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Abstract—In this paper, some brief sufficient conditions for the

stability of FO-LTI systems
dαx(t)
dtα

= Ax(t) with the fractional
order are investigated when the matrix A and the fractional order
α are uncertain or both α and A are uncertain, respectively. In
addition, we also relate the stability of a fractional-order system with
order 0 < α ≤ 1 to the stability of its equivalent fractional-order
system with order 1 ≤ β < 2, the relationship between α and β is
presented. Finally, a numeric experiment is given to demonstrate the
effectiveness of our results.
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I. INTRODUCTION

RECENTLY, fractional-order systems have gained consid-

erable importance mainly due to the following two facts.

First, fractional derivatives provide an excellent instrument for

the description of memory and hereditary properties of various

materials and processes, such as dielectric [1], electrode-

electrolyte polarization [2] and electromagnetic wave [3]. The

advantages of the fractional-order systems are that we have

more degrees of freedom in the model and that a memory is in-

cluded in the model. Second, fractional-order controllers such

as CRONE controller [4], TID controller [5] and fractional

PID controller [6] have so far been implemented to enhance

the robustness and the performance of the closed loop control

system.

The problem of stability is a very essential and crucial

issue for control systems certainly including fractional-order

systems [10], [19]. Stability of a linear fractional-order system

depends on the location of the system poles in the complex.

For commensurate fractional-order systems, powerful criteria

have been proposed. The most well known is the Matignon’s

stability theorem [7]. It permits us to check the system

stability through the location in the complex plane of the

dynamic matrix eigenvalues of the state space like system

representation. Matignon’s theorem is the starting point of

several results in the field.

Recently, LMI approach [8], [9], [10], Lyapunov approach

[11], [12] and Lambert W function approach [13], [14] have

been used to investigate the stability of FO-LTI systems. Using

LMI approach and Laplace transform, sufficient conditions are

proposed in [9] for stability of FO-LTI system
dαx(t)
dtα = Ax(t)

with fractional order 0 < α ≤ 1 and 1 ≤ α < 2, respectively.

According to [9], J.G. Lu and Y.Q. Chen ([10]) proposed

sufficient conditions for robust stability and stabilization of
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interval FO-LTI systems by using the LMI approach. The

paper [15] also investigated stability of FO-LTI systems by

finding a linear time invariant system with integer order that

has equivalently the same stability property as of the FO-LTI

system. But, until now, only a few LMI stability conditions

(one of which was given in [10]) were proposed for the

stability of FO-LTI system with fractional order 0 < α < 1.

In this paper, the stability of system
dαx(t)
dtα = Ax(t) is

investigated. It is organized as follows. In Section 2, the

problem formulation and some preliminaries are presented.

The main results are derived in Section 3. We first presents

a sufficient condition for the stability of FO-LTI system
dαx(t)
dtα = Ax(t) with the fractional order when the matrix

A is uncertain. Our condition is more briefer than the paper

[10], and then some sufficient stability conditions for the same

system are derived when the fractional order α is uncertain and

when both α and A are uncertain, respectively. In Section 4, a

numeric experiment are given to demonstrate the effectiveness

of our results.

II. PROBLEM FORMULATION AND PRELIMINARIES

The differ-integral operator, denoted by aD
α
t , is a combined

differentiation and integration operator commonly used in

fractional calculus which is defined by

aD
α
t =

⎧⎨
⎩

dα

dtα , α > 0
1, α = 0∫ t

a
(dτ)−α, α < 0.

There are different definitions for fractional derivatives

[16]. The most commonly used definitions are the Grünwald-

Letnikov, Riemann-Liouville and Caputo definitions. The Ca-

puto definition is sometimes called smooth fractional deriva-

tive in literature because it is suitable to be treated by the

Laplace transform technique, while the Riemann-Liouville

definition is unsuitable.

In the rest of the paper, Dα is used to denote the Caputo

fractional derivative of order α

Dαf(t) =
dαf(t)

dtα
=

1

Γ(α−m)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ (1)

where m is an integer satisfying m − 1 < α ≤ m. This

paper mainly focuses on the case that the fractional order is

0 < α < 1.

