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Abstract—Partial discharge (PD) detection is an importa
method to evaluate the insulation condition of rrel@d apparatus.
Non-intrusive sensors which are easy to install drale no
interruptions on operation are preferred in on$e detection.
However, it often lacks of accuracy due to therfetences in PD
signals. In this paper a novel PD extraction methadl uses frequency
analysis and entropy based time-frequency (TF)yarsais introduced.
The repetitive pulses from convertor are first rgatvia frequency
analysis. Then, the relative entropy and relatieakpfrequency of
each pulse (i.e. time-indexed vector TF spectrum)calculated and
all pulses with similar parameters are grouped.ofding to the
characteristics of non-intrusive sensor and theuieacy distribution
of PDs, the pulses of PD and interferences areratguh Finally the
PD signal and interferences are recovered via sev@F transform.
The de-noised result of noisy PD data demonstrdtes the
combination of frequency and time-frequency techag can
discriminate PDs from interferences with variousegfrency
distributions.

Keywor ds—Entropy, Fourier analysis,
measurement, time-frequency analysis, partial diggh

|. INTRODUCTION

ETECTING and identifying partial discharges (PDg) i

metal-clad apparatus such as gas or oil insulat@dhgear
and transformers are well-established procedurds{1jaditional
methods, the PD sensors are mounted inside théicnetglosure
which promises high signal to noise ratio (SNR).t Bor
operational switchgears and transformers withoth 8D sensors,
arranging a shutdown specifically to fit internauplers rarely can
be justified[1]. So external non-intrusive senseinich are easy to
install and have no interruptions on operationt&®oming more
and more popular for the devices which are noalsidgitto install
internal sensors. Usually, the radiating electromag wave from
PD source escapes out of the cracks on switchgdaramsformer
enclosure and forms a small pulse-like voltagehennetal tank
surface. This is so called transient earth vol@gg/)[2],[3]. The
non-intrusive PD sensors detect those impulsive Figdals to
determine the existence of PD.
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non-intrusive

nt When detecting PDs on the external surface of smagpone of
the major problems that need to be addressed isttréerences
from surroundings.

Some hardware solutions such as non-intrusive s&nso
shielded with metal cover have been proposed toirite
noises. Besides hardware design and improvementsigimal
processing based noise-rejection is also a powdlito reject
noises in measured PD signals with much lower cokte
time-domain features such as pulse height and pdagle, as
well as the frequency-domain features such as éegu
distribution, are often used to discriminate P@srfmoises([4].
Meanwhile, the time-frequency (TF) analysis andfieidl
intelligence are also utilized[5]-[7].

All these approaches have pros and cons. The toneuh or
frequency-domain algorithms are simple, fast, aadyeto
realize. But they have drawbacks when used tondistsh
pulses with similar features. For instance, it é&yhard for
time-domain analysis which only reflects time-domggatures

to discriminate PD and impulsive noise if two pslsEcur at
the same time. This is also true for frequency-damaethods

- when the frequency ranges of PD and pulses ovaiitéipeach
others. Therefore, time-frequency analysis whickeads the
energy variation with both time and frequency wasppsed.
However, separation of pulses occurring at same tmd
having same frequency range is still a questionamvile,
how to extract PDs from the TF spectrum remainsig b
challenge. Atrtificial intelligence based methodstsas neural
network and fuzzy logic have also been employedvéi@r,
the large database that is needed in traininguallydifficult to
collect in most field tests. Therefore, all theppr@aches are
good at removing particular kinds of noises. Anythme alone
may not produce good results in rejecting all r®igeon-site
PD measurement. Combination of the signal procgssin
methods in different domains is a potential wagxtract PDs
from noisy background.This paper proposes a novel P
extracting method which, based on frequency distidin,
groups the pulses with similar features and rejecise
according to the PD characteristics. This papeimsegith the
fundamentals of non-intrusive measurement. Thenfahatures
of noises and possible rejecting methods are discudNext, an
advanced PD extracting method is introduced and¢tails of
its algorithm are analyzed. Finally, this PD extirag method is
performed on a noisy PD signal to demonstratefiéstveness
in noise rejection.
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Il. MEASUREMENTSETUP

When PD occurs in electrical apparatus, there vsleage
induced on its grounded or earthed metallic enctsiio
illustrate this idea, a laboratory test is set sglaown in Fig.1,
where a PD generator is placed inside a metaltitosare. The
PD signals are recorded using an oscilloscope. t(deix
TDS7104, band width: up to 1GHz and sampling rateto
10GHz/s).

