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Unsupervised segmentation by hidden Markov chain

with bi-dimensional observed process
Abdelali Joumad and Abdelaziz Nasroallah

Abstract—In unsupervised segmentation context, we propose a
bi-dimensional hidden Markov chain model (X,Y) that we adapt
to the image segmentation problem. The bi-dimensional observed
process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image
and Y 2 represents a noisy supplementary information on the image,
for example a noisy proportion of pixels of the same type in a
neighborhood of the current pixel. The proposed model can be seen
as a competitive alternative to the Hilbert-Peano scan. We propose a
bayesian algorithm to estimate parameters of the considered model.
The performance of this algorithm is globally favorable, compared to
the bi-dimensional EM algorithm through numerical and visual data.

Keywords—Image segmentation, Hidden Markov chain with a
bi-dimensional observed process, Peano-Hilbert scan, Bayesian ap-
proach, MCMC methods, Bi-dimensional EM algorithm.

I. INTRODUCTION

H IDDEN Markov models (HMM) are frequently used

to study one unobserved variable and uni-dimensional

observed process such as hidden Markov fields [13], [28],

[8], [5], [30], [40], [10], [27], [35], [17], hidden Markov

chain [7], [13], [5], [22], [30], [12], [36], pairwise hidden

Markov model [32] or more unobserved variable and uni-

dimensional observed process such as triplet hidden Markov

model [11]. The multivariate observed process in HMM is used

to study unsupervised multi-component images segmentation.

Such vectorial image can be obtained for example, from differ-

ent channels, from several sensors or from image taken at var-

ious moments. There are several interesting publications, like

Spherically Invariant Random Vector models (SIRV) and cop-

ula [15], [21], [24], [33], [34], that treat the multi-dimensional

case [22], [24], [23], [31]. One of the main problems in

statistical image segmentation using HMM is the adequacy

between temporal and spatial context of pixels during the

image modeling. This difficulty is usually solved by Markov

fields, or by Hilbert-Peano scan in Markov chain case [7], [23].

We propose a hidden Markov chain with a bi-dimensional

observed process as another alternative to study this prob-

lem. The cited works above concerned with multi-component

images use an observed process Y = (Y 1, . . . , Y M ) where

Hilbert-Peano scan is used to study each image Y i. Our

proposed model consider one noisy image coupled with a

noisy supplementary information on the same image (i.e. Y 1

represents the noisy image and Y i for i = 2, . . . ,M represents

a noisy supplementary information on Y 1). For simplicity

we suppose that M = 2 and Y 2 is a noisy proportion of

pixels of the same type in a neighborhood of current pixel
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(i.e. Y 2 constructed after calculation of proportion on image

and noisy them). The proposed model avoids the use of

Hilbert-Peano scan. Also, we propose a bayesian algorithm to

estimate parameters of bi-dimensional hidden Markov chain

(BHMC) model. We denote this algorithm by (BBHMC). The

performance of BBHMC is compared to a bi-dimensional EM

algorithm (BEM) through a sample of simulation and visual

data.

The paper is organized as follows:

In section II, the proposed hidden Markov model BHMC is

briefly presented with some necessary hypothesis. Section III

is devoted to the BEM algorithm. Section IV is concerned

with the parameter estimation problem and the main steps

of BBHMC algorithm. In section V, we give an interesting

sample of simulation examples that show performance of

BBHMC and BEM algorithms: parameter estimations, error

rates and CPU times are computed for different scenarios. The

efficiency of these two algorithms is examined on a sample of

synthetic images in section VI. In the last section we propose

a conclusion. A list of references is given in the end.

II. BI-DIMENSIONAL HIDDEN MARKOV MODEL

Consider a random process (X,Y) = {(Xt,Yt) ∈ Ω ×
IR2; t ∈ IN} defined on a probability space (X ,F , P ),
where Ω = {ω1, . . . , ωK} is the state space of Markov

process X and K ≥ 2 is a number of classes. The pro-

cess X is completely characterized by transition parameters

cij = P (Xt = ωi, Xt+1 = ωj) for i, j = 1, . . . ,K: the

initial law ν = (νi, 1 ≤ i ≤ K) and the transition matrix

A = (aij)1≤i,j≤K are such that

νi = P (Xt1 = ωi) =
∑

1≤j≤K

cij and aij =
cij∑

1≤j≤K

cij

,

(1)

where t1 indicates the initial time of Markov chain X that is

supposed homogenous. Furthermore we suppose the following

hypothesis:

(H1) : ∀(t, t
′

) ∈ IN2 such that t 6= t
′

, the conditional

processes Yt|X and Yt
′ |X

are independent.

(H2) : ∀t ∈ IN, Yt|X and Yt|Xt have the same gaussian

distribution.

So ∀t ∈ IN, Yt|Xt = ωi ∼ N (µi, Σi), where the

density function is given by

fi(yt) =
1

2π|Σi| 12
exp

(
−1

2
(yt − µi)

′

Σ−1
i (yt − µi)

)
,
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with µi = (µ1
i , µ

2
i )

′

and Σi =

(
σi

11 σi
12

σi
21 σi

22

)
, i = 1, . . . , K,

are respectively the mean vector and variance-covariance ma-

trix of bi-normal distribution, and
′

is the transpose operator.

The process (X,Y) is called bi-dimensional hidden Markov

chain (BHMC), where X is the unobserved process and

Y = (Y 1, Y 2) is the observed one. For a realization of (X,Y)

(x,y) = ((ωi1 ,y1), . . . , (ωin
,yn)),

the likelihood is given by

L(x,y; Θ) = νi1

n∏

m=2

aim−1im

n∏

m=1

fim
(ym)

where Θ = (ν, A, (µ1, Σ1), . . . , (µK ,ΣK)). The size of Θ is

K2+7K (i.e. K for ν, K2 for A, 2K for (µi)i=1,...,K and 4K
for (Σi)i=1,...,K ). Using the fact that each row of A and ν are

probability distributions and the symmetry of Σ, this size can

be reduced to K2+5K−1. We suppose that block components

ν, A, (µi, Σi), i = 1, . . . ,K of Θ are independent.

