0 ]−1.

Now we calculate the coordinates to describe the center
manifold C0 at μ = 0. Let Ut be the solution of equation (14)
when μ = 0, and define

z(t) =< q∗, Ut >, W (t, θ) = Ut(θ)−2Re{z(t)q(θ)}. (17)

On the center manifold C0, we have W (t, θ) = W (z(t), z̄(t),
θ), where

W (z, z, θ) = W20(θ)
z2

2
+W11(θ)zz+W02(θ)

z2

2
+. . . , (18)

z and z̄ are local coordinates for center manifold C0 in the
direction of q∗ and q̄∗. Note that W is real if Ut is real, we
consider only real solutions. For the solution Ut ∈ C0, since
μ = 0, then

ż(t) = iτ0ω0z(t) + q∗(0)f0(z, z). (19)

We rewrite this equation as ż(t) = iτ0ω0z(t) + g(z, z) with

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ . . . . (20)

Hence,

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄∗(0)f(0, Ut).

Substitute Ut(θ) into above and comparing the coefficients
with (20), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g20 = 2τ0D̄[q̄∗2(βq2q3 − q23) − (q22 + αq2q3e
−iτ0ω0)],

g11 = τ0D̄[q̄∗2(βq̄2q3 + βq2q̄3 − 2q3q̄3)
−(2q2q̄2 + αq̄2q3e

−iτ0ω0 + αq2q̄3e
iτ0ω0)],

g02 = 2τ0D̄[q̄∗2(βq̄2q̄3 − q̄23) − (q̄22 + αq̄2q̄3e
iτ0ω0)],

g21 = τ0D̄[q̄∗2 [β(q̄2W
(2)
20 (0) + 2q2W

(2)
11 (0)

+2q3W
(1)
11 (0) + q̄3W

(1)
20 (0))

−(2W (2)
20 (0)q̄3 + 4q3W

(2)
11 (0))] − [2W (1)

20 (0)q̄2
+4q2W

(1)
11 (0) + α(W (1)

20 (0)q̄3eiτ0ω0

+2q3W
(1)
11 (0)e−iτ0ω0 + 2q2W

(2)
11 (−1)

+q̄2W
(2)
20 (−1))]].

(21)
Now we calculate W20(θ) and W11(θ). From (14) and (17),

we have

Ẇ = U̇t − żq − ˙̄zq̄

=
{
AW − 2Re{q∗(0)F0q(θ)}, θ ∈ [−1, 0)
AW − 2Re{q∗(0)F0q(θ)} + F0, θ = 0

def= AW +H(z, z, θ),

where

H(z, z, θ) = h20(θ)
z2

2
+ h11(θ)zz + h02(θ)

z2

2
+ . . . . (22)

For θ ∈ [−1, 0), we can get

(A−2iτ0ω0)W20(θ) = −h20(θ), AW11(θ) = −h11(θ). (23)

From (22), we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −2Re{q̄∗(0)F0q(θ)}
= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ)

= −(g20
z2

2
+ g11zz + g02

z2

2
+ . . .)q(θ)

−(ḡ20
z̄2

2
+ ḡ11zz + ḡ02

z2

2
+ . . .)q̄(θ).

Comparing the coefficients with (22), we can obtain

h20(θ) = −g20q(θ)− ḡ02q̄(θ), h11(θ) = −g11q(θ)− ḡ11q̄(θ).
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On the other hand, by (23), we get Ẇ20(θ) = 2iτ0ω0W20(θ)−
h20(θ). Solving it, we have

W20(θ) =
ig20
τ0ω0

q(0)eiτ0ω0θ+
iḡ02

3τ0ω0
q̄(0)e−iτ0ω0θ+Ee2iτ0ω0θ.