Next, consider the FO-LTI system described by the follow-

ing form
dαx(t)

dtα
= Ax(t) (2)
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where α is the fractional commensurate order, x(t) ∈ R
n

denotes the state vector, A ∈ R
n×n is the system matrix.

If the matrix A is uncertain, then the FO-LTI system (2)

can be described by state space equation of the form

dαx(t)

dtα
= Ax(t) (3)

where A ∈ [Am, AM ] = {[aij ] : amij ≤ aij ≤ aMij , 1 ≤
i, j ≤ n}.

If the fractional commensurate order α is uncertain, then

the FO-LTI system (2) can be described by the state space

equation of the form

dαx(t)

dtα
= Ax(t) (4)

where α ∈ [α1, α2], α1, α2 ∈ R.

If there are some coupling relationships in FO-LTI inter-

val system, the perturbation of model parameters A can be

considered as a function of variable α. Therefore, the FO-LTI

interval system can be described by state space equation of

the form ([17])

dα0+Δαx(t)

dtα0+Δα
= [A0 + k(α0 +Δα)ΔA]x(t) (5)

where A0 = A+A
2 , α ∈ [α1, α2], α1, α2 ∈ R, α0 =

(α1+α2)
2 ,Δα = (α2−α1)

2 .
Next, to prove the main results in the next section, we need

the following lemmas.

Lemma 2.1 ([7]). Autonomous system

Dαx(t) = Ax(t) (6)

with x(t0) = x0 and 0 < α < 2 is asymptotically stable if and

only if |arg(spec(A))| > απ
2 , where spec(A) is the spectrum

(the set of all eigenvalues)of A. Also the state vector x(t)
decays towards 0 and meets the following condition: ||x(t)|| <
Nt−α, t > 0, α > 0.

Lemma 2.2 ([10]). For any matrix X and Y with appro-

priate dimensions, we have

XTY + Y TX ≤ εXTX + 1
εY

TY , for any ε > 0.

Lemma 2.3 ([10]). Let X,Y, F be real matrices of suitable

dimensions. Then, for any x ∈ R
n

max{(xTXFY x)2 : FTF ≤ I} = (xTXXTx)(xTY TY x).

Lemma 2.4 ([18]). The FO-LTI systems (2) with order 0 <
α ≤ 1 is asymptotically stable if there exist a matrix X =
XH ∈ C

n×n > 0, such that

Ψ � (rX + rX)
T
AT +A(rX + rX) < 0, (7)

where r = ej(1−α)π
2 .

III. MAIN RESULTS

A. Stability analysis of systems Eq.(2)-(5) with fractional
order 0 < α < 1

LMI have played an important role in control theory since

the early 1960s due to this particular form. The main issue

when dealing with LMI is the convexity of the optimization

set. As the stability domain of a fractional system with order

1 ≤ α < 2 ia a convex set, various LMI methods for defining

such a region have already been developed.

In this section, a new LMI-based sufficient condition for

stability of systems (3) with order 0 < α < 1 and some

sufficient conditions of system (4)-(5) with order 0 < α < 1
are presented. Both our result and the condition in paper [10]

are sufficient condition, but the result in this paper is more

brief than that of [10].

First, for convenience, let us rewrite Lemma 2.5 as follows.

Lemma 3.1. The FO-LTI system (2) with order 0 < α < 1
is asymptotically stable if there exists a real symmetric positive

definite matrix P ∈ Rn×n and a real skew-symmetric matrix

Q ∈ R
n×n such that

1.

[
P Q
−Q P

]
> 0,

2. Φ = sin απ
2 (PAT +AP ) + cos απ

2 (QAT −AQ) < 0.
(8)

Proof: Using Lemma 2.4, we have the system (2) with order

0 < α < 1 is asymptotically stable if and only if

Ψ = (rX + rX)
T
AT +A(rX + rX) < 0. (9)

Let X = P +jQ, P ∈ R
n×n, Q ∈ R

n×n, X > 0 is equivalent

to the condition 1 in Theorem 3.1. Substitute the positive

matrix X and r = ej(1−α)π
2 = sin απ

2 + j cos απ
2 in the left

side of (9), we obtain

Ψ = [(sin απ
2 + j cos απ

2 )(P + jQ)]T

+[(sin απ
2 − j cos απ

2 )(P − jQ)]TAT

+A[(sin απ
2 + j cos απ

2 )(P + jQ)]
+A[(sin απ

2 − j cos απ
2 )(P − jQ)]

= 2(sin απ
2 P + cos απ

2 Q)AT + 2A(sin απ
2 P − cos απ

2 Q)
= 2[sin απ

2 (PAT +AP ) + cos απ
2 (QAT −AQ)].