LI |

Fig. 1 PD generator placed inside a metallic enckg(a) enclosure
with its cover open, (b) enclosure with its covieise

A. PD Sensor

Fig.2 shows the drawing of the developed coaxiasgefor
non-intrusive PD measurement with protruding incerductor
(part 4) extending beyond the bottom of outer catau(part
3). Part 1 is the female BNC interface and it iegnated with
part 2.

Fig. 2 Coaxial PD sensor

Since the electrical apparatus are located insideetal
cladding, the high frequency components of the BDerging
in the apparatus attenuate greatly through propagafhe
high-frequency energy of most PDs detected on thiside
surface cannot be greater than low frequency palgss a
high-frequency amplifier is added. Therefore, tlegensor for
non-intrusive measurement should have a frequeesgonse
range wide enough to capture PD energies as mupbsaible
and a lower-cutoff frequency small enough to enstre
less-distorted low-frequency energy are recorded.

As an important factor, the amplitude responsdefcoaxial
sensor is shown in Fig.3.
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Fig. 3 Amplitude response of the coaxial sensor

Here, U/Ui| equals to the absolute value of output voltage
divided by input voltage at different frequenci@he -3dB
point is around 80Hz at low frequency side and add@MHz at
high frequency side. The -3dB point is definedresftequency
where 20logy|U,/U;j| equals -3.

B. PD Features with Non-Intrusive Measurement

In Fig. 1(a), besides the PD generator, theresis alHFCT
placed inside the metallic cavity. Using the twmitr coaxial
sensors as shown in Fig. 2 and the HFCT, PD measumtevas
carried out in our laboratory. The sensor placedide and on
top of the metallic enclosure has its part 4 oremelectrode
electrically contact with the outer surface of tio@ of the
metallic enclosure. Similarly the sensor placedidesthe
metallic enclosure has its part 4 electrically eshtwith the
interior surface of the bottom of the metallic @stire. The
results are shown in Fig.4 for two different dusas, where the
top wave is measured PD pulses using HFCT; the lmigdve
is data from the sensor placed inside the enclpsueebottom
wave is output from the sensor placed outside tiosure.
From these two figures, one can see that the med D pulses
are almost the same from the two coaxial sensaeglinside
and outside the metallic enclosure. Thus one canlade that
when PD occurs inside the enclosed metallic cathigre is an
induced voltage on its interior metallic surfacéjeh is almost
equally measurable by the sensor placed outsidd his
provides fundamental basis for field test of metald apparatus
using non-intrusive PD sensing technique.
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Fig. 4 Measured PD pulses with different duratigasPDs of a power
frequency cycle (20 milliseconds), (b) PDs of 4lisgéiconds

The frequency distribution of signal collected byaxial
sensor is generated by Fourier transform and slimwiy.5.
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Fig. 5 Frequency distribution of signal in Fig.4(b)

If Fig.5, 20logy(JF(w)|) values are plotted to give a clear
understanding. Herer(w)| is the Fourier transform of sigral
in Fig.4(b), » denotes the frequency. The higher frequency
range such as 30MHz that goes beyond the signdlreap
capability of coaxial sensor could be assumed tddyeinated
by white noise. Then, the noise level in Fig.5rsuad 60dB
which equals to the values of frequency distributiegher than
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30MHz. The PD energies greater than this noisel lave
concentrated below 15MHz.