The classification problem is thus the estimation of the un-

observed process realization X = x from the observation

Y = y. The Bayesian Maximum A Posteriori (MAP) and

Maximum Posterior Mode (MPM) can be easily computed for

the BHMC model. In this paper we will use the MPM method

based on minimizing the mean ratio of wrongly classified

points. Formally, for each t, the state ωj that maximizes the

a posteriori probability is such that

P (Xt = ωj | Y = y) = max
1≤i≤K

P (Xt = ωi | Y = y)

The computation of the posterior marginal distribution is

feasible thanks to the ”Forward-Backward” method.

Finally, the problem is: given the bi-dimensional observed

process Y, we have to estimate the global parameter Θ.

III. BEM ALGORITHM

Generally, the maximum likelihood estimator has good

statistical properties. The Expectation-Maximization (EM)

algorithm [2], [26], [37] is one of the most popular method

to approximate parameter Θ maximizing the likelihood

L(x,y; Θ). Given an initial guess Θ(0), the EM algorithm

consists on generating iteratively a sequence (Θ(q))q∈IN that

globally converges thanks to the theorem 10.5.2 in [25]. The

two principal steps of EM are:

E-step: Determine Q(Θ, Θ(q)) = EΘ(q)(ln(L(x,y; Θ))|y).
M-step: Choose Θ(q+1) to be the value that maximizes

Q(Θ, Θ(q)).
To adapt the EM algorithm to the hidden Markov chain with

a bi-dimensional observed process, we need the following

notations and definitions.

For t ∈ IN and ωi, ωj ∈ Ω, we define:

ψt(i, j) := P (Xt = ωi, Xt+1 = ωj |Y = y) and

χt(i) := P (Xt = ωi|Y = y). These probabilities can

be expressed according to the forward-backward probabilities

α∗
t (.) and β∗

t (.) used in [26] as follows: ψt(i, j) =

α∗

t (i)aijfj(yt+1)β
∗

t+1(j)

K∑

l=1

fl(yt+1)

K∑

j=1

α∗
t (j)ajl

and χt(i) =

K∑

j=1

ψt(i, j),

where α∗
t (i) = P (Xt = ωi|Y1 = y1, . . . ,Yt = yt)

and β∗
t (i) = P (Yt+1=yt+1,...,Yn=yn|Xt=ωi)

P (Yt+1=yt+1,...,Yn=yn|Y1=y1,...,Yt=yt)
. The

numerator and denominator in β∗
t (i) are conditional joint

density functions. These notations are usually used for

simplicity.

Applying the two steps of EM algorithm to the proposed

model BHMC (the obtained algorithm is noted BEM ), we

obtain the following equations: given estimations at iteration

q, those at iteration (q + 1) are explicitly as follows:

For i, j = 1, . . . ,K,

ν
(q+1)
i =

1

n

n∑

t=1

χ
(q)
t (i), a

(q+1)
ij =

n−1∑

t=1

ψ
(q)
t (i, j)

n−1∑

t=1

χ
(q)
t (i)

, (2)

µ
(q+1)
i =

n∑

t=1

χ
(q)
t (i)yt

n∑

t=1

χ
(q)
t (i)

(3)

and

Σ
(q+1)
i =

n∑

t=1

χ
(q)
t (i)(yt − µ

(q+1)
i )(yt − µ

(q+1)
i )

′

n∑

t=1

χ
(q)
t (i)

. (4)

IV. HIDDEN MARKOV CHAIN AND BAYESIAN APPROACH

As usual in bayesian estimation problems, there are three

key issues that have to be addressed: The choice of the

prior distribution, the specification of the distribution prior

parameters and the evaluation of the posterior distribution.

For our proposed model, we suppose that the rows of

the transition matrix associated to the hidden process are

statistically independent and following a Dirichlet prior (i.e.

for i = 1, . . . , K, (ai1, . . . , aiK) ∼ DK(αi1, . . . , αiK),
where αij are hyper-parameters).

We will use iteratively Metropolis accept-reject and

Gibbs sampler algorithms [4], [20], [38] to infer the

BHMC parameters. For this aim we consider a sample

of r independent trajectories of the unobserved process

X that we also note X = (Xitk
)1≤i≤r,1≤k≤ri

and

Y = (Yitk
)1≤i≤r,1≤k≤ri

are r trajectories of the bi-

dimensional observed process Y, where ri designates the

length of the ith trajectory, Xitk
is the state of the processus

X at time tk for the trajectory i and Yitk
is the observed

processus at time tk for the trajectory i.
For simplicity, we denote the conditional distribution at x
given all the others and the prior distribution at x by π(x | .)
and π(x) respectively.
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A. Full conditional distribution for A

Using (1), for i, j = 1, . . . , K the estimation of aij can be

deduced from those of cij . So it’s being sufficient to determine

the full conditional distribution of cij .

For u, v = 1, . . . , K,

π(cuv|.) ∝ π(cuv)π(Y | X = x, ν, A, µ,Σ)

π(X = x|ν, A, µ,Σ)

∝ π(cuv)π(X = x|ν,A),

where µ = (µi; 1 ≤ i ≤ K), Σ = (Σi; 1 ≤ i ≤ K) and the

symbol ∝ indicates proportionality up to a constant that does

not depend on the considered variable.