(10)

So, Ψ < 0 if and only if the condition 2 in Theorem 3.1 holds.

This completes the proof. �
To deal with the uncertainty interval, we introduce the

following lemma.

Lemma 3.2([19]). The interval matrix A in the system (3)

is equal to

A = {A0 +DAFAEA|FA
TFA ≤ I}, (11)

where

A0 = 1
2 (A

m +AM ),ΔA = 1
2 (A

M −Am) = {γij}n×n,

DA = [
√
γ11e

n
1 , · · · ,

√
γ1ne

n
1 , · · · ,

√
γn1e

n
n, · · · ,

√
γnne

n
n]n×n2 ,

EA = [
√
γ11e

n
1 , · · · ,

√
γ1ne

n
n, · · · ,

√
γn1e

n
1 , · · · ,

√
γnne

n
n]

T
n2×n,
(12)

and enk ∈ R
n(k = 1, · · · , n) denote the column vectors with

the kth element being 1 and all the others being 0.

Next, let us establish a stable result of FO-LTI interval

system (3).

Theorem 3.1. Let A ∈ R
n×n and 0 < α < 1. The

fractional-order system (3) is asymptotically stable if there

exist a symmetric positive definite matrix P ∈ Rn×n, a

skew-symmetric matrix Q ∈ R
n×n, and two scalar constants
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εi > 0(i = 1, 2) such that

1.

[
P Q
−Q P

]
> 0,

2.

⎡
⎣ M1 sin απ

2 PE
T
A cos απ

2 QE
T
A

sin απ
2 EAP −ε1I 0

cos απ
2 (−EAQ) 0 −ε2I

⎤
⎦ < 0,

(13)

where

M1 = sin απ
2 (PA0

T +A0P ) + cos απ
2 (QA0

T −A0Q)
+(ε1 + ε2)DAD

T
A.

Proof:Suppose that (11) holds, it follows from Lemma 3.1 that

Φ = sin απ
2 (P (A0 +DAFAEA)

T + (A0 +DAFAEA)P )
+ cos απ

2 (Q(A0 +DAFAEA)
T − (A0 +DAFAEA)Q)

= sin απ
2 (PAT

0 +A0P ) + cos απ
2 (QAT

0 −A0Q)
+ sin απ

2 (PET
AF

T
AD

T
A +DAFAEAP )

+ cos απ
2 (QET

AF
T
AD

T
A −DAFAEAQ).

(14)

Note that FT
AFA ≤ I ,it follows from Lemma 2.2 that for any

real scalars εi > 0(i = 1, 2)

sin απ
2 (PET

AF
T
AD

T
A +DAFAEAP )

≤ ε1DAD
T
A + 1

ε1
sin2 απ

2 PE
T
AEAP,

cos απ
2 (QET

AF
T
AD

T
A −DAFAEAQ)

≤ ε2DAD
T
A + 1

ε2
cos2 απ

2 QE
T
AEA(−Q).

(15)

Substituting (15) into (14), one has

Φ ≤ sin απ
2 (PAT

0 +A0P ) + cos απ
2 (QAT

0 −A0Q)
+(ε1 + ε2)DAD

T
A + 1

ε1
sin2 απ

2 PE
T
AEAP

+ 1
ε2

cos2 απ
2 QE

T
AEA(−Q)

=M1 − (− 1
ε1

sin2 απ
2 PE

T
AEAP )

−(− 1
ε2

cos2 απ
2 QE

T
AEA(−Q).

(16)

Using the Schur complement of (16),we have Φ < 0 if the

condition 2 in Theorem 3.2 holds. so the inequality (13) is

the sufficient stable condition of system (3). The proof is

completed. �.