I1l.  NOISETYPESAND FEATURES

Noise can be due to several kinds of sources amadaaple
with the systems in different ways and with difieréeatures.
Therefore, noise rejection has no omnipotent smhutind is
best approached by devising several techniquek, @athem
tailored for a specific kind of noise[8]. To devplsuitable tools
for each kind of noise, the noise types and featare analyzed.
Much previous work and field tests suggests thanitises that
most likely need to be rejected during on-site mezsents of
metal-clad apparatus are: white noise, harmoniegetitive
pulses and random pulses[9]. Those noises haveretliff
patterns and can be classified into two groups:ingrulsive
interferences and impulsive interferences. Featueesl
potential rejections of these two groups of intenfiees are
introduced in detail in following paragraphs.

A.Non-Impulsive Interferences

frequency-domain method is possible to separatesepul
occurring concurrently.

Besides the repetitive pulses from electronics mgent,
random pulse is another type of impulsive interieeethat is
often encountered in field test. Random pulses comm
switching operations, lightning and so on. In gahethere is
not any correlation between supply voltage wave r@mtiom
pulses, and the random pulses from the same seweceot
identical at different time moments. Thus, unlikepetitive
pulses, the large-amplitude singularities in fregyedomain
which are caused by repetitive occurrence of sanhgep are
seldom found in the frequency domain of random guilét is
very hard to discriminate PDs from random pulsea vi
frequency-domain  analysis. However, the frequency
distributions of pulses from the same source meshighly
similar and different from those of pulses fromestisources.
For example, the PD pulses from the same sourdetréhzel
along the same path should have identical distortiaring
propagation. Their frequency distributions must diferent
with those of pulses that happen in the immedietiaity of PD

Non-impulsive interferences include white noise angensor which means less distortion. This differéenéequency

sinusoidal noises.

White noises are the most common background noitsey
are usually generated by amplifier, oscilloscope amny
electrical equipment. White noises are equal-posignals.
They have equal power density throughout the wirelguency
range.

distribution of each pulse suggests that the PDisnaises can
be classified and recognized pulse-by-pulse acogrtti their
frequency distributions. Time-frequency analysiansefficient
tool that reveals the frequency distribution ofteaalse if the
parameters are selected appropriately. It coul@ Ipotential
solution of grouping pulses with similar frequemtistributions.

The harmonic signals usually come from communicatio

systems or electronics equipments. They contain esam

frequency components throughout all time. Their rgpe
decreases greatly in the frequency range that niaesqual to
their oscillating frequencies. Therefore, they appe be sharp
singularities in frequency domain or time-axis-flatag strips
in time-frequency domain.

Commonly, the white noise and harmonics can betegjeby
frequency-dependent thresholding. Both of themvarg easy
to remove when comparing with impulsive interferesc

B. Impulsive Interferences

Impulsive interferences usually include repetitwdses and
random pulses. Impulsive disturbance is difficaltistinguish
by using only one technique because of its sintylasith PD
pulses in some aspects. The methods such as thteshehich
is effective to remove white noise and harmonias aften
ineffective to remove pulse-like disturbances. Effere,
advanced method should be explored.

Repetitive pulses usually come from electronicsaaaius
such as AC/DC convertor and rectifier. The repatitpulses
from same source must have same features (i.eueney
distribution). Meanwhile, because of the regulartaving
behaviors of electronics equipment, the repetipivises tend to
group at equally-spaced phase values. Highly-ripeti
occurrence of these exactly same and equally-spadeds can
produce large-amplitude singularities in frequerdgymain.
This characteristic suggests a possible solutiomepgtitive
impulsive noise in frequency domain.

IV. PROCESSINGSYSTEM

The noise rejecting method proposed here is maabgd on
frequency distributions of PD and noises. Referringthe
analysis of noises in section I, the non-imputsipises can be
rejected via thresholding, the repetitive pulsas loa removed
by frequency analysis and the random pulses casldssified
by their time-frequency distributions. Thereforrele main
steps are included in this de-noising method: poegssing, TF
feature extraction, and pulse extraction. Here, fE€&ture
extraction and pulse extraction are combined to Ri2
extraction. The flowchart in Fig.6 illustrates theocedure of
processing system.