(24)
Similarly, we can get

W11(θ) = − ig11
τ0ω0

q(0)eiτ0ω0θ+
ḡ11
iτ0ω0

q̄(0)e−iτ0ω0θ+F. (25)

In what follows, we seek appropriate E and F . The defini-
tion of A and (23) imply that

∫ 0

−1
dη(θ)W20(θ) = 2iτ0ω0W20(0) − h20(0) (26)

and ∫ 0

−1
dη(θ)W11(θ) = −h11(0). (27)

By the definition of H(z, z̄, θ) in (22), we have

h20(0) = −g20q(0) − ḡ02q̄(0) + τ0H1, (28)

h11(0) = −g11q(0) − ḡ11q̄(0) + τ0H2, (29)

where

H1 =

⎡
⎣−2(q22 + αq2q3e

−iτ0ω0)
2(βq2q3 − q23)

0

⎤
⎦ ,

H2 =

⎡
⎣−2q2q̄2 − α(q̄2q3e−iτ0ω0 + q2q̄3e

iτ0ω0)
β(q̄2q3 + q2q̄3) − 2q3q̄3

0

⎤
⎦ .

Substituting (24) into (28), we obtain

⎡
⎣ r1 − 2x∗ − αy∗1 − 2iω0 −αx∗e−2iω0τ0

−βy∗1 −r2 + βx∗ − 2y∗1 − 2iω0
0 1

0
γ

−η − 2iω0

⎤
⎦E = H1.

Hence, we have E =
1

Δ1

(
E1
1 , E

2
1 , E

3
1

)T
, where

Δ1 =

∣∣∣∣∣∣
r1 − 2x∗ − αy∗1 − 2iω0 −αx∗e−2iω0τ0

−βy∗1 −r2 + βx∗ − 2y∗1 − 2iω0
0 1

0
γ

−η − 2iω0

∣∣∣∣∣∣ ,

E1
1 =

∣∣∣∣∣∣
−2(q22 + αq2q3e

−iτ0ω0) −αx∗e−2iω0τ0

2(βq2q3 − q23) −r2 + βx∗ − 2y∗1 − 2iω0
0 1

0
γ

−η − 2iω0

∣∣∣∣∣∣ ,

E2
1 =

∣∣∣∣∣∣
r1 − 2x∗ − αy∗1 − 2iω0 −2(q22 + αq2q3e

−iτ0ω0)
−βy∗1 2(βq2q3 − q23)

0 0

0
γ

−η − 2iω0

∣∣∣∣∣∣ ,

E3
1 =

∣∣∣∣∣∣
r1 − 2x∗ − αy∗1 − 2iω0 −αx∗e−2iω0τ0

−βy∗1 −r2 + βx∗ − 2y∗1 − 2iω0
0 1

−2(q22 + αq2q3e
−iτ0ω0)

2(βq2q3 − q23)
0

∣∣∣∣∣∣ .

Similarly, substituting (25) into (29), we can get F =
1

Δ2

(
F 1
2 , F

2
2 , F

3
2

)T
, where

Δ2 =

∣∣∣∣∣∣
r1 − 2x∗ − αy∗1 −αx∗ 0

−βy∗1 −r2 + βx∗ − 2y∗1 γ
0 1 −η

∣∣∣∣∣∣ ,

F 1
2 =

∣∣∣∣∣∣
−2q2q̄2 − α(q̄2q3e−iτ0ω0 + q2q̄3e

iτ0ω0)
β(q̄2q3 + q2q̄3) − 2q3q̄3

0
−αx∗ 0

−r2 + βx∗ − 2y∗1 γ
1 −η

∣∣∣∣∣∣ ,

F 2
2 =

∣∣∣∣∣∣
r1 − 2x∗ − αy∗1

−βy∗1
0

−2q2q̄2 − α(q̄2q3e−iτ0ω0 + q2q̄3e
iτ0ω0) 0

β(q̄2q3 + q2q̄3) − 2q3q̄3 γ
0 −η

∣∣∣∣∣∣ ,

F 3
2 =

∣∣∣∣∣∣
r1 − 2x∗ − αy∗1 −αx∗

−βy∗1 −r2 + βx∗ − 2y∗1
0 1

−2q2q̄2 − α(q̄2q3e−iτ0ω0 + q2q̄3e
iτ0ω0)

β(q̄2q3 + q2q̄3) − 2q3q̄3
0

∣∣∣∣∣∣ .