Now, let us consider the FO-LTI interval system (4).

Theorem 3.2. Let A ∈ R
n×n and 0 < α < 1. The

fractional-order interval system (4) is asymptotically stable if

there exist a symmetric positive definite matrix P ∈ R
n×n

and a skew-symmetric matrix Q ∈ R
n×n, such that

[
P Q
−Q P

]
> 0,

X(α0) = sinα0π
2 (PAT +AP ) + cosα0π

2 (QAT −AQ) < 0,
X(1) = PAT +AP < 0,

X(α0)
cos(

α0π
2 +

αMπ

2 )

cos
α0π
2

− X(1)

cos
α0π
2

sin αMπ
2 < 0,

(17)

where

Δα = [
α1 − α2

2
,
α2 − α1

2
] = [−αM , αM ].

Proof: Define

X(α) = (sin
απ

2
P+cos

απ

2
Q)AT +A(sin

απ

2
P−cosαπ

2
Q).

Substitute α = α0 +Δα into X(α), and then it yields

X(α) = (sin (α0+Δα)π
2 P + cos (α0+Δα)π

2 Q)AT

+A(sin (α0+Δα)π
2 P − cos (α0+Δα)π

2 Q)
= (sin α0π

2 (PAT +AP ) + cos α0π
2 (QAT −AQ)) cos Δαπ

2

+(cos α0π
2 (PAT +AP )− sin α0π

2 (QAT −AQ)) sin Δαπ
2

= X(α0) cos
Δαπ
2 +X(α0 + 1) sin Δαπ

2 .
(18)

Noting that

X(α0)sin
α0π

2
+X(α0 + 1)cos

α0π

2
= X(1),

we have that

X(α0 + 1) =
X(1)−X(α0) sin

α0π
2

cos α0π
2

. (19)

Substitute (19) into (18), and then it yields

X(α) = X(α0) cos
Δαπ
2 +

X(1)−X(α0) sin
α0π
2

cos
α0π
2

sin Δαπ
2

= X(α0)
cos(

α0π
2 +Δαπ

2 )

cos
α0π
2

+ X(1)

cos
α0π
2

sin Δαπ
2 .

(20)

We have that 0 < α0 < 1, 0 < α0 + Δα < 1, and

sin α0π
2 > 0, cos α0π

2 > 0,− sinαM ≤ sinΔα ≤ sinαM ,

cos(α0 + αM ) ≤ cos(α0π
2 + Δαπ

2 ) ≤ cos(α0−αM ), such that

X(α) = X(α0)
cos(

α0π
2 +Δαπ

2 )

cos
α0π
2

+ X(1)

cos
α0π
2

sin Δαπ
2

≤ X(α0)
cos(

α0π
2 +

αMπ

2 )

cos
α0π
2

− X(1)

cos
α0π
2

sin αMπ
2 < 0.

(21)

That is, the system (4) is asymptotically stable. �
Similarly, a stable result of FO-LTI interval system (5) can

be also established.

Theorem 3.3. Let A ∈ R
n×n and 0 < α < 1. The

fractional-order interval system (5) is asymptotically stable if

there exist a symmetric positive definite matrix P ∈ R
n×n,

a skew-symmetric matrix Q ∈ R
n×n and four real scalar

constant εi > 0, i = 1, 2, 3, 4, such that

[
P Q
−Q P

]
> 0,⎡

⎢⎢⎢⎢⎣

M2 M3 M4 M5 M6

MT
3 −ε1I 0 0 0

MT
4 0 −ε2I 0 0

MT
5 0 0 −ε3I 0

MT
6 0 0 0 −ε4I

⎤
⎥⎥⎥⎥⎦ < 0,

(22)

where

M2 = Y (A0, α0)
cos(

α0π
2 +

αMπ

2 )

cos
α0π
2

+ Y (A0, 1)
sin

αMπ

2

cos
α0π
2

+(ε1 + ε2 + ε3 + ε4)DAD
T
A,

M3 = kα0PE
T
A , M4 = kα0QE

T
A ,

M5 = kα2−α1

2 PET
A , M6 = kα2−α1

2 QET
A .

Proof. Let Y (A,α) = sin απ
2 (PAT +AP ) + cos απ

2 (QAT −
AQ). Substitute A = A0 + k(α0 +Δα)ΔA = A0 + k(α0 +
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Δα)DAFAEA into Y (A,α), we obtain that

