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Dispersion of a Solute in Peristaltic Motion of a
Couple Stress Fluid in the Presence of Magnetic

Field
Habtu Alemayehu and G. Radhakrishnamacharya

Abstract—An analytical solution for dispersion of a solute in the
peristaltic motion of a couple stress fluid in the presence of magnetic
field with both homogeneous and heterogeneous chemical reactions is
presented. The average effective dispersion coefficient has been found
using Taylor’s limiting condition and long wavelength approximation.
The effects of various relevant parameters on the average effective
coefficient of dispersion have been studied. The average effective
dispersion coefficient tends to decrease with magnetic field parameter,
homogeneous chemical reaction rate parameter and amplitude ratio
but tends to increase with heterogeneous chemical reaction rate
parameter.
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I. INTRODUCTION

THE process of dispersion of a solute in fluids flowing
through channels or pipes has been extensively investi-

gated because of its important applications in various chemical
and biological systems. The study of such problem was
initiated by Taylor [1]–[3], who presented an analysis to
discuss dispersion of a soluble salt when ejected to a stream
of solvent flowing slowly through a tube. This analysis was
later generalized and extended by many researchers to study
dispersion of solute in Newtonian or non-Newtonian fluid
flows under various situations (Aris [4], Dutta et al. [5], Shukla
et al. [6], Chandra and Agarwal [7], Philip and Chandra [8] and
Soundalgekar and Chaturani [9]). The effects of homogeneous
and/or heterogeneous chemical reactions on the dispersion of
a solute have also been studied by numerous authors under
different conditions (Gupta and Gupta [10], Ramana Rao and
Padma [11], [12], Padma and Ramana Rao [13], Shukla et al.
[6], and Philip and Peeyush [8]).

Peristalsis is a natural mechanism of transport for many
physiological fluids. This is achieved by the passage of pro-
gressive waves of area contraction or expansion along the
boundary of a fluid-filled distensible tube. Different physio-
logical phenomena, such as the flow of urine from kidney to
the bladder through ureters, transport of food material through
the digestive tract, movement of spermatozoa in the ductus
efferentes of the male reproductive tract and cervical canal
and the transport of ovum in the fallopian tube, take place by
the mechanism of peristalsis. Some biomedical instruments
such as blood pumps in dialysis and the heart lung machine
use this principle. Peristaltic transport of a toxic liquid is
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used in nuclear industry to avoid contamination of the outside
environment. The industrial use of this pumping mechanism
in roller/finger pumps to pump slurries and corrosive fluids is
well known. Several studies have been made on peristalsis with
reference to mechanical and physiological situations. (Shapiro
et al. [14], Fung and Yih [15], Misra and Pandey [16], [17],
Mishra and Rao [18], Radhakrishnamacharya [19]).

Magnetohydrodynamics (MHD) is the science which deals
with the motion of conducting fluids in the presence of a
magnetic field. The motion of the conducting fluid across the
magnetic field generates electric currents which change the
magnetic field and the action of the magnetic field on these
currents gives rise to mechanical forces which modify the
flow of the fluid (Mekheimer [20]). MHD flow of a fluid in a
channel with elastic, rhythmically contracting walls (peristaltic
flow) is of interest in connection with certain problems of
the movement of conductive physiological fluids (example:
the blood and blood pump machines) (Hayat et al. [21]).
Currently, studies on peristaltic motion in MHD flows of
electrically conducting physiological fluids have become a
subject of growing interest for researchers. This is due to the
fact that such studies are useful particularly for getting a proper
understanding of the functioning of different machines used
by clinicians for pumping blood (Misra et al. [22]). Misra et
al. [22] pointed out that theoretical researches with an aim to
explore the effect of a magnetic field on the flow of blood in
atherosclerotic vessels also find application in a blood pump
used by cardiac surgeons during the surgical procedure.

