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Analysis of Heart Beat Dynamics through
Singularity Spectrum
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Abstract—The analysis to detect arrhythmias and life-threatening
conditions are highly essential in today world and this analysis
can be accomplished by advanced non-linear processing methods
for accurate analysis of the complex signals of heartbeat dynamics.
In this perspective, recent developments in the field of multiscale
information content have lead to the Microcanonical Multiscale
Formalism (MMF). We show that such framework provides sev-
eral signal analysis techniques that are especially adapted to the
study of heartbeat dynamics. In this paper, we just show first hand
results of whether the considered heartbeat dynamics signals have
the multiscale properties by computing local preticability exponents
(LPEs) and the Unpredictable Points Manifold (UPM), and thereby
computing the singularity spectrum.

Keywords—Microcanonical Multiscale Formalism (MMF), Unpre-
dictable Points Manifold (UPM), Heartbeat Dynamics.

I. INTRODUCTION

THE human heartbeat is governed by the autonomic
nervous system, and as a consequence, heart rate and

heartbeat dynamics extracted from the ECG are important
quantitative markers of cardiovascular control [1]. The com-
plex synchronization process between pacemaker cells results
in cardiac rhythm and, as a consequence, the heartrate exhibits
small chaotic fluctuations. Typically, the amplitude of such
fluctuations is much smaller than the average interbeat interval,
something that makes the healthy (sinus rhythm) heartbeat ap-
pear as mainly periodic. Nevertheless, the fluctuations around
this main period are not an unstructured random noise but
follow a complex dynamics. Even more, the characterization of
these fluctuations is vital for determining whether the heart is
healthy or it is indicating signs of a transition to an arrhythmia,
despite still appearing regular [2, 3, 4].

Klabunde [5], has emphasized that the human heart is
structurally complex and, as a consequence, the electrical
activity in it is also complex. In the past decade, many
analyses [3, 6-11] have been carried out to characterize the
statistical features of human heartbeat dynamics. In these
studies, possible different statistical features of Heart beat
dynamics in different physiological states have been reported.
In particular, an intriguing finding is the multiscale properties
in healthy heartbeat and the loss of this multiscale character
in pathological hearbeat in patients with congestive heart
failure [2]. Such multiscale complexity in healthy Heart beat
was further shown to be related to the intrinsic properties of the
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control mechanisms in human heartbeat dynamics and is not
simply due to changes in external stimulation and the degree
of physical activity [8].

Ivanov [2], in this study of multiscale properties in healthy
heart beat is based solely on the Legendre spectrum, and so
it corresponds to a canonical formalism, not microcanonical,
from a thermodynamic point of view. The multiscale structure
observed in heartbeat is a result of a synchronization process
in a hierarchic complex network made of cardiac pacemaker
cells [12]. As a consequence, the Microcanonical Multiscale
Formalism (MMF) [13, 14] is especially appropriate for an-
alyzing this dynamical structure. In particular, an analysis
based on the local predictability exponents (LPEs) [15, 16]
and the optimal wavelet [17] of heartbeat time series allows
directly accessing the geometric features that characterize their
multiscale behavior.

The results obtained in [2] are based on a canonical
analysis, meaning that the behavior of statistical averages
is used to indirectly retrieve the geometric features: scaling
exponents of partition functions estimate a curve that can be
used to obtain the so-called singularity spectrum by means of a
numerically- estimated Legendre transform. This methodology
is known to give less accurate estimation on the tails of the
singularity spectrum for which a microcanonical analysis has
been found to be much more robust and accurate [18]. Having
such estimation has a capital importance for anticipating as
much as possible when heartbeat dynamics starts drifting
from the healthy behavior. Given the quickness with which
heart failure can be fatal or leave irreversible after-effects, the
precise estimation provided by the MMF has a strong potential
in helping to save lives and improve the health of people with
cardiac diseases.

The paper is structured as follows: in the next section
we introduce the empirical data to be analyzed. In section
3, we introduce the basics of the Microcanonical Multiscale
Formalism (MMF) and the methods to accurately retrieve
the empirical local predictability exponents (LPEs) from a
signal. In section 4 we discuss the experimental results for
the considered heartbeat data and consequently discuss the
singularity spectrum of these heartbeat data. Finally, in section
5 we draw the conclusions of our work.