Y (A,α)
= sin απ

2 (P (A0 + kαDAFAEA)
T + (A0 + kαDAFAEA)P )

+ cos απ
2 (Q(A0 + kαDAFAEA)

T − (A0 + kαDAFAEA)Q)
= sin απ

2 (PAT
0 +A0P ) + cos απ

2 (QAT
0 −A0Q)

+ sin απ
2 (kαPET

AF
T
AD

T
A + kαDAFAEAP )

+ cos απ
2 (kαQET

AF
T
AD

T
A − kαDAFAEAQ).

(23)

Set

Y (A0, α) = sin απ
2 (PAT

0 +A0P ) + cos απ
2 (QAT

0 −A0Q),
Y (ΔA,α) = sin απ

2 (kαPET
AF

T
AD

T
A + kαDAFAEAP )

+ cos απ
2 (kαQET

AF
T
AD

T
A − kαDAFAEAQ),

then

Y (A,α) = Y (A0, α) + Y (ΔA,α). (24)

For Y (A0, α), substitute α = α0 + Δα and according to

Theorem 3.3, we obtain

Y (A0, α) ≤ Y (A0, α0)
cos(α0π

2 + αMπ
2 )

cos α0π
2

+Y (A0, 1)
sin αMπ

2

cos α0π
2

.

(25)

For Y (ΔA,α), substitute α = α0 +Δα, we get

Y (ΔA,α)
= sin απ

2 (kαPET
AF

T
AD

T
A + kαDAFAEAP )

+ cos απ
2 (kαQET

AF
T
AD

T
A − kαDAFAEAQ)

= sin (α0+Δα)π
2 kα0(PE

T
AF

T
AD

T
A +DAFAEAP )

+ sin (α0+Δα)π
2 kΔα(PET

AF
T
AD

T
A +DAFAEAP )

+ cos (α0+Δα)π
2 kα0(QE

T
AF

T
AD

T
A −DAFAEAQ)

+ cos (α0+Δα)π
2 kΔα(QET

AF
T
AD

T
A −DAFAEAQ).

(26)

Using Lemma 2.3, we have

sin (α0+Δα)π
2 kα0(PE

T
AF

T
AD

T
A +DAFAEAP )

≤ ε1DAFAF
T
AD

T
A + ε−1

1 sin2 (α0+Δα)π
2 (kα0)

2PET
AEAP

≤ ε1DAD
T
A + ε−1

1 (kα0)
2PET

AEAP,

sin (α0+Δα)π
2 kΔα(PET

AF
T
AD

T
A +DAFAEAP )

≤ ε3DAFAF
T
AD

T
A + ε−1

3 sin2 (α0+Δα)π
2 (kΔα)2PET

AEAP

≤ ε3DAD
T
A + ε−1

3 k2 (α2−α1)
4

2
PET

AEAP,

cos (α0+Δα)π
2 kα0(QE

T
AF

T
AD

T
A −DAFAEAQ)

≤ ε2DAFAF
T
AD

T
A + ε−1

2 cos2 (α0+Δα)π
2 (kα0)

2QET
AEA(−Q)

≤ ε2DAD
T
A + ε−1

2 (kα0)
2QET

AEA(−Q),

cos (α0+Δα)π
2 kΔα(QET

AF
T
AD

T
A −DAFAEAQ)

≤ ε4DAFAF
T
AD

T
A

+ε−1
4 cos2 (α0+Δα)π

2 (kΔα)2QET
AEA(−Q)

≤ ε4DAD
T
A + ε−1

4 k2 (α2−α1)
4

2
QET

AEA(−Q).
(27)

Substituting (27) into (24), we obtain

Y (A,α) = Y (A0, α) + Y (AΔ, α)