On the other hand, including the fact that X is an homogenous

Markov chain and x = (xik)1≤i≤r,1≤k≤ri
is a realization of

r independent trajectories of X , we have

P (X = x|ν,A)

=
r∏

i=1

P (Xit1 = xi1 | ν)

ri∏

k=2

P (Xitk
= xik|Xitk−1

= xi(k−1), ν, A)

=
r∏

i=1

νxi1

ri∏

k=2

P (Xitk−1
= xi(k−1), Xitk

= xik)

νxi1

=
r∏

i=1

ν2−ri
xi1

ri∏

k=2

P (Xitk−1
= xi(k−1), Xitk

= xik).

So

π(cuv|.) ∝ π(cuv)
r∏

i=1

ν2−ri
xi1

ri∏

k=2

P (Xitk−1
= xi(k−1), Xitk

= xik).

To select the prior distribution π(cuv), Gamma(αuv, 1) is a

natural choice since it leads to a Dirichlet distribution sup-

posed for each row of the transition matrix A. The generation

of the univariate full conditional distribution for cuv can be

obtained by a Metropolis accept-reject algorithm.

Remark.1. Simulation from a Dirichlet distribution

DK(δ1, . . . , δK) can be drawn thanks to the following result:

if ξ1, . . . , ξK are independent with ξi having a Gamma(δi, 1)
distribution, then




ξ1

K∑

i=1

ξi

,
ξ2

K∑

i=1

ξi

, . . . ,
ξK

K∑

i=1

ξi




∼ DK(δ1, . . . , δK)

B. Full conditional distribution for ν

The full conditional initial distribution of Markov chain is

given by:

π(ν|.) ∝ π(ν)
r∏

i=1

νxi1
,

which can be written as

π(ν|.) ∝ π(ν)
K∏

k=1

ν
rk(1)
k ,

where rk(1) :=
∑r

i=1 11{xi1=ωk} is the number of visits to

state ωk at initial time (11E is the indicator function of set E).

A conjugate prior for ν = (ν1, . . . , νK)
′

is a Dirichlet

distribution DK(δ1, . . . , δK) with known hyper-parameters

δk > 0, k = 1, . . . , K

(
i.e. π(ν) ∝

K∏

k=1

νδk−1
k

)
.

This choice is justified by the fact that ν1, . . . , νK are param-

eters of a multinomial distribution. So we obtain

π(ν|.) ∝
K∏

k=1

ν
rk(1)+δk−1
k ,

which leads to

π(ν|.) ∼ DK(δ1 + r1(1), . . . , δK + rK(1)).

C. Full conditional distribution for µj and Σj

We suppose that Σj for j = 1, . . . , K, are independent and

µj depends only on Σj , j = 1, . . . ,K, the corresponding prior

distributions are chosen to be

µj |Σj ∼ N2(τj ,Σj) and Σj ∼ Inv − Wishart(βj ,W
−1
j ),

where the hyper-parameters τj , βj and W−1
j are supposed

known.

Let’s consider the following definitions and notations: N j
i :=

{k = 1, . . . , ri/xik = ωj} is the set of times of visits to state

ωj in trajectory i, Nj =
r∑

i=1

| N j
i |, yj = 1

Nj

r∑

i=1

∑

k∈N
j

i

yik

and Sj =
∑

i

∑

k∈N
j

i

(yik − yj)(yik − yj)
′

, where | N j
i | is the

cardinality of the finite set N j
i and y = (yik)1≤i≤r,1≤k≤ri

is

the given realization of Y.

So, for j = 1, . . . , K,

π(Σj , µj |.) ∝ π(Σj , µj)π(Y|X = x,Σ, µ)

∝ π(Σj)π(µj |Σj)π(Y|X = x,Σ, µ).

On the other hand, by hypothesis (H1) and (H2) in section II,

we have

π(Y|X = x,Σ, µ)

∝
r∏

i=1

ri∏

k=1

π(Yitk
|Xitk

= xik, Σxik
, µxik

)

∝
r∏

i=1

ri∏

k=1

|Σxik
|−1

2 e−
1
2 (Yitk

−µxik
)
′

Σ−1
xik

(Yitk
−µxik

).

Therefore, the full conditional distribution of (Σj , µj) is
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given by

π(Σj , µj |.)
∝ π(Σj)π(µj |Σj)

r∏

i=1

∏

k∈N
j

i

|Σj |
−1
2 e−

1
2 (Yitk

−µj)
′

Σ−1
j

(Yitk
−µj)

∝ π(Σj)π(µj |Σj)|Σj |
−Nj

2

e−
1
2 [tr(Σ−1

j
Sj)+Nj(yj−µj)

′

Σ−1
j

(yj−µj)]

∝ |Σj |
−(Nj+βj+3)

2

e
− 1

2 [tr(Σ−1
j

(W−1
j

+Sj))+
Nj

Nj+1 (yj−τj)(yj−τj)
′

]

× e
− 1

2 [(µj−
τj+Njyj

Nj+1 )
′

(
Σj

Nj+1 )−1(µj−
τj+Njyj

Nj+1 )]
.

Thereby

π(µj |.) ∼ N2

(
τj + Njyj

Nj + 1
,

Σj

Nj + 1

)

and

π(Σj |.) ∼ Inv − Wishart(βj + Nj ,W (Sj , Wj)),

with

W (Sj ,Wj) = W−1
j + Sj +

Nj

Nj + 1
(yj − τj)(yj − τj)

′

.

Remark.2. As argued in [9], [25], often there is no com-

pelling reason to choose the previous priors, except for their

simplicity, but the restrictive aspect of conjugate priors can

be attenuated by using hyper-priors on the hyper-parameters.

Those hyper-priors can be chosen amongst so-called non-

informative (or vague) priors to attenuate the impact on the

resulting inference.