TF feature
extraction

Sienal Pre- | | || Pulse Extracted
£ processing Extraction PD

Fig. 6 Flowchart of the processing system

A. Pre-processing

Pre-processing is based on frequency-domain asalyke
repetitive pulses and harmonics that have largeggnén
frequency domain are removed by this step. As oeet in
section lll, harmonics and repetitive pulse can dpae
large-amplitude singularities in frequency domén.the other

hand, PD is a random phenomenon and cannot generate

large-amplitude singularities in frequency domdiherefore,

Furthermorae t the large-amplitude singularities in frequency domean be
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regarded as noise-related energies. In this prapos¢hod, the
frequency distribution of whole signal is generatéal Fourier
transform and the large-amplitude singularitiesraraoved. In
most cases, the highly-repetitive pulses can beovenh in
pre-processing.

B. PD Extraction

After pre-processing, which rejects most repetipwdses in
noisy data, the frequency distribution of each @idsgenerated
by time-frequency analysis. Here, short-time Fauignsform
(STFT) is employed. The size of sliding window édested to
be the duration of longest pulse in noisy signaémsure the
whole frequency distribution of a single pulsenigluded in one
time-indexed vector in TF spectrum. Therefore,
time-indexed vector in TF spectrum is analyzed eadsified.
Two parameters: relative entropy and relative peaduency
are employed to describe the frequency distributibreach
time-indexed vector. Pulses with similar parametare
clustered and classified. Finally, based on PDufeaanalysis,
the noises are rejected and PD pulses are retained.

V.PRE-PROCESSING

As mentioned in section lll, repetitive pulses frtdme same
source should have the same characteristics. Hrgplgtitive
occurrence of these identical and equally-spacdgdepucan
produce large-amplitude singularities in frequerdgmain.
Fig.7 gives an example to demonstrate this phenomeFhis
repetitive pulse signal is generated by a hightfeegy PFC
(power factor correction) convertor in laboratondaletected
by coaxial sensor in Fig.2.
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Fig. 7 The Fourier coefficients of repetitive puds# one cycle and a
single pulse, (a) noise of one cycle, (b) singlsapulse,(c) the real
Fourier coefficients of signal in (a), (d) the intaayy Fourier
coefficients of signal in (a), (e) the real Foueefficients of pulse in
(d), (f) the imaginary Fourier coefficients of pals (d)

Fig.7 shows most energy of single noise pulse ishi
frequency band from 15MHz to 20MHz. This is coresastwith
the energy distribution of pulse group of one cyMeanwhile,
the amplitude of Fourier coefficients decreasesttydf the
frequency does not correspond to the peak freqeenci

According to this characteristic of repetitive pdsa Fourier
coefficients based noise reduction method is pregoas
follow: First, the real and imaginary Fourier caafints of
noisy data are produced by Fourier transform. treoto keep

the smooth energy in Fourier coefficients, the fietcy axis is
divided into many small frequency bands. Each bhad a
bandwidth of 0.5MHz. An empirical threshole 8 applied and
moving along the frequency axis to detect the dargabints in
each frequency band. Hekejs the estimation of white noise.
Theoretically, setting the singular coefficients zero could
totally remove the periodic energy. But in pradtigaplication,
the nearby coefficients of singular points also endsrge
amplitude. Afilter [1, 1-In, ..., ¥n, O, Un, ..., 1-Un, 1] is thus
employed, wherer-1 is the width of filter. The filter's shape
looks like an inverted triangular. By filtering te@gular points
with this inverted triangular filter, the coefficits near the
singularities can also be reduced.

each

VI. PDEXTRACTION

A. Pulse Features Extraction

In order to extract PD pulses effectively and awttcally,
the features of frequency distributions need texieacted. The
extracted features must be independent of shiftaripy
amplitude, and sampling points. These requiremsatgest
that the PD pulses from the same source with diffephase
angles, magnitude, and sampling rates should hawgas
features. The requirements can be satisfied bygusfative
entropy and relative peak-frequency which are dated with
normalized TF spectrum.

