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Abstract—This work presents the highly accurate numerical calcu-
lation of the natural frequencies for functionally graded beams with
simply supported boundary conditions. The Timoshenko first order
shear deformation beam theory and the higher order shear deforma-
tion beam theory of Reddy have been applied to the functionally
graded beams analysis. The material property gradient is assumed
to be in the thickness direction. The Hamilton’s principle is utilized
to obtain the dynamic equations of functionally graded beams. The
influences of the volume fraction index and thickness-to-length ratio
on the fundamental frequencies are discussed. Comparison of the
numerical results for the homogeneous beam with Euler-Bernoulli
beam theory results show that the derived model is satisfactory.

Keywords—Functionally graded beam, Free vibration, Hamilton’s
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I. INTRODUCTION

In recent years functionally graded materials (FGMs) have
gained considerable importance as materials to be used in
extremely high temperature environments such as nuclear
reactors and high-speed spacecraft industries [1]. FGMs were
first introduced by a group of scientists in Sendai Japan in
1984 [2]. FGMs are new inhomogeneous materials, in which
the mechanical properties vary smoothly and continuously
from one surface to the other. This is achieved by gradu-
ally varying the volume fraction of the constituent materials.
This continuous change in composition results in the graded
properties of FGMs [3]. This gradation in properties of the
material reduces thermal stresses, residual stresses and stress
concentration factors [4]. Typically these materials are made
from a mixture of ceramic and metal or from a combination
of different materials. The ceramic constituent of the material
provides the high-temperature resistance due to its low thermal
conductivity. The ductile metal constituent on the other hand,
prevents fracture caused by stresses due to the high tempera-
ture gradient in a very short period of time. Furthermore a
mixture of ceramic and metal with a continuously varying
volume fraction can be easily manufactured [5]. The vibration
of beams is important in many applications pertaining to
mechanical, civil and aerospace engineering. Beams used
in real practice may have appreciable thickness where the
transverse shear and the rotary inertia are not negligible as
assumed in the classical theories. As a result, the thick beam
model based on the Timoshenko theory has gained more
popularity. The static and free vibration analysis of sandwich
beams were carried out to investigate the behavior of sandwich
beams [6-8]. Shear deformation theories are those in which
the transverse shear stresses are accounted for. The first order
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shear deformation theory (FSDT), commonly known as the
Timoshenko beam theory, accounts for layerwise constant
states of transverse shear stresses. In the first order shear
deformation theory (FSDT) it is assumed that 1) the straight
lines do not undergo axial deformation (i,e.,inextensible); 2)
straight lines perpendicular to the midsurface (i.e., transverse
normals) before deformation remain straight after deformation,
whereas the third order shear deformation theory (TSDT)
accounts for layerwise parabolic distribution of transverse
shear stresses (i.e., assumption 2 is removed) [9].

In the present paper, the Navier solution is developed to ana-
lyze the free vibration of simply supported functionally graded
(FG) beams based on the first order and third order shear
deformation theories (FSDT and TSDT). The objective is to
study the frequency characteristics and the influence of graded
material properties on the natural frequencies. A comparison
of fundamental frequencies predicted by the two theories is
presented and the results are validated with compression of the
numerical results for homogeneous beam with Euler-Bernoulli
beam theory results.

II. BASIC EQUATIONS

Consider a FG beam with rectangular cross section, length
L, width b, and constant thickness h. The beam is assumed
to be graded through the thickness direction. The constituent
materials are assumed to be ceramic and metal. The volume
fractions of the ceramic and metal corresponding to the power
law are expressed as [10]

Vc = (
2z + h

2h
)k, Vm = 1 − Vc (1)

where subscripts m and c refer to the metal and ceramic
constituents, respectively. Also, z is the thickness coordinate
(−h/2 � z � h/2), and k is volume fraction index that takes
values greater than or equal to zero. The variation of the
composition of ceramics and metal is linear for k = 1.

The value of k equal to zero represents a fully ceramic
beam. The mechanical properties of FGM are determined
from the volume fraction of the material constituents. We
assumed that the nonhomogeneous material properties, such
as the modulus of elasticity E and and the density of material
ρ change in the thickness direction z based on Voigt’s rule over
the whole range of the volume fraction [10]; while Poisson’s
ratio ν is assumed to be constant [11] as

E = E(z) = EcVc + Em(1 − Vc)
ρ = ρ(z) = ρcVc + ρm(1 − Vc)
ν(z) = ν0 (2)
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Substituting Eqs.(1) into Eqs.(2), material properties of the
FG beam are determined, which are the same as the equations
proposed by Praveen and Reddy [14]