II. EMPIRICAL DATA

We have processed electrocardiogram signals together with
endocardial potential measured through electrodes in catheters
introduced in the heart of a patient and for a regime: sinus
rhythm, which contains 21 channels of data: 4 of these are
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from electrocardiogram electrodes measuring the potential on
the skin (I, II, III and V1) and the other 17 are measured
through three catheters (two from the radio-frequency catheter,
a catheter of 5 electrodes and another catheter of 10 elec-
trodes). For the sake of simplicity in this paper, the signals
corresponding to electrocardiogram electrodes are named as
ecg. The three catheters are named as c1, c2 and c3 respec-
tively. Hence the ecg has 4 channels (I, II, III and V1), c1
has 2 channels, c2 has 5 channels and c3 has 10 channels. All
of the measures are electric potential differences, and all of
them are bipolar except for the V1 which is unipolar. These
are sampled at a rate of 1 kHz.

Patient details : 50 year old man with expanded heart
and persistent fibrillation (recurrent episodes that last more
than 7 days). Measurements are done in left and right atrial
appendages and left superior pulmonary vein.

III. THE MICROCANONICAL MULTISCALE FORMALISM
(MMF)

The MMF is a theoretical and methodological framework
for the analysis of multiscale signals. Its basic element of
description is by means of LPEs of a signal under analysis,
which are the exponents describing the local regular/singular
behavior of the signal around each point.

A. local predictability exponents (LPEs)

Local predictability exponents have different mathematical
definitions depending on the context they are used. The usual
notion in complex-signal analysis is related to the Hölder
or Hurst exponents, including their respective generalizations.
Although different definitions are possible, the conceptual goal
is always the same: to describe how the function evolves
around a given point by converging to a value (regular) or
diverging (singular).

In the most general case, given a signal s that is defined
on R

d domain, the Hölder exponent h(x) of point x is the
exponent satisfying the following limit, when it exists [19]:

‖s(x+r)−s(x)‖ = α(x)‖r‖h(x)+o(‖r‖h(x)) (r → 0) (1)

This means that in the proximity of x the signal follows a
power law of exponent h(x). An alternative definition that
analytically is slightly more restrictive is usually called the
Hurst exponent [20, 21] and defined as s(x + r) − s(x) =
〈α(x)|r〉rh(x)−1 + o(rh(x)) where α(x) is a continuous (1, 1)
tensor. For the purpose of this article, analysis of 1D signals
of 1 component the definitions actually coincide.

The concept of LPE can be interpreted also in terms of
differentiability. A function that is strictly n−derivable at point
x has a LPE h(x) = n. So that in this sense the LPE can be
related to non-integer differentiability. In a similar way, as we
will see below, it is also related to the content of information.

Nevertheless, Hölder or Hurst exponents defined this way
have very specific applicability (e.g., in the case of multiaffine
functions) and cannot be directly found in real-world signals.
The main reason is that the basic power-law behaviour is
masked by the presence of long-range correlations, noisy
fluctuations, discretization and finite-size effects. All these

make that the analytical limit described is not practically
attainable [22, 14], and a generalized definition of LPE is
needed. To achieve this, the objective is to find a certain
measure μ for which we could take a similar limit:

μ(Br(x)) = α(x)rd+h(x) + o(rd+h(x)) (r → 0) (2)

where d is the dimension of the domain, i.e., d = 1 in the
1D case, and Br(x) is a ball centered around x having a radius
r for a certain norm (choice to be done for multi-dimensional
cases; they all coincide in 1D).

The actual definition of LPE that we will be using in the
present article works well in practice and is little affected by
the artifacts mentioned above. For it, we will work on the
gradient-modulus measure of the signal [22]. This measure is
defined from its density:

dμ(x) = ‖∇s‖(x)dx (3)

a definition that is absolutely continuous with respect to the
Lebesgue measure. Hence, the measure of any Borelian A is
given by:

μ(x) =

∫
A

dx‖∇s‖(x) (4)