In this paper, the TF spectrum is generated bytshmoe
Fourier transform (STFT). It has often been usedetermine
the sinusoidal frequency components and phaserésatfilocal
sections of signal. For any signalthe resulting STFT is as
follow:

Sué)=(f.g,)=[ fOgt-ued 1)

The sliding windowg, (t)=€“'g(t-u) is a real and symmetric
window g(t)=g(-t), translated byu and modulated by the
frequencyé. It is normalized ¢jj|=1, so thatd,:|=1 for any real
numbersu and¢.

PD pulses have a quite short duration and wideufaqy
range[10]. Empirically, a window with larger bandith and
rapid decay is better for TF analysis of PD sigiale hanning
window is thus selected. In order to keep enouglyuency
resolution and ensure whole frequency distributioging
contained in one time-indexed vector, the sizeiatlawg(t) is
defined

K :{max{|K koz K =LK /2 modN },if L=2 s @
2 us, if L<2 us

where,L is the length of pulse with longest duration ifsgd®D
dataF, N is the length oF. When the longest duratidrof pulse
is greater than 2 microseconds, the windowKizethe smallest
integer that satisfiek>L andK/2 dividesN. If L is shorter than
2 microseconds, the window siKeis set to 2 microseconds to
promise enough resolution in frequency.
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When the windowg(t) slides along the time axis, the

frequency spectrum of the windowed signal is rexeallhe
spectrum of the whole time range forms a two-dirtarsd
representation of signal which is called time-frexgey
spectrum[11]. It is denote®k;:

P (U&= &) ®)

From the definition of TF spectrum, one can edsily whole
frequency distribution of single pulse is containied one
time-indexed TF vector. This time-indexed
distribution is independent of the polarity and ghangle of
pulses.

The time-indexed vector in TF spectrum is actuahg
energy distribution of pulse in TF domain. Its dméénts vary a
lot with frequency. To produce a feature unaffecteyl
magnitude, normalization of TF spectrum is appésdollows:
the TF spectrum indexed by each frequency is sciietleby its
minimum value and then is divided by its maximumuea
Thus, in normalized TF spectrum, the minimum anaimam
value in whole TF spectrum is 0 and 1, respectividlywever,
in this normalized TF spectrum, the influence fromwises,
especially white noise, cannot be ignored because
differences between pulse and noise coefficientsredse
greatly. Thus, to eliminate the influence from whitoise, the
smaller coefficients in each frequency are remowsda
threshold. To select as much large-amplitude adefits as
possible, a threshold with smallest estimation rskeeded.
The minimax estimation which has been proved toehav
smaller estimation risk than most other threshgdechniques
is provided in [12], which uses a threshold to giehinimax
performance for mean square error against an jzeakedure.
For easy application in program design, an appratém
minimax estimator can be used[13]. The threshi@duals:

. { 0 (m<32) @)
£*(0.3936+ 0.1829*logm | (m>32)

where m is the length of time scale and=N/M, ¢ is the

estimated variance of noise. As white noise of desfpuency
follows Gaussian distribution, the estimated var@&anof

Gaussian noise was proved toslbeMy/0.6745 wheréMy is the

median of absolute coefficients. The coefficiersgggér than
threshold are regarded to contain pulse energy.