It is well known that most physiological fluids including
blood behave as non-Newtonian fluids. Hence, the study of
peristaltic transport of non-Newtonian fluids may help to get
better understanding of the biological systems. Several re-
searchers studied peristaltic transport of non-Newtonian fluids
(Radhakrishnamacharya [19], Ramachandra Rao and Mishra
[23], Misra and Pandey [16] and Hayat et al. [21]).

Couple stress fluids are fluids consisting of rigid, randomly
oriented particles suspended in a viscous medium. Couple
stress fluid is known to be a better model for bio-fluids, such
as blood, lubricants containing small amount of high polymer
additive, electro-rheological fluids and synthetic fluids. The
main feature of couple stress fluids is that the stress tensor
is anti-symmetric and their accurate flow behavior cannot
be predicted by the classical Newtonian theory. Stokes [24]
generalized the classical model to include the effect of the
presence of the couple stresses and this model has been widely
used because of its relative mathematical simplicity (Islam
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and Zhou [25]). For couple stress fluids, there have been a
number of studies carried out due to its widespread industrial
and scientific applications, such as the works of Stokes [24],
Srivastava [26], Mekheimer and Abd elmaboud [27] and Sobh
[28].

Dispersion of a solute in peristaltic motion of a couple
stress fluid in the presence of magnetic field has not received
much attention. It is realized that magnetic field and peristalsis
may have significant effect on the dispersion of a solute
in the flow of conducting fluid and this may lead to better
understanding of the flow situation in physiological systems.
The objective of this paper is to study the dispersion of a solute
in peristaltic motion of a couple stress fluid in the presence
of magnetic field. Using long wavelength approximation and
Taylor’s approach, closed form solution has been obtained for
the dispersion coefficient for both the cases of homogeneous
first-order irreversible chemical reaction and combined first-
order homogeneous and heterogeneous chemical reactions.
The effects of various relevant parameters on the average
effective dispersion coefficient are studied.

II. MATHEMATICAL FORMULATION

Consider dispersion of a solute in peristaltic flow of an elec-
trically conducting couple stress fluid in an infinite uniform
channel of width 2d and with flexible walls on which traveling
sinusoidal waves of long wavelength are imposed. A uniform
magnetic field B0 is applied to the fluid normal to the walls
of the channel. Cartesian coordinate system (x, y) is chosen
with the x-axis aligned with the center line of the channel.
The traveling waves are represented by (Fig.1)

λ
2π (x − ct )h(x,t) = d + a sin

d (mean half width )

wavelength

a
amplitude

c (wave velocity )

O x

y
λ

membrane

Fig. 1. Geometry of the problem.

y = ±h = ±
[
d+ a sin

2π

λ
(x− ct)

]
(1)

where a is the amplitude, c is the wave speed and λ is the
wavelength of the peristaltic wave.

Under long wavelength approximation and neglecting body
forces and body couples, the equations governing the peri-
staltic motion of incompressible couple stress fluid in the
presence of magnetic field for the present problem are given

as

∂u

∂x
+

∂v

∂y
= 0 (2)

−∂p

∂x
+ μ

∂2u

∂y2
− η

′ ∂4u

∂y4
− σB2

0u = 0 (3)

−∂p

∂y
= 0 (4)

where u(x, y, t) and v(x, y, t) are the velocity components in
the x and y directions respectively, p is the pressure, μ is
the viscosity coefficient of classical fluid dynamics, η

′
is the

couple stress fluid viscosity , σ is the electrical conductivity
of the fluid and B0 is the uniform magnetic field.

We assume that the walls are inextensible so that only lateral
motion takes place and the horizontal displacement of the wall
is zero.Thus, the relevant boundary conditions for the velocity
are given by

u = 0,
∂2u

∂y2
= 0 at y = ±h (5)

Solving (2)-(4) under the boundary conditions (5), the
velocity is given as

u(y) = − 1

σB2
0

∂p

∂x
[S2 cosh(m

∗
1y)− S1 cosh(m

∗
2y) + 1] (6)

where

m∗
1 =

√
(μ/2η′)

(
1 +

√
1− 4σB2

0η
′/μ2

)
,

m∗
2 =

√
(μ/2η′)

(
1−

√
1− 4σB2

0η
′/μ2

)
,

S1 =
(m∗

1)
2

cosh(m∗
2h) [(m

∗
1)

2 − (m∗
2)

2]
and

S2 =
(m∗

2)
2

cosh(m∗
1h) [(m

∗
1)

2 − (m∗
2)

2]
.