Now, the joint prior distribution for Θ can be written as:

π(Θ)

= π(ν1, . . . , νK , A, µ1, . . . , µK ,Σ1, . . . ,ΣK)

= π(ν1, . . . , νK)π(A)π(Σ1, . . . ,ΣK)

π(µ1, . . . , µK |Σ1, . . . , ΣK)

=
K∏

j=1

π(νj)
K∏

i=1

π(ai1, . . . , aiK)

K∏

j=1

π(µj |Σj)
K∏

j=1

π(Σj)

∝
K∏

j=1

ν
δj−1
j

K∏

i,j=1

a
αij−1
ij

K∏

j=1

|Σj |−
1
2

e−
1
2 (µj−τj)

′

Σ−1
j

(µj−τj)

×
K∏

j=1

|Σj |−
1
2 (βj+3)e−

1
2 tr(Σ−1

j
W−1

j
)

This joint prior distribution is obtained using independence of

block components of Θ supposed in section II.

D. A bayesian algorithm for BHMC

We propose a bayesian algorithm for bi-dimensional hidden

Markov chain model, principally based on the classical Gibbs

sampler and Metropolis accept-reject algorithms. For given

hyper-parameters αij , τj , δj , βj and W−1
j ; i, j = 1, . . . , K,

the main steps of BBHMC are the following:

The BBHMC Algorithm

E0. Select starting values (iteration q = 0),

Θ(q) = (ν(q), a
(q)
ij , µ

(q)
i , Σ

(q)
i , i, j = 1, . . . , K)

and compute c
(q)
ij using (1).

E1. Iteration (q + 1)
E1.1 Generate a sample

x(q) = {x(q)
ik , i = 1, . . . , r, k = 1, . . . , ri}

E1.2 Generate a transition matrix

A(q+1) = (a
(q+1)
ij )1≤i,j≤K

according to the following accept-reject algorithm:

for every couple (i, j)
E1.2.1 Generate a candidate

bij ∼ N (c
(q)
ij , 1) and u ∼ U(0,1)

such that bij and u are independent

E1.2.2 Compute
∏

(bij) and
∏

(c
(q)
ij ) by

∏
(bij) =

r∏

l=1

rl∏

k=1

[c(q)
xl(k−1)xlk

11{(xl(k−1),xlk) 6=(i,j)}+

bij11{(xl(k−1),xlk)=(i,j)}]

∏
(c

(q)
ij ) =

r∏

l=1

rl∏

k=1

c(q)
xl(k−1)xlk

E1.2.3 Compute

ρ
(q+1)
ij = min

(
1,

g(bij)
∏

(bij)

g(c
(q)
ij

)
∏

(c
(q)
ij

)

)

where g is the density function of

Gamma(αij , 1)
E1.2.4 Compute

c = c
(q)
ij 11{

u≥ρ
(q+1)
ij

} + bij11
{

u<ρ
(q+1)
ij

}

if c = c
(q)
ij , we reject bij and return to E1.2.1

else we accept bij : c
(q+1)
ij = c

E1.2.5 Compute a
(q+1)
ij ( by formula in (1))

E2. Compute Nj , ȳj , Sj and W (Sj , Wj) for j = 1, . . . , K
(from x(q))

E3. For j = 1, . . . , K,

E3.1 Generate

π(µ
(q+1)
j |.) ∼ N2

(
τj + Njyj

Nj + 1
,

Σ
(q)
j

Nj + 1

)

E3.2 Generate

π(Σ
(q+1)
j |.) ∼ Inverse − Wishart(βj + Nj ,W (Sj ,Wj))

E3.3 Generate

π(ν(q+1)|.) ∼ DK(δ1 + r1(1), . . . , δK + rK(1))

V. NUMERICAL SIMULATION

We interest to the performance of BEM and BBHMC algo-

rithms by simulating different noisy Markov chains, and we

compare the estimations obtained from the noisy data to those

computed from the complete data. These last will be called
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Empirical Values and will be denoted (EV). The computation

of the empirical values c∗ij , µ
∗
j and Σ∗

j for i, j = 1, . . . , K
makes itself by the following formulas:

c∗ij =
1

r(rr − 1)

r∑

l=1

rl−1∑

k=1

11{(Xlk,Xl(k+1))=(wi,wj)},

µ∗
j =

1

Nj

∑

i

∑

k∈N
j

i

yitk
,

Σ∗
j =

1

Nj

r∑

i

∑

k∈N
j

i

(yitk
− µ∗

j )(yitk
− µ∗

j )
′

In the following, we present the parameter initializations and

the data scenarios, that has been used by many authors [7],

[14], [29], after adapting them to the bi-dimensional case.

A. Parameter initializations

For i, j = 1, . . . ,K and d, d
′

= 1, 2
• Markov chain parameters:

νi =
1

K
, aii = 0.5 and aij =

1

2(K − 1)
for i 6= j

• Noisy parameters:

Mean vector:

If K = 2p, for 1 ≤ k ≤ p

µd
k+1 = md − 0.5(p − k)

√
σdd

µd
K−k = md + 0.5(p − k)

√
σdd

If K = 2p + 1, for 1 ≤ k ≤ K

µd
k+1 = md − 0.5(0.5K − k)

√
σdd,

Variance-covariance matrix:

σi
dd = σdd, σi

dd
′ = ci.σdd

′ for d 6= d
′

where ci = 0.1 for numerical simulation and ci = 0.9
for image segmentation. The mean vector (m1, m2)

′

and

the variance-covariance matrix

(
σ11 σ12

σ21 σ22

)
are computed

using a generated trajectory of X .

• Hyper-parameters:

For 1 ≤ i, j ≤ K, αij = 2, τi = (2, 2)
′

, βi = 1, δi =

1, and W−1
i =

(
1 0
0 1

)

B. Markov chain and noisy data scenarios

While considering a sample of size n = 1000 and a

number of classes K = 2, there are two factors of wish we

study the influence on the performance of BEM and BBHMC

algorithms: the noise and the Markov chain.