After normalization and thresholding, the time-ireé
vectors in revised TF spectrum denote the reldtieguency
distributions of all pulses. This relative frequgrdistribution
satisfies all the requirements of features sudh@spendent of
shift, polarity, amplitude, and sampling points. vitwer, in
order to discriminate PD pulses from noises autmalif,
parameters that can describe this relative frequdistribution
are needed. Therefore, relative entropy and relative
peak-frequencyr are proposed.

t UE:H(X)/H(X)max

2517-9438
No:2, 2012

1) Relative Entropy

Entropy is a measure of disorder. Here, the entropgns
Shannon Entropy. The more chaotic signal must gemer
greater entropy. That means the time-indexed vexdbich has
more varying coefficients will generate larger epir value.
The entropyH of each time-indexed vectot with possible
values i, X, ..., X} is defined as follow[14]:

H(X) =-3 px)I0g, PX) 5)

frequency

wherep(x;) is the probability ok, andb is the base of logarithm.
Common value ob is 2, and the unit of entropy is bit.

From (5), we can conclude that the valuél¢X) depends on
the size of time-indexed vectof. In order to eliminate the
influence from size, the relative entropy which equals the
ratio of entropy value of each time-indexed vectorthe
maximum entropy oK is proposed. As shown in (5), entropy
valueH(X) reaches its maximum when all probabilitgs) are
equal,p(X)=p(%z)=...=p(X,)=1/n, andH(X)ma=l0gyn, wheren
is the size oK. Thus, the related entropy is defined as:

(6)

The relative entropy only reflects the relativeodder of
frequency distribution of each pulse. It is indegemt on the
size of vectorX. That is to say this relative entropy is
independent on the sampling rate and size of gliiimdow.
The pulses of the same type which have similarueegy
distribution should have similar relative entropy.

2) Relative Peak-Frequency

Since the relative entropy of time-indexed TF spentis a
measure of chaotic distribution, pulses with difer
distribution but similar disorder may have similantropy.
However, if two pulses from different sources haimilar
relative entropy values, their frequencies wittgést energy
cannot be the same because of their different &egu
distributions. Therefore, the location of peak-fregcy or the
frequency of largest energy in each time-indexectoreX is
employed in classification. Similarly, in order éiminate the
influence from size ofX, the relative peak-frequenast is
defined

0 =F(X)/Fpa, (7)

Here, F(X) is the frequency with maximum energy in
time-indexed vectoX, F.xis the size oK which is half of the
sampling rate. As a parameter that describesvellitation of
peaks in frequency distributions, relative peakyfrency o¢
also satisfies independency requirements mentibeéate.

B. PD Pulse Extraction

PD pulse extracting algorithm groups the pulseh wsitnilar
parameters at first and then extracts the grougraups with
most similar features with PDs. Therefore, PD pefsgacting
method includes two steps: pulse grouping and rrejgetion.
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The combined signal is made of a field-collectes@and a

As discussed in section VI.A, two parameters: netat laboratory-generated PD data. Both signals arectimteby the
entropyse and relative peak-frequeney are used to describe coaxial sensor in Fig.2. The PD signal is deteotethe outside

the frequency distribution of each time-indexedtgeavhich
contains whole information of each pulse. The vectoith

surface of metallic enclosure. The noise dataliscted on the

external surface of a gas-insulated switchgear. The

similar parameterse and o are grouped in this step. Infield-collected noise data contains several kinflanpulsive

practical application, pulse grouping should b¢ &l be able
to deal with complex situations such as large nurobpulses.

Clustering analysis was proved to be effective riouging
data[8]. The distance between two points are caiedl and
compared. The points are grouped if the distantedsn them
is small and separated if the distance is largaallls clustering
analysis is a time-consuming procedure since tlstamices
between every two points should be calculated.

However, because only two parameters: relativeopyitse

and relative peak-frequeney are employed in this proposed

method, the points near to each others should saw#ar

values of bottwz andor. Therefore, the two parameters are firs

grouped respectively. For any one-dimensional vectoe
points that belong to the same group must be doseach
others and gather around their center. Between gwops,
there must be a boundary where the number of panisry
small. If the value range ofg or o is divided into many
intervals such as ten intervals, the histogram lwhienotes the
number of points of each interval reveals the dgmdipoints.
Maxima in histogram suggest centers of groups amina
suggest boundaries. Finding all the boundaries Endor can
divide the zones of clustered groups dgor plane. For
example, if there are two minima in histogramegfand one
minimum ofer, three and two segments are divideddandor,
respectively. Then six groups can be clustered-ia: plane.
Although the gathering results have little diffeces with the
one generated by ordinary clustering analysis, difference
should not be great as only two parameters areuded.
Meanwhile, this method is much faster.

