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LQR and SMC Stabilization of a New Unmanned Aerial Vehicle
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Abstract— We present our ongoing work on the development
of a new quadrotor aerial vehicle which has a tilt-wing
mechanism. The vehicle is capable of take-off/landing in vertical
flight mode (VTOL) and flying over long distances in horizontal
flight mode. Full dynamic model of the vehicle is derived using
Newton-Euler formulation. Linear and nonlinear controllers for
the stabilization of attitude of the vehicle and control of its
altitude have been designed and implemented via simulations.
In particular, an LQR controller has been shown to be quite
effective in the vertical flight mode for all possible yaw angles.
A sliding mode controller (SMC) with recursive nature has also
been proposed to stabilize the vehicle’s attitude and altitude.
Simulation results show that proposed controllers provide
satisfactory performance in achieving desired maneuvers.

Keywords—-UAV, VTOL, dynamic model, stabilization,
LQR, SMC

I. INTRODUCTION

Unmanned aerial vehicles (UAV) designed for various
missions such as surveillance and exploration of disasters
(fire, earthquake, flood, etc...) have been the subject of a
growing research interest in the last decade. Airplanes with
long flight ranges and helicopters with hovering capabilities
constitute the major mobile platforms used in research of
aerial vehicles. Besides these well known platforms, many re-
searchers recently concentrate on the tilt rotor aerial vehicles
combining the advantages of horizontal and vertical flight.
Because these new vehicles have no conventional design
basis, many research groups build their own tilt-rotor vehicles
according to their desired technical properties and objec-
tives. Some examples to these tilt-rotor vehicles are large
scaled commercial aircrafts like Boeing’s V22 Osprey [1],
Bell’s Eagle Eye [2] and smaller scale vehicles like Arizona
State University’s HARVee [3] and Compiegne University’s
BIROTAN [4] which consist of two rotors. Examples to other
tilt-rotor vehicles with quad-rotor configurations are Boeing’s
V44 [5] (an ongoing project for the quad-rotor version of
V22) and Chiba University’s QTW UAV [6] which is a
completed project.

Different controllers designed for the VTOL vehicles with
quad-rotor configurations exist in the literature. Cranfield
University’s LQR controller [7], Swiss Federal Institute
of Technology’s PID and LQ controllers [8], Lakehead
University’s PD? [9] controller and Lund University’s PID
controller [13] are examples to the controller developed
on quad-rotors linearized dynamic models. Among some
other control methods of quad-rotor vehicles are CNRS
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and Grenoble University’s Global Stabilization [10], Swiss
Federal Institute of Technology’s Full Control of a Quadrotor
[11] and Versailles Engineering Laboratory’s Backstepping
Control [12] that take into account the nonlinear dynamics
of the vehicles.

In this paper we are presenting our current work on
the modeling and control of a new tilt-wing aerial vehicle
(SUAVI: Sabanci University Unmanned Aerial Vehlcle) that
is capable of flying in horizontal and vertical modes. The
vehicle consists of four rotating wings and four rotors, which
are mounted on leading edges of each wing.

The organization of this paper is as follows: In section II,
full dynamic model of the vehicle is derived using Newton-
Euler formulation. In section III, state-space controllers,
a Linear Quadratic Regulator (LQR) and a Sliding Mode
Controller (SMC) are developed.

Section IV gives the simulation results of the proposed
control schemes. Section V concludes the paper with a
discussion of future works.

II. DYNAMIC MODEL OF THE VEHICLE

The vehicle is equipped with four wings that are mounted
on the front and at the back of the vehicle and can be rotated
from vertical to horizontal positions. Fig. 1 below shows the
aerial vehicle in various flight modes including the vertical
(first one) and the horizontal (last one) flight modes.

1 i

Fig. 1. SUAVI with integrated actuators in different flight configurations

With this wing configuration, the vehicle’s airframe trans-
forms into a quad-rotor like structure if the wings are at
the vertical position and into an airplane like structure if
the wings are at the horizontal position. To keep the control
complexity on a minimum level, the rotations of the wings
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are used as attitude control inputs in addition to motor thrust
inputs in horizontal flight mode. Therefore the need for
additional control surfaces that are put on trailing edges of
the wings on a regular airplane are eliminated. Two wings
on the front can be rotated independently to act like the
ailerons while two wings at the back are rotated together
to act like the elevator. This way the control surfaces of a
regular plane in horizontal flight mode are mimicked with
minimum number of actuators.

Fig. 2.

Aerial Vehicle in a Tilted Configuration (0 < 6; < §)

The two reference frames given in Fig. 2 are body fixed
reference frame B : (Op,xp,yp,25) and earth fixed inertial
reference frame W : (O, Xy, Y, 2w). Using this model, the
equations describing the position and attitude of the vehicle
are obtained by relating the 6 DOF kinematic equations with
the dynamic equations. The position and linear velocity of
the vehicle’s center of mass in world frame are described as,

X X
P,=|Y| V,=P,=|Y
V4 7z

The attitude and angular velocity of the vehicle in world
frame are given as,

0 9
Oy = 0 7Qw =0,= |6
v v

where, ¢, 0, y are named roll, pitch and yaw angles
respectively. The equations for the transformation of the
angular and linear velocities between world and body frames
are given in equations (1) and (2):

=R(90.60,y)-V, (M

where
R(¢': 67 W) = RZ(W)RY(G)RJC((P)

Qb: :E(¢79)'vi (2)

SRR

d
1 0 —S0
E(¢79): 0 Co SoCo
0 —S¢ C¢Co

The abbreviations sg and cg are used instead of sin(f3) and
cos(f) respectively.