• For the noise factor, we consider the following three scenar-

ios:

(MD): means discriminating noise µ1 6= µ2 and Σ1 = Σ2

(VD): variances discriminating noise µ1 = µ2 and Σ1 6= Σ2

(MVD): means and variances discriminating noise µ1 6= µ2

and Σ1 6= Σ2.

The noise level depends strongly on the following two param-

eters:

∆ = (µ1
2 − µ1

1)
2 + (µ2

2 − µ2
1)

2 and ρ = ρ2
2/ρ2

1,

where

ρ2 = σ2
12/

√
σ2

11σ
2
22 and ρ1 = σ1

12/
√

σ1
11σ

1
22.

We fix the parameters values for each scenario as follows:

MD: µ1 = (1, 1)
′

, µ2 = (1, 2)
′

and Σ1 = Σ2 =(
2 0.9

0.9 3

)
.

These values correspond to (∆, ρ) = (1, 1).

VD: µ1 = µ2 = (1, 1)
′

, Σ1 =

(
0.25 0.2
0.2 4

)
and

Σ2 =

(
5 5.3

5.3 9

)
.

These values correspond to (∆, ρ) = (0, 1.56).

MVD: µ1 = (1, 1.5)
′

, µ2 = (2, 1)
′

, Σ1 =

(
0.25 0.9
0.9 4

)

and

Σ2 =

(
5 3.5

3.5 9

)
.

These values correspond to (∆, ρ) = (1.25, 0.30).
• For the Markov chain factor, we consider the following two

scenarios:

C1: a11 = a22 = 0.98.

C2: a11 = a22 = 0.80.

C. Implementation parameters

There are several parameters which arise when implement-

ing MCMC algorithms [39]. The algorithm must be run for a

heating period, called burn-in, which depends on initial values

of parameters. The aim of this period is to reduce the effect of

initial values on posterior inference. Visual inspection of plots

of the algorithm output (Θ(q), q = 0, 1, . . . , T ) with T is the

global length of iterations, is the most obvious and commonly

used method for determining the burn-in period. For the burn-

in period length T0 of BBHMC algorithm, we take T0 = 1000
for numerical simulations and T0 = 7000 for image segmen-

tation. After this period, we start the collection of estimations

for T1 = 1000 supplementary iterations. So, the total number

of iterations is T = T0+T1 and the estimation Θ̂ of Θ is given

by the MMSE estimator



i.e. Θ̂ = 1
T−T0+1

T∑

q=T0

Θ(q)



.

For BEM algorithm, we use an automatic stopping criteria

based on the following distances (inspired to [7])

D2(µ(q)) =
1

K

K∑

k=1

ck[(µ1(q)

k − 1

q + 1

q∑

l=0

µ1(l)

k )2 +

(µ2(q)

k − 1

q + 1

q∑

l=0

µ2(l)

k )2]

D2(σ
(q)
ij ) =

1

K

K∑

k=1

ck

[
σk(q)

ij − 1

q + 1

q∑

l=0

σk(l)

ij

]
; 1 ≤ i, j ≤ 2

The stoping of iterations is a function of quality estimation

of parameters and stoutness of MPM method. The BEM
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algorithm is stopped when D2(µ(q)) < ε and D2(σ
(q)
ij ) <

ε for i, j = 1, 2. We take (ε, ck) = (10−4, 1) for

numerical simulations and (ε, ck) = (10−2, 10−3) for image

segmentation.

D. Numerical results

This subsection deals with numerical estimation for parame-

ters and misclassification rates obtained by BEM and BBHMC,

compared with those obtained by EV. These algorithms are

tested on combinations of C1 and C2 with MD, VD and

MVD. The BEM and BBHMC algorithms use the same initial-

izations. The obtained estimations are presented in Tables II

to V. In Table I, we present the misclassification rates of pixels

computed by MPM method.

From Table I, we remark that BBHMC has globally a small

advantage with respect to BEM mainly for C2+MD and

C2+MVD scenarios witch are qualified as worst cases.

Concerning estimations of ν and A, resumed in Tables II

and III, the BEM algorithm takes advantage with respect to

BBHMC algorithm with a stability advantage of estimations

for the last. It seems that this stability is due to the estimations

form (i.e. estimators obtained by the law large number).

Regarding Tables IV and V, the estimations of µ and Σ
obtained by BEM and BBHMC are very closed to those

obtained by EV.

TABLE I
ERROR RATES FOR EACH CLASS (ER1 AND ER2) GIVEN BY EV, BEM AND

BBHMC FOR DIFFERENT DATA SCENARIOS, WHERE ERi IS THE

MISCLASSIFICATION RATE OF CLASS i. THE MEAN CPU TIME FOR BEM AND

BBHMC IS 7.5

Data Error rates(%) EV BEM BBHMC

C1+MD ER1 2.4 2.4 2.1
ER2 3.3 3.3 3.5

C1+VD ER1 0.3 0.1 0.1
ER2 1.8 1.8 1.8

C1+MVD ER1 0.1 1.9 1.9
ER2 0.4 0.4 0.4

C2+MD ER1 22.6 23.7 22.6
ER2 18.5 19.0 18.5

C2+VD ER1 6.7 7.1 6.9
ER2 12.7 12.9 12.7

C2+MVD ER1 4.8 4.2 4.8
ER2 12.9 16.0 12.9

TABLE II
ESTIMATIONS OF COMPONENT ν1 BY EV, BEM AND BBHMC FOR DIFFERENT DATA

SCENARIOS. THE STANDARD DEVIATION IS GIVEN BETWEEN BRACKETS FOR

BBHMC ESTIMATIONS

Data EV BEM BBHMC

C1+MD 0.522 0.521 0.490 (0.410×10−2)

C1+VD 0.522 0.523 0.490 (0.410×10−2)

C1+MVD 0.522 0.519 0.490 (0.410×10−2)

C2+MD 0.475 0.477 0.493 (0.021×10−2)

C2+VD 0.475 0.482 0.493 (0.021×10−2)