Based on the analysis above, we see that gij in (21) is
determined by the parameters and the time delay in (4). Thus,
we can calculate the following values

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1(0) = i
2τ0ω0

(g20g11 − 2|g11|2 − 1
3 |g02|2) + g21

2 ,

μ2 = −ReC1(0)
Reλ′(τ0)

,

T2 = − ImC1(0) + μ2Imλ′(τ0)
τ0ω0

,

β2 = 2ReC1(0).

(30)

From the expression of C1(0) in (30), it is easy to get the
values of μ2, β2 and t2. On the other hand, we know that
μ2 determines the direction of the Hopf bifurcation: if μ2 >
0(< 0), then the Hopf bifurcation is supercritical(subcritical)
and the bifurcating periodic solutions exist for τ > τ0(< τ0);
β2 determines the stability of the bifurcating periodic so-
lutions: if β2 < 0(> 0) the bifurcating periodic solutions
are stable(unstable); and T2 determines the period of the
bifurcating periodic solutions: the period increase(decrease) if
T2 > 0(< 0).
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IV. NUMERICAL SIMULATIONS

As an example, we present some numerical results of system
(4) at different values. We consider the following system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇(t) = −0.1308u(t) − 0.7846v1(t− τ1)
−u2(t) − 6.0000u(t)v1(t− τ1),

v̇1(t) = 0.1231u(t− τ2) − 0.5615v1(t) + 0.9000v2(t)
−v21(t) + 2.0000v1(t)u(t− τ2),

v̇2(t) = v1(t) − 1.8000v2(t),

(31)
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Fig.1 Behavior and phase portrait of system 31 with τ1 =

τ2 = 1, (τ1 + τ2 < τ0). The positive equilibrium
z∗(0.1308, 0.0615, 0.0342) is asymptotically stable.

which has only one positive equilibrium
z∗(0.1308, 0.0615, 0.0342), when τ1 = τ2 = 0, the positive
equilibrium z∗(0.1308, 0.0615, 0.0342) is asymptotically
stable. If follows from the discussion in Section 2 that
ω0 = 0.2571, τ0 = 2.6679, dλ(τ0)

dτ = 0.0247 − 0.0181i,
and the conditions indicated in Theorem 1 is satisfied.
Hence, we can say that as τ increase, stability switch
may occur, the value of τ where stability switch occurs is
τ0 = 2.6679, (τ0 = τ1 + τ2). Thus, the positive equilibrium
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Fig.2 Behavior and phase portrait of system (31) with τ1 =

6, τ2 = 8, (τ1 + τ2 > τ0). The bifurcating periodic solutions from
z∗(0.1308, 0.0615, 0.0342) occur.

z∗(0.1308, 0.0615, 0.0342) is asymptotically stable when
0 ≤ τ < τ0 as is illustrated by the computer simulations (see
Fig.1).

When τ passes through the critical value τ0, z∗ loses its
stability and a Hopf bifurcation occurs, that is, a family of
periodic solutions bifurcate from z∗, as is illustrated by the
computer simulations (see Fig.2). From the formulae (30) in
Section 3, it follows that C1(0) = −7.4847 − 1.4530i , μ2 =
303.0243 , β2 = −14.9694 , T2 = 10.1154 . Since μ2 > 0 and
β2 < 0, the Hopf bifurcation is supercritical and the direction
of the bifurcation is τ > τ0 and these bifurcating periodic
solutions from z∗ at τ0 are stable.