The dynamic equations obtained for 6 DOF rigid body
transformation of the aerial vehicle in inertial reference frame
W are given as:

F=mVy+Q, x (m-Vp) (3)
M, = I,y +Qp x (I - Q) 4

where m is the mass and the I, is the inertia matrix expressed
in the body frame B. The total force F; acting on the vehicle’s
center of gravity is the sum of the forces Fy, created by the
rotors, the gravity Fy, the lift and drag forces generated by the
wings F,, and the aerodynamic forces F; which is considered
as a disturbance, namely

E:Fg+Fw+El1+Fd (5
where
—sp
Fy = |spco| -mg
CopCo
and

(CD(617VX7VZ) +CD(927VX7VZ) +2CD(637VX7VZ))
F, = 0
(CL(elyvxva) +CL(627VJHVZ) + 2CL(93aVXaVz))

and oo
Coy 1 Co, +Coy t+Coy k(x}zz

Fy = ks>

56, — 56, — 563 — 563 k(x)42

note that the propeller thrusts 1,34y are modeled as:
F = kay?

Because the wings at the back are rotated together their
angle of attacks are the same for all time (63 = 0;). Note
that the lift function cp(6;,vy,v;) and the drag function
¢p(6;,vx,v;) are not just functions of linear velocities (vy
and v;) like on a fixed-wing type of an airplane, but also
functions of angle of attack 6; for each wing. The reader
is referred to the Appendix for the explicit forms of these
equations.

The total torque M, acting on the vehicle’s center of
gravity is the sum of the torques M;; created by the rotors M,,
created by the drag/lift forces of the wings, My, created by
the gyroscopic effects of the propellers and the aerodynamic
torques M, which is considered as a disturbance, namely

M, = ngru +M,, + M, +My (6)
where
4 e,
ngro = Z][T]in X 0 (Di}
i=1 *59,-
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Nupse =1,—-1,—-1,1

and
(cr(B1,vx,vz) —cL(02,vx,V2))
M, = (CL(elvvxva)+CL(627VX7VZ)_2CL(937VX7V1))
(—=ep(B1,vx,vz) +cp(02,vx,v2))
and
ka,?
lssﬂl _ZSSGQ lSs93 _ZSSG3 kablz
M, = l]Sgl 11592 _11563 _11593 ka)%z
lsCQ2 —lSCQZ ls693 —15C93 ka);‘z
C C C C llka)lz
e e, e TlH 2
+lo o o Aok
13/((1)3
56, 56, 56, 56, )4](@42

Note that the sum of torques created by the rotors result in
a roll moment along the x axis in horizontal flight mode
(6123 =0) and in a yaw moment along the z axis in vertical
flight mode (6) .23 = 7/2)

III. STATE-SPACE CONTROLLER DESIGN

To synthesize various controllers, equations derived in
Section II are put into state-space form. The state vector
X consists of the position (P,), the attitude (o), the linear
velocity (V}) and the angular velocity (Q).

P,
_ Y%
=g %)
oy
In light of equations (1)-(6) we have
I:JW R_l (aw) : Vb
Qp LM —Qp x (1, Q)]
Ol E~ Y (0,)-Qp

which is a nonlinear plant of the form

x=rf(xu (€))

Note that the aerial vehicle is an under-actuated system
with 12 dimensional state vector and a 4 dimensional input
vector.

A. Linearized System and LOR Controller Synthesis

For LQR controller design, the dynamic equations of the
vehicle are linearized around nominal operating points in
hovering condition. In the hovering mode, the controlled
variables of the plant are chosen to be the position (X,Y,Z)
and yaw angle (y). In order to simplify the controller design,
the actuating forces and torques are decomposed into four
virtual control inputs (u;) as follows:

uy —k (0 + ©F + 03 + 03)

ue 22| kls~[(w§+w3§)—(w2§+w§)} (10)
us kl-[(0f + 0y) — (05 + of)]
U k (Mo} + Ao + 2303 + A403F)

inearized state-space equation is given as:
X =Ax+Bu (11)

Full yaw control is obtained by interpolating LQR con-
trollers designed for certain number of nominal operating
points.