≤ Y (A0, α0)
cos(

α0π
2 +

αMπ

2 )

cos
α0π
2

+ Y (A0, 1)
sin

αMπ

2

cos
α0π
2

+ε1DAD
T
A + ε2DAD

T
A + ε3DAD

T
A + ε4DAD

T
A

+ε−1
1 (kα0)

2PET
AEAP + ε−1

2 (kα0)
2QET

AEA(−Q)

+ε−1
3 k2 (α2−α1)

4

2
PET

AEAP

+ε−1
4 k2 (α2−α1)

4

2
QET

AEA(−Q)

= Y (A0, α0)
cos(

α0π
2 +

αMπ

2 )

cos
α0π
2

+ Y (A0, 1)
sin

αMπ

2

cos
α0π
2

+(ε1 + ε2 + ε3 + ε4)DAD
T
A

−(−ε−1
1 )(kα0)

2PET
AEAP

−(−ε−1
2 )(kα0)

2QET
AEA(−Q)

−(−ε−1
3 )k2 (α2−α1)

4

2
PET

AEAP

−(−ε−1
4 )k2 (α2−α1)

4

2
QET

AEA(−Q).
(28)

Using the Schur complement of (28), one obtains that the FO-

LTI interval system (5) with order 0 < α < 1 is asymptotically

stable. �

B. Equivalent 0f fractional order systems with order 0 < α ≤
1 and with order 1 ≤ β < 2

In this section, stability relations of a fractional-order system

with order 0 < α ≤ 1 and its equivalent fractional-order

system with order 1 ≤ β < 2 are given, and the relationship

between α and β is also presented.

Theorem 3.4. All eigenvalues of the FO-LTI system (2)

with order 0 < α ≤ 1 and output u(t) = 0 settle in the

unstable region if and only if the fractional-order system

dβx(t)

dtβ
= −Ax(t), 1 ≤ β = 2− α < 2 (29)

is asymptotically stable, see Figure 1.

Fig. 1: Relation of stability domain and unstability domain.

Proof. Since all eigenvalues of the FO-LTI system (2) with

order 0 < α ≤ 1 and output u(t) = 0 lie on the unstable
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region Ω1 =
{
λ : |arg(λ) < απ

2

}
, then the eigenvalues of

matrix −A settle in the region

Ω2 =
{
λ : |arg(λ) > π − α

π

2

}
=
{
λ : |arg(λ) > (2− α)

π

2

}
.

Set β = 2 − α, then 1 ≤ β < 2. One can rewrite the set Ω2

as

Ω2 =
{
λ : |arg(λ) > β

π

2

}
.

Therefore, according to Lemma 2.1, the fractional-order sys-

tem (??) is asymptotically. The proof of the inverse is similar

and it is not given here. �
Remark 3.1: Theorem 3.4 relates the stability of a

fractional-order system with order 0 < α ≤ 1 to the stability

of its equivalent fractional-order system with order 1 ≤ β < 2.

Thus, one can obtain some other analogical conclusions on the

order 0 < α ≤ 1 systems, according to the corresponding ones

on the order 1 ≤ β < 2 systems.

IV. NUMERICAL EXAMPLES

Example 4.1. Consider the stability of the following interval

FO-LTI system

dαx(t)

dtα
= Ax(t)

where α = 0.5, and A ∈ [Am, AM ] with

Am =

⎡
⎣ −1.95 0.35 0.7

−1.3 −3.9 0.7
−0.65 −1.95 −3.25

⎤
⎦ ,

AM =

⎡
⎣ −1.05 0.65 1.3

−0.7 −2.1 1.3
−0.35 −1.05 −1.75

⎤
⎦ .

Using the Matlab LMI toolbox, it is found that the linear

matrix inequalities (13) in Theorem 3.2 are easily feasible.

V. CONCLUSIONS

In summary, this paper presents some brief sufficient con-

ditions for the stability of a class of FO-LTI system with

uncertain parameters, which may be easily feasible by the

Matlab LMI toolbox. In addition, we also relate the stability of

a fractional-order system with order 0 < α ≤ 1 to the stability

of its equivalent fractional-order system with order 1 ≤ β < 2,

and the relationship between α and β is also presented.
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