E = E(z) = Em + (Ecm)(
2z + h

2h
)k

ρ = ρ(z) = ρm + (ρcm)(
2z + h

2h
)k

ν(z) = ν0 (3)

where

Ecm = Ec − Em,

Gcm = Gc − Gm, (4)
ρcm = ρc − ρm

The third order shear deformation theory (TSDT) of Reddy
used in the present study is based on the following displace-
ment field [13]

u(x, z, t) = u0 + z[φ0 − αz2(φ0 +
∂w

∂x
)]

w(x, z, t) = w0 (5)

where α = 4/(3h2), and u and w denote the displacement
components in the x and z directions, respectively; and φ0

is the rotation of the transverse normal about y axis. All of
the generalized displacements (u0, w0, φ0) are functions of x
and t. Note that the displacement field of the first order shear
deformation theory (FSDT) can be deduced from Eq. (5) by
setting α = 0. The linear strain-displacement relations for
plane-strain condition are

εxx = ε(0)xx + zε(1)xx + z3ε(2)xx ,

γxz = γ(0)
xz + z2γ(1)

xz (6)

where

ε(0)xx =
∂u0

∂x
, ε(1)xx =

∂φ0

∂x
,

ε(2)xx = −α(
∂φ0

∂x
+

∂2w0

∂x2
) (7)

γ(0)
xz = φ0 +

∂w0

∂x
, γ(1)

xz = −3α(φ0 +
∂w0

∂x
)

where εxx and γxz are the normal and shear strains, respec-
tively. Hook’s law for a FG beam is defined as(

σxx

σxz

)
=

( Q11

0
0

Q55

)(
εxx

γxz

)
(8)

The normal stresses σzz are assumed to be zero. Also, Qij

are defined by

Q11 =
E(z)
1 − ν2

0

, Q55 =
E(z)

2(1 + ν0)
(9)

The equations of motion appropriate for the displacement field,
Eq. (5), can be derived using the Hamilton’s principle as

∂Nxx

∂x
= I0ü0 + Ī1φ̈1 − αI3

∂ẅ0

∂x
∂Mxx

∂x
− Q̄x − α

∂Pxx

∂x
= Ī1ü0 + Ī2φ̈1 − αĪ4

∂ẅ0

∂x
∂Q̄x

∂x
+ α

∂2Pxx

∂x2
+ q = I0ẅ0 + αI3

∂ü0

∂x

+αĪ4
∂φ̈1

∂x
− α2I6

∂2ẅ0

∂x2
(10)

where

Ī1 = I1 − αI3, Ī2 = I2 − 2αI4 + α2I6

Ī4 = I4 − αI6, Q̄x = Qx − 3αRx (11)

Here the applied in-plane forces are assumed to be zero. The
superposed dot denotes differentiation with respect to time, q
is the distributed transverse load, and (Nxx,Mxx, Pxx) and
(Qxx, Rxx) are the stress and moment resultants, respectively,
and defined as ⎛

⎝ Nxx

Mxx

Pxx

⎞
⎠ =

∫ h/2

−h/2

σxx

⎛
⎝ 1

z
z3

⎞
⎠dz

(
Qx

Rx

)
=

∫ h/2

−h/2

σxz

(
1
z2

)
dz (12)

Also, the inertias Ii (i = 0, 1, 2, 3, 4, 6) are defined by

Ii =
∫ h/2

−h/2

ρ (z)i dz (13)

The force and moment resultants can be expressed in terms
of the strains as

Nxx = A11ε
(0)
xx + B11ε

(1)
xx + D11ε

(2)
xx

Mxx = B11ε
(0)
xx + E11ε

(1)
xx + F11ε

(2)
xx

Pxx = D11ε
(0)
xx + F11ε

(1)
xx + H11ε

(2)
xx

Qx = A55γ
(0)
xz + D55γ

(1)
xz

Rx = D55γ
(0)
xz + F55γ

(1)
xz (14)

where

(A11, B11,D11, , E11, F11,H11)

=
∫ h/2

−h/2

(1, z, z2, z3, z4, z6)Q11 dz

(A55,D55, F55) =
∫ h/2

−h/2

(1, z2, z4)Q55 dz (15)

where Aij , Bij , and Dij are extensional, bending extensional
coupling, and bending stiffnessess, respectively. Also, Eij ,
Fij , and Hij are high order stiffnessess.

III. THE NAVIER SOLUTION

Navier solution is used to analyze the free vibration
problem of simply supported FG beams. We express the
generalized displacements as products of undetermined
functions and known trigonometric functions so as to satisfy
identically the simply supported boundary conditions at
x = 0, L

For TSDT:

w = Nxx = Mxx = Pxx = 0 (16)

For FSDT:

w = Nxx = Mxx = 0 (17)
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For the free vibration case, we set the load term q to zero,
and represent the displacement quantities as⎛

⎝ u0(x,z,t)
w0(x,z,t)
φ1(x,z,t)

⎞
⎠ =

⎛
⎝ U cos βx

W sin βx
A cos βx

⎞
⎠e−iωt (18)

where β = mη/L, and ω denotes the natural frequency. The
representation (18) is valid for TSDT and FSDT. By substitut-
ing Eqs. (18) into Eqs. (10), three differential equations can
be obtain as

(C − ω2M)