B. Attitude and Altitude Stabilization via Sliding Mode Con-
trol (SMC)

The equations of motion for VTOL mode can be recast
as:

E=F(E)+B(E)u (12)

where & = [2,2,0,0,0,0,y,y]" and u = [uy,us,u3,u4)’.
Note that this equation is affine in input. Using this obser-
vation, it is possible to develop a sliding mode controller for
the stabilization of the roll-pitch-yaw angles and vehicle’s
altitude. Let’s define the sliding variable as:

0 =GE¢ (13)

where G is a 4 x 8 matrix such that (GB) is invertible. By
differentiating ¢ one gets:

6 =GEé = GF +GBu (14)
Sliding mode control is given as:
U= ey — Ksgn(o) (15)

where u,, is the equivalent control, which is the continuous
part of the control u, sgn(.) is the well-known signum
function and K > 0. The equivalent control is obtained by
setting & = 0, namely

6 = GF + GBu,y =0 = u,y = —(GB) "' GF (16)

However, computation of u,, can be difficult since the exact
knowledge of F(&) and B(&) are required. Below we will
eliminate computation of u., using continuity of u., and
obtain a recursive control law. Note that in light of (14) and
(16) we have:

6 = (GB)(u+(GB)"'GF) = (GB)(u—upy)  (17)

Choosing a Lyapunov function V = (1/2)6”c > 0, and
differentiating with respect to time one gets:

Vv=o0's, (18)

where D is a positive-definite matrix. V can be made
negative-definite by selecting

6=-Do=V=-06"D6<0 (19)

In light of (17) and (19), the following equations can be
obtained:

6 = (GB)(u—tteg) = u—ueq = (GB)'6  (20)
and

(GB)(t — teq) = —DO = u—uey = —(GB) 'Do (21)
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Computing above equations at two different sampling in-
stants, i.e. 7 = (k—1)T and ¢t = kT, namely

u((k—1)T) —ueg((k—1)T) = (GB)"'6((k—1)T)  (22)
u(kT) — oy (kT) = —(GB) "' Do (kT) (23)
Since the equivalent control is continuous, we have
iig}) Ueg(t — A) = ey (1) 24)
Assuming that the sampling time is small (i.e. T = A),
e (KT) = g (k—1)T) (25)

Substituting (25) into (22) and (23), and approximating &
using Euler’s backward difference one derives the following
recursion for the control law:
(I+TD)ok]—olk—1]
T

where [ is the identity matrix and [k] denotes (kT). This
control is implemented to achieve roll-pitch-yaw stabiliza-
tion and altitude control for hovering operation. Once the
controller takes the vehicle into a desired altitude, tilt wing
transition is then carried out which is given in the following
section.

ulk] = ulk—1]— (GB) ™' ] (26)

IV. SIMULATION RESULTS

The performance of the LQR controller is evaluated on the
nonlinear dynamic model of the vehicle given by (8) in MAT-
LAB/Simulink. Q and R matrices used in LQR design are
selected as Q@ = 107! - I15,12 and R = diag(10~',10,10,10)

Starting with the initial configuration P, = (0,0,0)7 and
o, = (0,0,0)7 of the vehicle, the simulation results given in
Fig. 3 and Fig. 4 show the variation of the position and atti-
tude variables for the reference inputs P; = (5,—5,—10)"
and y, = m/2 under random disturbance.

Note that position and angle references are tracked with
negligible steady state errors. The lift forces generated by
each rotor are shown in Fig. 5.

It is important to note that the control effort is small and
the magnitude of the forces that need to be generated don’t
exceed the physical limits (~ 16 N) of the rotors and remain
in the £%20 margin of nominal thrust.

A 3D visualization environment in MATLAB using VR
tool has been developed to visualize maneuvers of the aerial
vehicle in 3D space. Result of applying LQR control is
depicted in Fig. 6.

The sliding mode controller performed very good in track-
ing the reference inputs. Fig. 7 and Fig. 8 show the response
of sliding mode controller in tracking the desired references.
Note that, even though the reference angles are relatively
large (i.e. 0.5 rad), the controller reaches the desired roll and
pitch angles within almost 1 second. The sluggish response
in yaw movement is due to the nature of the actuation.
Moreover, even though the altitude response is almost as fast
as LQR controller, the sliding mode control of altitude has
almost zero overshoot in comparison to LQR. Fig. 9 shows
the control effort of sliding mode control.
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time [s]

Fig. 3. Position control of the vehicle using LQR
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Fig. 4. Attitude control of the vehicle using LQR
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Fig. 5. Forces generated by the motors
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Fig. 6. Visualization of Position and Heading Control Results of LQR
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Fig. 7. Attitude Control Using Sliding Mode Controller

V. CONCLUSION AND FUTURE WORKS

In this paper we have reported our ongoing work on
modeling and control of a new tilt-wing aerial vehicle
(SUAVI). The full dynamic model of the vehicle is derived
using Newton-Euler formulation. An LQR based position
control algorithm is developed and applied to the nonlin-
ear dynamic model of the vehicle in vertical flight mode.
A good position tracking performance is obtained using
this controller. Furthermore, a sliding mode controller with
recursive implementation is tested to provide the attitude
and altitude stability of the vehicle. Results show that the
proposed method performs good tracking of the desired
attitude and altitude. Future work will include improvements
on the controller synthesis. Experiments will be performed
on the actual vehicle.
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Fig. 9. Control Effort in Sliding Mode Controller

VII. APPENDIX

The drag and lift forces created by the wings are modeled
using the data obtained from ANSYS® simulations.

Lift [N]

Fig. 10. The Lift and Drag Forces Created by the Wings
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