The gradient-modulus measure characterizes the local sin-
gularity of any point. A signal that has a Hölder exponent
h(x)+1 according to equation (1) will fulfil also equation (2),
with this +1 shift. Practical calculations of equation (2) can
benefit from using wavelet-projected interpolations, this way
effectively avoiding some of the discretization effects [23].
The wavelet projection of the measure at point x and scale r

is expressed as τΨμ(x, r) =
∫
Rd dμ(x

′)r−dΨ( (x−x′)
r ) with Ψ

being a predetermined function known as the mother wavelet.
As we can see, the operator τΨ is a map from the set M of
σ−finite measures on R

d to the set of functions Rd×R+ → R.
A signal that has a LPE at the point x according to equation
(2) exhibits this same exponent when wavelet-projected [3,
22], i.e,

τΨμ(x, r) = αΨ(x)r
h(x) + o(rh(x)) (r → 0) (5)

It is worth mentioning that wavelet projections expressed in
this way treat the wavelet function as a kernel for the measure
and no additional restriction is imposed. This way, we are
not limited to use only admissible wavelets (i.e., wavelets
can reconstruct the signal). In particular, we can use always
positive kernels that do not have zero-crossings. High-order
wavelets that exhibit several zero-crossings have a significant
loss in spatial resolution [18], but positive kernels minimize
spatial spread and can normally reach the original resolution,
that is, one sample in the original signal.

B. General Conditions for UPM-measure

The basic requirement to define a singular positive UPM-
measure is that it is concerned with the local singular be-
haviour of functions. The best way to define UPM-measures is
as vectorial wavelet projections of standard gradient measures.
So, the UPM-measure is a carefully designed vectorial wavelet



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:5, No:9, 2011

411

projection of the gradient measure so that it penalizes unpre-
dictability. In our method, in contrast with standard singularity
analysis, we will not perform many wavelet projections of the
UPM measure in order to extract the LPE by means of a log-
log regression. Wavelet projecting the measure at several scales
is costly in computer time and only serves to enhance the
resolution of less singular structures at the cost of coarsening
most singular ones [18]. But as we are mainly interested in the
most singular structures, it is hence harmful to our interests
to project across multiple scales. Instead, we will make use of
point estimates [18, 13, 27] of the LPEs, namely:

h(x) =
log( τΨμ(x,r0)

〈τΨμ(.,r0)〉 )

log r0
+ o(

1

log r0
) (6)

Where 〈τΨμ(., r0)〉 is the average value of the wavelet pro-
jection over the whole signal and serves to diminish the
relative amplitude of the o( 1

log r0
) correction. When applying

equation 6, we will need that r0 is small enough to neglect
this correction. The scale r0 will be defined as the smallest
accessible one, i.e., one sample scale. We conventionally
assign a Lebesgue measure of 1 to the whole space domain,
so for a N samples per signal, the value of r0 is fixed to
r0 = 1√

N
, so in general we need that signals are large enough

to make the first term in the right hand side of equation 6, a
good approximation of the LPE.

C. Singularity spectrum

A multiscale signal is a co-ordinated ensemble of its fractal
components Fh. The fractal dimensions D(h) are the char-
acterization of these fractal components [24], and the whole
set of these fractal dimensions forms the so-called singularity
spectrum. The singularity spectrum plays a central role in
the description of the scaling properties of a multifractal
system [25], because it is directly linked to the statistical
properties of the system through the famous Parisi-Frisch’s
formula [26]. In fact, the empirical histogram of singularities
ρ(h), when the LPEs are evaluated at the resolution scale r0,
has a simple relation with the singularity spectrum [24]:

ρ(h) = Aρr
d−D(h)
0 (7)

where d is the dimension of the signal domain. If the signal
has total support (i.e., non-fractal, the common case with real
signals) then the support of the function h(x) is also total
and has dimension d. So there must exist a fractal component
of such a dimensionality, i.e., there is a value of LPE h1

such that D(h1) = d, and this value necessarily corresponds
to the mode (the most probable value) of ρ(h) [18,22,25].
Therefore, when the histogram is normalized by its mode, the
proportionality constant Aρ is removed and so we can retrieve
the dimensionless, scale-invariant quantity D(h) − d in the
way:

D(h)− d = −
log( ρ(h)

ρ(h1)
)

log r0
(8)

for any resolution scale r0 at which the LPEs are evaluated.
D(h) − d is called reduced singularity spectrum, and it is
independent of the dimensionality d.