2) PD reorganization

In non-intrusive measurement, the PD signal ocnssle
the cladding has to travel a long way before bemgtured by
PD sensors. Because their high-frequency energyedses
greatly during propagation, the relative peak-fgy o of
PD pulses should be smaller than impulsive noidéshwoften
have large oscillating components. On the othedhttre PD
pulses usually have short duration and wide frequeange.
That means, after thresholding, more coefficierith different
amplitudes are contained in the time-indexed veaft®D pulse
than those of other impulsive noises. The relagivgopyog of
PD-contained time-indexed vector is thus largeer&fore, the
pulse groups with larger: and smallesr can be classified as
PD.

VII. CASE Stuby

The results and procedure of processing a comtsiggl
with proposed method are reported in the follondogtent as
an example.

interferences from convertors. Since large diffeemn exist
between the magnitudes of laboratory and field ecodd
signals, the latter one is amplified before addiaghe PD
signal.

The original data and the results after pre-prangsare
shown in Fig.8.
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The frequency range of PD is up to 15MHz as inF-iBut as
illustrated in Fig. 8(b) and (c), most energy d& fleld-collected
repetitive pulses concentrate around 1MHz. The swgmals
have overlapping frequency ranges. However, thetitage
pulses appear to be some singularities in Founefficients
that are totally different from PDs. Apparently, eth
large-amplitude coefficients in original data (gregefficients
in Fig.8(b) and (c)) are removed. Since this fittgrmethod
processes signal in pure frequency domain, it dfecterely
separate PD pulse and impulsive interference wdichir at the
same time. In Fig.8(f), three pulses that occuhatsame time
are amplified to demonstrate the effectiveneskisfrnethod in
separating PDs and interferences that happen sinadtsly.
The noisy pulse is combined by one pulse from caoveind
one PD pulse. After filtering the Fourier coefficis, the PD
pulse and noise pulse are successfully separated.

The filtered data in Fig.8(d) is then analyzed BydXtracting
algorithm. The relative entropy: and relative peak-frequency
or are scattered in Fig.9(b). Heeg,andor are divided into ten
intervals. Since most data points in the first inaé of o are
zeros and the number is too larger than the otbextot all bars
in a same figure clearly, the first bar of the digam ofoe is not
shown in Fig.9(c). According to the histogramsgéndo, two
boundaries are selected. One is around 0.3¥% and the other
is about 0.256 iar. Thus, four zones are divideddgor plane.
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The signals of each zones are recovered via in&T$er
and portrayed in Fig.9(e) to (h). The signals reced with the
points in zone 1 are PD signals. Fig.9(b) showsdh®D pulses
have largete and smallebg as discussed in section VI.

The result of de-noising procedure shows that tie@gsed
method is able to detect PD signal and separé&ienit noises.
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Fig. 9 Extracted PDs and noises, (a) filtered d@eg=-or plane, (c)
histogram ob, (d) histogram oér, (e)-(h) extracted pulse of each
zone

VIII. CONCLUSION

Automatic PD extraction is realized in this paplerotigh
appropriate design of PD sensor and selectionitzftda signal
processing tools based on frequency distributiéi®&Dbpulses.
According to the result of processing the combineigy PD
signal, this approach is capable of separating lshginoises
from PDs. Therefore, this advanced PD de-noisinthatecan
successfully supersede other existing PD de-noisigifnods in
solving the problem of PD pulse extraction. It heeyeral
advantages over existing methods such as fastlaatruand
separating simultaneously-occurring pulses.
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