Remark 1. If we take τ1 = τ2 in system (1), by similar
calculating, the critical value of Hopf bifurcation occurs when
τ∗ = 1.3340. So, when τ1 = τ2 < 1.3340, the positive
equilibrium z∗(0.1308, 0.0615, 0.0342) is asymptotically sta-
ble, when τ1 = τ2 > 1.3340, a Hopf bifurcation occurs. In
this paper, the positive equilibrium z∗(0.1308, 0.0615, 0.0342)
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Fig.3 Behavior and phase portrait of system (31) with τ1 = 1, τ2 =

1.5, (τ1 < τ∗, τ2 > τ∗, τ1 + τ2 < τ0). The positive equilibrium
z∗(0.1308, 0.0615, 0.0342) is asymptotically stable.

is asymptotically stable, we only need τ1 + τ2 < 2.6679, and
when τ1 + τ2 > 2.6679, a Hopf bifurcation occurs(See Fig.3,
Fig.4).

V. GLOBAL HOPF BIFURCATION

In this section, we study the existence of global Hopf
bifurcations. The method we used here is based on the global
Hopf bifurcating theorem for general functional differential
equations introduced by Wu in [15]. For convenience, we write
system (5) as the following form:

ż = F (zt, τ), (32)

where z = (x, y1, y2)T, zt(θ) = z(t + θ) ∈ C([−1, 0], R3).
Define

X = C([−τ, 0], R3),
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Fig.4 Behavior and phase portrait of system (31) with τ1 = 1 <

τ0, τ2 = 3 > τ0, (τ1 < τ∗, τ2 > τ∗, τ1+τ2 > τ0). The bifurcating
periodic solutions from z∗(0.1308, 0.0615, 0.0342) occur.

Σ = Cl{(z(t), τ, T ) ∈ X ×R×R+, z(t) is a
T − periodic solution of (3)},

N = {(z̄, τ̄ , T̄ ), F (z̄, τ̄ , T̄ ) = 0}.

Let l(z∗,τj ,
2π
ω0
) be the connected component of (z∗, τj , 2πω0

)
in Σ, where τj and ω0 are defined in (10).

Applying Theorem 2.1 in [3], we can obtain the following
lemma directly.

Lemma 3. All solutions of system (5) are uniformly bounded.

Lemma 4. If (H1) holds, then system (5) has no nontrivial
periodic solutions of period τ .

Proof: Assume system (5) has a nontrivial periodic solu-
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tion of period τ , then the following system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = (r1 − 2x∗ − αy∗1)x(t) − αx∗y1(t)
−x2(t) − αx(t)y1(t),

ẏ1(t) = βy∗1x(t) + (−r2 + βx∗ − 2y∗1)y1(t)
+γy2(t) − y21(t) + βy1(t)x(t),

ẏ2(t) = y1(t) − ηy2(t)

(33)

has periodic solutions. System (33) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = −x(t)[(x(t) − x∗) + (y1(t) − y∗1)],
ẋ2(t) = r2

y∗2
[y1(t)(y2(t) − y∗2) − y2(t)(y1(t) − y∗1)]

−y1(t)[(y1(t) − y∗1) − β(x(t) − x∗)],
ẏ(t) = 1

y∗2
[y2(t)(y1(t) − y∗1) − y1(y2(t) − y∗2)].

(34)

Define

V (t) =
2∑
i=1

ci

(
yi(t)−y∗i −y∗i ln

yi(t)
y∗i

)
+x(t)−x∗−x∗lnx(t)

x∗
,

where c1 and c2 are positive constants to be determined.
Calculating the derivative of V (t) along positive solutions

to system (34), it follows that

V̇ (t) =
2∑
i=1

ci(yi(t) − y∗i )
ẏi(t)
yi(t)

+ (x(t) − x∗) ẋ(t)x(t)

=
c2(y2(t) − y∗2)

y∗2y2(t)
[y2(t)(y1(t) − y∗1)

−y1(t)(y2(t) − y∗2)]

+
c1(y1(t) − y∗1)

y∗2y1(t)
[y1(t)(y2(t) − y∗2)

−y2(t)(y1(t) − y∗1)] − c1(y1(t) − y∗1)

[(y1(t) − y∗1) − β(x(t) − x∗)]
−(x(t) − x∗)[(x(t) − x∗) + α(y1(t) − y∗1)].