Fig. 1: Channel 1 of ecg signals

D. General Conditions for MMF

So far, the two main elements of MMF (singularity analysis
and singularity spectrum) are introduced. The requirements on
a real signal in order to accept that MMF holds for it, is as
formalize:

(i) For any point x, equation 5 is verified over a large enough
range of scales.

(ii) The distribution of LPEs at any valid scale r0 follows
equation 7 with the same curve D(h).

(iii) The curve D(h) derived from equation 8 is convex.
These conditions and what they imply are discussed in detail
in [13,14]. For the context of this paper, we will just verify
the extent of validity of conditions (i), (ii) and (iii) for the
heartbeat data. The main virtue of MMF is that it allows an ex-
plicit geometrical determination of the fractal components [9].
Hence, the retrieval of the singularity spectrum D(h) by means
of equation 8 is more direct than in classical multifractal
techniques and less demanding in data size [18].

IV. EXPERIMENTAL RESULTS

The Heartbeat signals considered is 21 channels, as ex-
plained before in the section II. Here in this paper, the
analysis is depicted only for 4 channels, one channel each from
ecg, c1, c2 and c3 respectively. The raw signals recorded
from the patient (details in section II), for ecg, c1, c2 and c3
are shown in the figure 1 -4 respectively. The channel 1 is
considered of ecg, channel 2 of the catheter c1 (c1 consists
of 2 channels), channel 3 of the catheter c2 (c2 consists of 5
channels) and channel 4 of the catheter c3 (c3 consists of 10
channels)

A. Validity of MMF

In order to validate the datasets under study i.e., heartbeat
signals, the three requirements presented in sub-section D of
the section III must be fulfilled. Regarding condition (i), we
must check the range over which equation 5 can be considered
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Fig. 2: Channel 2 of c1 catheter

Fig. 3: Channel 3 of c2 catheter

to fit our data, taking into account the noise, discretization and
finite-size effects impose experimental bounds to the validity
of this equation. As we are interested in retrieving the LPE,
h(x) at each point x over a large enough range of scales,
and we have been successful in retrieving this h(x) over 5
different scales, i.e., at the scale of the signal, at 1

2 the scale
of the signal, 1

4 scale of the signal, 1
8 scale of the signal, and

finally 1
16 scale of the signal. Thus we conclude that condition

(i) is well verified.
Regarding condition (ii), we have obtained the singularity

spectra (using equation 7) at five different scales. In Figure 5
- 8, we present the singularity spectra obtained at these five
scales, showing that all the spectra coincide to a great extent.
Condition (iii) is just requiring that singularity spectra are
convex. All the singularity spectra are convex curves, Figures
5 - 8, so condition (iii) is also satisfied. Therefore, we conclude

Fig. 4: Channel 4 of c3 catheter

Fig. 5: Singularity Spectrum for channel 1 of ecg signals

Fig. 6: Singularity Spectrum for channel 2 of c1 catheter
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Fig. 7: Singularity Spectrum for channel 3 of c2 catheter

Fig. 8: Singularity Spectrum for channel 4 of c3 catheter

that the heartbeat signals including the electrocardiogram
electrodes and catheters signals verify MMF.

V. CONCLUSIONS

In this paper, we have shown the application of a novel
nonlinear signal-processing framework, the Microcanonical
Multiscale Formalism (MMF) to the analysis heartbeat signals.
In these signals, there is a multiscale character that is reflected
as a definite geometrical structure arranged around manifolds
of singularity. This way, the signal can be decomposed into
different components depending on their characteristic local
predictability exponents (LPEs). The value of the LPE char-
acterizes the power-law behavior under scale changes and
directly indicates the information content of the component.
As a consequence, the MMF gives a direct access to the
geometry of singularity components in a way that characterizes
the degree of information contained at each point of the signal.
A first observation is that we can reproduce under a micro-

canonical formalism the same type of characterizations about
multifractality on heartbeat series that have been reported
before in the literature under a canonical framework. Moreover
in this paper, the data from catheters (to detect arrhythmias and
life-threatening conditions) inside the heart is also considered
and we have shown that the heartbeat signals including the
catheters and electrocardiogram electrodes signals are multi-
scaled in the microcanonical sense of MMF.
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