C2+MVD 0.475 0.501 0.493 (0.021×10−2)

TABLE III
ESTIMATIONS OF a11 AND a22 BY EV, BEM AND BBHMC FOR DIFFERENT DATA

SCENARIOS. THE STANDARD DEVIATION IS GIVEN BETWEEN BRACKETS FOR

BBHMC ESTIMATIONS

Data EV BEM BBHMC

C1+MD a11 0.980 0.980 0.977 (0.11×10−3)

a22 0.979 0.976 0.970 (0.29×10−3)

C1+VD a11 0.980 0.977 0.977 (0.11×10−3)

a22 0.979 0.979 0.970 (0.29×10−3)

C1+MVD a11 0.980 0.978 0.977 (0.11×10−3)

a22 0.979 0.979 0.970 (0.29×10−3)

C2+MD a11 0.791 0.821 0.796 (0.33×10−3)

a22 0.809 0.835 0.814 (0.46×10−3)

C2+VD a11 0.791 0.796 0.796 (0.33×10−3)

a22 0.809 0.808 0.814 (0.46×10−3)

C2+MVD a11 0.791 0.800 0.796 (0.33×10−3)

a22 0.809 0.807 0.814 (0.46×10−3)

TABLE IV
ESTIMATIONS OF THE TWO COMPONENT OF µ1 AND µ2 BY EV, BEM AND BBHMC

FOR DIFFERENT DATA SCENARIOS. THE STANDARD DEVIATION IS GIVEN BETWEEN

BRACKETS FOR BBHMC ESTIMATIONS

Data EV BEM BBHMC

µ1 0.948 0.931 0.950 (0.03×10−2)

C1+MD 1.064 1.076 1.066 (0.14×10−2)

µ2 2.031 2.044 2.027 (0.07×10−2)

3.020 3.003 3.020 (0.06×10−2)

µ1 0.981 0.982 0.983 (0.01×10−2)

C1+VD 1.056 1.056 1.058 (0.16×10−2)

µ2 2.049 2.046 2.043 (0.11×10−2)

1.990 1.993 1.994 (0.14×10−2)

µ1 0.981 0.982 0.983 (0.01×10−2)

C1+MVD 1.630 1.605 1.631 (0.20×10−2)

µ2 3.049 3.030 3.041 (0.11×10−2)

2.018 2.044 2.022 (0.12×10−2)

µ1 0.982 1.034 0.984 (0.35×10−2)

C2+MD 1.040 0.908 1.046 (0.15×10−2)

µ2 1.992 1.946 1.993 (0.22×10−2)

3.046 3.173 3.042 (0.21×10−2)

µ1 0.993 0.993 0.995 (0.12×10−2)

C2+VD 1.044 1.027 1.051 (0.16×10−2)

µ2 1.988 2.000 1.989 (0.35×10−2)

2.101 2.133 2.097 (0.44×10−2)

µ1 0.993, 1.007 0.995 (0.12×10−2)

C2+MVD 1.550 1.495 1.557 (0.22×10−2)

µ2 2.988 3.078 2.987 (0.35×10−2)

2.087 2.171 2.083 (0.39×10−2)

E. Level noise and misclassification error

We consider different levels (∆, ρ) of MD, VD and MVD

noises. These noises are combined with C1 and C2. For

these combinations, the behavior of the misclassification rate,

computed by MPM method, using EV is given in Table VI.

The performance of BEM and BBHMC through the following

three cases (∆, ρ) ∈ {(5, 1), (0, 1), (0, 1.63)} is presented in

Fig. 1 to Fig. 6.

In each figure, we give the behavior of error rate (for each

class) with respect to the iterations. In comparison with EV,

we constat that BEM and BBHMC give good results for

(∆, ρ) = (5, 1) (see Fig. 1 and Fig.4): the error rates for BEM

and BBHMC are nearer to those given by EV after T1 = 1000
iterations for BBHMC and after 50 iterations for BEM. So

BEM outperforms BBHMC in this easiest case (i.e. lower level
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TABLE V
ESTIMATIONS OF Σ1 AND Σ2 BY EV, BEM AND BBHMC FOR DIFFERENT DATA

SCENARIOS. THE STANDARD DEVIATION IS GIVEN BETWEEN BRACKETS FOR

BBHMC ESTIMATIONS

Data EV BEM BBHMC

Σ1 σ11 1.990 1.981 1.998 (0.028×10−1)

σ22 3.362 3.409 3.341 (0.019×10−1)

C1+MD σ12 0.279 0.316 0.279 (0.028×10−1)

Σ2 σ11 1.992 1.967 2.002 (0.045×10−1)

σ22 3.616 3.632 3.632 (0.076×10−1)

σ12 -0.024 -0.079 -0.021 (0.013×10−1)

Σ1 σ11 0.248 0.245 0.253 (0.004×10−1)

σ22 4.194 4.147 4.166 (0.023×10−1)

C1+VD σ12 0.111 0.112 0.112 (0.011×10−1)

Σ2 σ11 4.980 5.000 5.004 (0.112×10−1)

σ22 15.642 15.752 15.698 (0.327×10−1)

σ12 0.031 0.030 0.039 (0.045×10−1)

Σ1 σ11 0.248 0.244 0.253 (0.003×10−1)

σ22 6.784 6.792 6.756 (0.038×10−1)

C1+MVD σ12 0.123 0.111 0.122 (0.014×10−1)

Σ2 σ11 4.980 4.990 5.006 (0.112×10−1)

σ22 12.237 12.200 12.282 (0.256×10−1)

σ12 -0.030 -0.063 -0.023 (0.039×10−1)

Σ1 σ11 2.005 2.048 2.015 (0.004×10−1)

σ22 3.507 3.344 3.494 (0.061×10−1)

C2+MD σ12 0.234 0.266 0.235 (0.024×10−1)