(35)

Setting c1 = c2 = α
β , then it follows from (35) that

V̇ (t) = − α
βy∗2

(√
y1(t)
y2(t)

(y2(t) − y∗2) −
√

y2(t)
y1(t)

(y1(t) − y∗1)
)2

−α
β (y1(t) − y∗1)

2 − (x(t) − x∗)2 < 0.

Applying Barbalat’s lemma [11], we conclude that

lim
t→∞(x(t), y1(t), y2(t)) = (x∗, y∗1 , y

∗
2),

which contradicts the fact that system (33) has periodic
solutions.

Theorem 2. Suppose that (H1) (H2) and (H3) hold, then for
each τ > τj(j = 0, 1, 2 . . .), system (5) has at least j + 1
periodic solutions, where τj is defined in (10).

Proof: The characteristic matrix of system (5) at the
positive equilibrium z∗ is of the form

Δ(z∗, τ, p)(λ) =

⎡
⎣ r1 − 2x∗ − αy∗1 − λ

βy∗1
0

−αx∗e−λτ 0
−r2 + βx∗ − 2y∗1 − λ γ

1 −η − λ

⎤
⎦ . (36)

By Lemma 1, it can be verified that (z∗, τj , 2πω0
) are isolated

centers.

Let

Ωε, 2π
ω0

=
{

(η, p) : 0 < η < ε,
∣∣∣p− 2π

ω0

∣∣∣ < ε

}
.

Clearly, if |τ − τj | ≤ δ and (η, p) ∈ ∂Ωε, then

det(Δ(z∗, τ, p)
(
η + i

2π
p

)
)

= 0,

if and only if η = 0, τ = τj , p = 2π
ω0
. Define

H±(z∗, τj ,
2π
ω0

)(η, p) = Δ(z∗, τj ± δ, p)(η + i
2π
p

),

then we have the crossing number of isolated center
(z∗, τj , 2πω0

) as follows

γ

(
z∗, τj ,

2π
ω0

)
= degB

(
H−(z∗, τj ,

2π
ω0

),Ωε, 2π
ω0

)

−degB

(
H+(z∗, τj ,

2π
ω0

),Ωε, 2π
ω0

)
= −1.

By Theorem 3.3 of Wu [15], we conclude that the connected
component l(z∗,τj ,

2π
ω0
) through (z∗, τj , 2πω0

) in Σ is nonempty.
Meanwhile, we have ∑

(z,τ,p)∈l(z∗,τj , 2π
ω0

)

γ(z, τ, p) < 0,

and hence l(z∗,τj ,
2π
ω0
) is unbounded.

Lemma 3 implies that the projection of l(z∗,τj ,
2π
ω0
) onto

the z−space is bounded. From the definition of τj in (10),
we have 2π

ω0
< τj for j ≥ 1. Lemma 4 implies that the

projection of l(z∗,τj ,
2π
ω0
) onto the τ−space is bounded. Assume

the projection of l(z∗,τj ,
2π
ω0
) onto the τ−space is (0, τ∗) and

τ∗ > τj . Applying Lemma 4, we know (z, τ, p) ∈ l(z∗,τj ,
2π
ω0
)

implies p < τj . This shows that in order for l(z∗,τj ,
2π
ω0
)

to be unbounded, its projection onto the τ−space must be
unbounded. Consequently, the projection of l(z∗,τj ,

2π
ω0
) onto

the τ−space includes [τj ,∞). This shows that, for each τj ,
system (3) has j+1 nonconstant periodic solutions. The proof
is complete.
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