⎛
⎝ U

W
A

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ (19)

where the matrices C and M are symmetric matrices and
defined for TSDT and FSDT as (3 × 3) matrices by

c11 = −A11β
2

c12 = −(B11 − αE11)β2

c13 = αE11β
3

c22 = −(D11 − 2αF11 + α2K11)β2

+6αD55 − A55 − 9α2F55

c23 = −(α2K11 − αF11)β3 + (6αD55 − A55 − 9α2F55)β
c33 = (6αD55 − A55 − 9α2F55)β2 − α2H11β

4 (20)

m11 = −I0

m12 = −(I1 − αI3)
m13 = αI3β

m22 = −(I2 − 2αI4 + α2I6)
m23 = −αβ(α − I4)
m33 = −(I0 + α2I6β

2) (21)

To obtain the nontrivial solution, the determinant should be
zero

| cij − mijω
2 |= 0 (22)

By solving the achieved equation for ω, the values of natural
frequencies of simply supported FG beams will be derived.

IV. RESULTS AND DISCUSSION

The Navier solution procedure developed in the previous
section is used to evaluate the natural frequencies of a FG
beam. Too illustrate the behavior of the derived vibration equa-
tions, an FGM beam of aluminum and alumina is considered.
Young’s modulus, Poisson’s ratio, and density for aluminum
are 70 Gpa, 0.3 and 2707 kg/m3. For alumina they are 380
Gpa, 0.3 and 3800 kg/m3, respectively. Note that Poisson’s
ratio is selected to be constant and equal to 0.3. The effects of
thickness-to-length ratio h/L and the volume fraction index
k on the natural frequency of simply supported FG beam
is investigated, and the non-dimensional natural frequencies
obtained using the first order and third order shear deformation
theories (FSDT and TSDT) for homogenous beam (k=0) are
compared with Euler-Bernoulli beam theory results [12] in
Table 1. As can be seen the results of two shear deformation
theories are in good agreement with the Euler-Bernoulli beam

theory results. Also, the frequencies predicted by the two shear
deformation theories are very close to each other.

The values of the non-dimensional natural frequency of
FG beams for various values of k based on two shear de-
formation theories are shown in Fig. 1-6. The results of the
two shear deformation theories are converged to each other at
k = 1 that shown in fig. 2. The natural frequencies decrease
with increasing the thickness-to-length ratio h/L and volume
fraction index k. Also, by decreasing of the thickness h the
results of FSDT and TSDT are completely synchronize and
converged to the constant values, because, the thickness h in
TSDT effects on transvers shear stresses as a coefficient, but
in FSDT the transverse shear stresses are constant along the
thickness and are independent of the thickness h. In other
word, with increasing the thickness of beam, the difference
between FSDT and TSDT will increases.

Table 1. Non-dimensional natural frequencies of simply supported
homogenous beam versus thickness-to-length ratio (k=0):

ω̄ = (ωL /h)(ρc/Ec).

h/L Euler-Bernoulli [12] FSDT TSDT
0.01 2.985526 2.986137 2.9861380

0.0125 2.985232 2.985827 2.9858280
0.0142 2.984340 2.985556 2.9855680
0.0166 2.984865 2.985155 2.9851680
0.02 2.983701 2.984505 2.9845054
0.025 2.982588 2.983285 2.9832858
0.033 2.979668 2.980657 2.9806572
0.04 2.976570 2.978020 2.9780220
0.05 2.971688 2.973193 2.9731941
0.066 2.961235 2.962858 2.9628610
0.1 2.931568 2.934044 2.9340570

0.02 0.04 0.06 0.08 0.1
2.23

2.235

2.24

2.245

2.25

2.255

2.26

2.265

2.27

2.275

h/L

ϖ

FSDT
TSDT

0.02 0.04 0.06 0.08 0.1
1.905

1.91

1.915

1.92

1.925

1.93

1.935

1.94

h/L

ϖ

FSDT
TSDT

(a) (b)

0.02 0.04 0.06 0.08 0.1
1.635

1.64

1.645

1.65

1.655

1.66

1.665

1.67

h/L

ϖ

FSDT
TSDT

0.02 0.04 0.06 0.08 0.1
1.54

1.545

1.55

1.555

1.56

1.565

1.57

1.575

h/L

ϖ

FSDT
TSDT

(c) (d)
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0.02 0.04 0.06 0.08 0.1
1.465

1.47

1.475

1.48

1.485

1.49

1.495

1.5

h/L

ϖ

FSDT
TSDT

0.02 0.04 0.06 0.08 0.1
1.38

1.385

1.39

1.395

1.4

1.405

1.41

1.415

h/L

ϖ

FSDT
TSDT

(e) (f)

V. CONCLUSIONS

An exact analytical solution is developed for free vibration
of simply supported FG beams based on the first order and
third order shear deformation theories (FSDT and TSDT).
The effects of volume fraction ratio and thickness-to-length
ratio on fundamental frequencies are investigated. The first
order and third order shear deformation theories (FSDT and
TSDT) can be used replace by another one for thin beams
with high accuracy, but TSDT has higher accuracy for thick
beams, therefore it is better to use this theory for thick beams.
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