Σ2 σ11 1.981 2.038 1.992 (0.058×10−1)

σ22 3.463 3.091 3.481 (0.010×10−1)

σ12 0.041 -0.002 0.049 (0.043×10−1)

Σ1 σ11 0.250 0.239 0.255 (0.144×10−1)

σ22 4.309 4.677 4.291 (0.043×10−1)

C2+VD σ12 0.092 0.094 0.094 (0.140×10−1)

Σ2 σ11 4.954 5.017 4.979 (0.001×10−1)

σ22 14.601 14.354 14.658 (0.075×10−1)

σ12 0.198 0.168 0.224 (0.009×10−1)

Σ1 σ11 0.250 0.292 0.255 (0.001×10−1)

σ22 7.298 7.539 7.279 (0.128×10−1)

C2+MVD σ12 0.104 0.055 0.105 (0.013×10−1)

Σ2 σ11 4.954 5.004 4.980 (0.144×10−1)

σ22 11.583 11.501 11.632 (0.034×10−1)

σ12 0.145 0.033 0.168 (0.125×10−1)

noise). In all other cases, BBHMC works better than BEM:

the error rates, after stabilization, are nearer to those given by

EV for BBHMC than for BEM (see Fig. 2, Fig. 3, Fig. 3 and

Fig. 6).

TABLE VI
THEORETICAL ERROR RATES FOR EACH CLASS (ER1 AND ER2) FOR C1 AND C2.

ERi IS THE MISCLASSIFICATION ERROR OF CLASS i.

Markov ∆ = 5 ∆ = 2 ∆ = 1 ∆ = 0 ∆ = 0 ∆ = 5

chain ρ = 1 ρ = 1 ρ = 1 ρ = 1 ρ = 1.63 ρ = 1.63

C1 ER1 0.5 1.3 2.4 9.3 6.5 2.4
ER2 1.8 1.8 3.3 11.8 6.9 2.09

C2 ER1 7.3 12.18 22.6 40.9 38.8 17.8
ER2 9.7 15.8 18.5 27.09 31.6 18.7

VI. UNSUPERVISED IMAGE SEGMENTATION

In the following, we compare BHMC using Hilbert-Peano

scan and BHMC using a noisy supplementary information (for

example: proportion of pixels in the same class as the current

pixel in a neighborhood of the last) on image. We consider

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700  800

e
rr

o
r 

ra
te

s 
(%

)

iterations

ER1
ER2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 900  950  1000  1050  1100

e
rr

o
r 

ra
te

s 
(%

)

iterations

ER1
ER2

Fig. 1. Behavior of error rates for each class (ER1 and ER2) with respect to the

iterations for chain C1 with (∆, ρ) = (5, 1). The result of BEM (resp. BBHMC) is

on the left (resp. right)
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that a neighborhood of a pixel is composed of 3, 5 or 8 pixels

around it according to the following three positions: corner,

border or inside. The comparison is made through a sample

of four synthetic images given in Fig. 7 (Alphabet, Gibbs,
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iterations for chain C2 with (∆, ρ) = (5, 1.63). The result of BEM (resp. BBHMC)
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Letter B and Ring). These standard images are used for tests

in many image segmentation procedures [3], [7], [12], [23],

[35]. Also, we compare performance (error rates) of BEM

and BBHMC by applying them on the same synthetic images.

These images are corrupted by the following noises:

MD: µ1 = (112, 112)
′

, µ2 = (115, 116)
′

and Σ1 = Σ2 =(
300 105
105 360

)
.

These values correspond to (∆, ρ) = (25, 1).

VD: µ1 = µ2 = (112, 112)
′

, Σ1 =

(
300 325
325 360

)
and

Σ2 =

(
500 350
350 900

)
.

These values correspond to (∆, ρ) = (0, 0.27).
MVD: µ1 = (112, 112)

′

, µ2 = (115, 116)
′

, Σ1 =(
300 325
325 360

)
and

Σ2 =

(
500 350
350 900

)
. These values correspond to (∆, ρ) =

(25, 0.27).
To appreciate visually the level of the considered noises, some

examples are given in Fig.8. The segmentation result of these

examples by BBHMC with MPM method is presented in

Fig. 9.

A. BHMC without and with Hilbert-Peano scan

The simplest idea for modeling an image by Markov chain

is to consider this image ”line by line” or ”column by column”.

The problem of this method is that the past and the future of

a pixel doesn’t correspond always to its spatial context. Thus,

when one considers the method ”line by line”, two neighboring

pixels and belonging to the same column are near spatially and

distant in sense of Markov chain. To avoid the problem of the

temporal and spatial contexts, a lot of authors use the Hilbert-

Peano scan [6], [16], [19]. In this method, the noisy image

is firstly transformed into one dimension chain using Hilbert-

Peano scan and the segmented image is reconstructed using an

inverse Hilbert-Peano scan. The proposed model BHMC using

noisy supplementary information overcomes the problem of

adequacy between temporal and spatial context without using

the Hilbert-Peano scan.

Fig. 7. Alphabet, Gibbs, Letter B and Ring (128 × 128) images

Fig. 8. Alphabet+VD, Gibbs+MVD, Letter B+MD and Ring+VD

In Tables VII and VIII, we give the error rates for each class

(ER1 and ER2) obtained by BHMC with noisy supplemen-

tary information and BHMC with Hilbert-Peano scan, where

images used are resized to 32× 32. The estimation parameter

problem of the hidden Markov chain is not landed here; the

noise and chain parameters are estimated from EV and are

used by MPM method for the segmentation.

From Table VII, we constat that the two approaches doesn’t

give satisfactory response for class 2 in all corrupted Alphabet

cases. May be this is due to the image size, witch is small. In

all other cases, BHMC with noisy supplementary information

gives a reduced mean error rate with respect to the BHMC

using Hilbert-Peano scan. The mean reduction factor is 2.14,

1.33 and 1.71 for Gibbs, Letter B and Ring respectively.

B. BEM and BBHMC performances

Before analyzing the results, let us note that for each sta-

tistical image segmentation method, there exists a theoretical

error, obtained with the true parameter values [3]. In our case

this error is estimated from empirical values EV (i.e. obtained

from real and noisy images). For a simplification reason, we

just interest to the error rates (wrongly classified pixels) and

we do not give the parameters estimation. Thus we present,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:12, 2011

1824

TABLE VII
ERROR RATES FOR EACH CLASS (ER1 AND ER2) GIVEN BY BHMC WITHOUT

HILBERT-PEANO SCAN AND BHMC WITH HILBERT-PEANO SCAN, FOR DIFFERENT

NOISES APPLIED TO Alphabet AND Gibbs IMAGES

Model Alphabet Gibbs

MD VD MVD MD VD MVD

BHMC ER1 0.00 0.00 0.09 9.02 9.02 9.02
ER2 100 100 100 0.16 0.16 0.16

BHMC with ER1 0.19 0.09 0.09 15.2 15.7 15.5
Hilbert-Peano ER2 100 100 100 4.8 4.5 4.7

TABLE VIII
ERROR RATES FOR EACH CLASS (ER1 AND ER2) GIVEN BY BHMC WITHOUT

HILBERT-PEANO SCAN AND BHMC WITH HILBERT-PEANO SCAN, FOR DIFFERENT

NOISES APPLIED TO Letter B AND Ring images

Model Letter B Ring

MD VD MVD MD VD MVD

BHMC ER1 7.3 11.05 10.6 5.21 6.9 7.2
ER2 45.3 47.3 45.8 34.7 37.3 35.4

BHMC with ER1 7.3 6.1 6.4 9.73 9.73 9.8
Hilbert-Peano ER2 66.1 70.8 69.8 63.3 62.1 62.1

in Table IX, the error rates for each class (ER1 and ER2)

obtained by EV, BEM and BBHMC on corrupted images.

We constat that BEM and BBHMC, compared to EV, prove

successful in image Letter B. This can be explained by the

fact that the two pixel classes are well separated. Also we

constat that BEM is better than EV and BBHMC for class 2
in all cases, but the mean error rates given by BBHMC are

significantly reduced than those obtained by BEM and they

are nearer to those given by EV. The mean reduction factors

between BBHMC and BEM are 2.65, 1.39, 1.79 and 1.53
for Alphabet, Gibbs, Letter B and Ring respectively. All the

estimations, for each data scenario, are obtained by BEM and

BBHMC for a mean CPU time equal to 36.5.

Fig. 9. Alphabet+VD, Gibbs+MVD, Letter B+MD and Ring+VD segmented by

BBHMC with MPM method

VII. CONCLUSION

We have proposed a bi-dimensional Markov chain model,

BHMC, mathematically designed by (X,Y) where X is the

unobserved Markov chain and Y = (Y 1, Y 2) is the observed

process. In previous works Y 1 and Y 2 represent two images

when, in our case Y 1 represent noisy image and Y 2 represent

noisy supplementary information on the studied image (we

have taken Y 2 as proportion of pixels in the same class as the

current pixel in a neighborhood of the last). For the proposed

model, we have considered a bayesian algorithm BBHMC

to estimate the model parameters. We have compared

BBHMC to the classical Expectation-Maximization algorithm

TABLE IX
ERROR RATES FOR EACH CLASS (ER1 AND ER2) GIVEN BY EV, BEM AND

BBHMC FOR DIFFERENT NOISY IMAGES. THE MEAN CPU TIME FOR BEM AND

BBHMC IS 36.5

Data Error rates (%) EV BEM BBHMC

Alphabet ER1 2.66 7.87 2.77
+ MD ER2 0.00 0.00 0.00

Alphabet ER1 2.88 7.89 3.14
+ VD ER2 0.00 0.00 0.00

Alphabet ER1 2.82 7.89 3.05
+ MVD ER2 0.00 0.00 0.00

Gibbs ER1 8.08 12.34 8.29
+ MD ER2 0.17 0.00 1.29

Gibbs ER1 8.32 12.77 8.61
+ VD ER2 0.27 0.00 0.25

Gibbs ER1 8.27 12.75 8.57
+ MVD ER2 0.27 0.00 0.24

LettreB ER1 1.95 2.55 1.93
+ MD ER2 0.00 0.00 0.00

LettreB ER1 2.14 2.78 2.16
+ VD ER2 0.00 0.00 0.00

LettreB ER1 2.14 2.78 2.13
+ MVD ER2 0.00 0.00 0.01

Ring ER1 2.81 4.53 2.87
+ MD ER2 0.00 0.00 0.00

Ring ER1 3.05 4.74 3.15
+ VD ER2 0.00 0.00 0.01

Ring ER1 2.99 4.73 3.11
+ MVD ER2 0.00 0.00 0.01

in bi-dimensional case, BEM. The results of these two

algorithms are evaluated by empirical values, EV, computed

from complete data. Our propositions are favorably tested on

simulation and real data. We have considered different data

scenarios and we have obtained satisfactory results for our

approach: the obtained parameters estimation are nearer to

those given by EV and the mean factor reduction of error

rates with respect to BEM is between 1.33 and 2.65 for image

segmentation. Also the proposed model BHMC outperforms

(see Tables VII and VIII) the same model considered with

Hilbert-Peano scan.

Actually, we interest to the generalization of this

work to multi-dimensional case by integrating

supplementary information to each image (i.e.

Y = (Y 1, Y 11, Y 2, Y 22, . . . , Y M , Y MM ), where Y i is

an image and Y ii is a supplementary information on Y i, for

i = 1, . . . , M with M > 2).
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selon une approche markovienne; Application à la robotique sous-marine,
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