Further, the mean velocity is defined as

ū =
1

2h

∫ +h

−h
u(y)dy. (7)

Substituting (6) in (7) we get,

ū = − 1

σB2
0

∂p

∂x

[
S2

m∗
1h

sinh(m∗
1h)−

S1

m∗
2h

sinh(m∗
2h) + 1

]
.

(8)
If we now consider convection across a plane moving with the
mean speed of the flow, then relative to this plane, the fluid
velocity is given by

ux = u− ū

= − 1

σB2
0

∂p

∂x
[S2 cosh(m

∗
1y)− S1 cosh(m

∗
2y)

− S2

m∗
1h

sinh(m∗
1h) +

S1

m∗
2h

sinh(m∗
2h)

]
. (9)
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A. Diffusion with a Homogeneous First-order Chemical Re-
action

It is assumed that a solute diffuses and simultaneously un-
dergoes a first order irreversible chemical reaction in peristaltic
transport of a couple stress fluid in a channel. Assuming
isothermal conditions and ∂2C

∂x2 << ∂2C
∂y2 (Gupta and Gupta

[10]), the equation for the concentration C of the solute for
the present problem satisfies the diffusion equation

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
− k1C (10)

where D is the molecular diffusion coefficient and k1 is the
first order reaction rate constant. For typical values of phys-
iologically relevant parameters of this problem, it is realized
that ū ≈ c. Using this condition and following Taylor [1]–[3],
we assume partial equilibrium is maintained and then making
use of the following dimensionless quantities

θ = t/t̄, t̄ = λ/ū, η = y/d, ξ = (x− ūt)/λ, H = h/d,
(11)

equation (9) reduces to

ux = − 1

σB2
0

∂p

∂x
[S2 cosh(m1η)− S1 cosh(m2η)

− S2 sinh(m1H)

m1H
+

S1 sinh(m2H)

m2H

]
. (12)

where

m1 = m∗
1d =

√
(m2/2)

(
1 +

√
1− 4(H∗)2/m2

)
,

m2 = m∗
2d =

√
(m2/2)

(
1−

√
1− 4(H∗)2/m2

)
,

H∗ = B0d(σ/μ)
1/2, m = d(μ/η

′
)1/2,

m is the couple stress parameter and H∗ is the Hartmann
number (or magnetic field parameter).

Further, (10) becomes

∂2C

∂η2
− k1d

2

D
C =

d2

λD
ux

∂C

∂ξ
. (13)

Assuming that there is no absorption at the walls, the boundary
conditions for the concentration C are

∂C

∂η
= 0 for η = ±H = ±[1 + ε sin(2πξ)] (14)

where ε = a/d is the amplitude ratio.

Assuming that ∂C/∂ξ is independent of η at any cross-
section and solving (13) under the boundary conditions (14),
the solution for the concentration of the solute C is given as

C(η) = A cosh(αη)− d2

λD

1

σB2
0

∂C

∂ξ

∂p

∂x

{
S2 cosh(m1η)

m2
1 − α2

− S1 cosh(m2η)

m2
2 − α2

+
S2 sinh(m1H)

α2m1H
− S1 sinh(m2H)

α2m2H

}
(15)

where

A =
d2

λD

∂C

∂ξ

1

σB2
0

∂p

∂x

1

L

[
m1S2

m2
1 − α2

sinh(m1H)

− m2S1

m2
2 − α2

sinh(m2H)

]
, (16)

α = d(k1/D)1/2 and L = α sinh(αH).
The volumetric rate Q at which the solute is transported

across a section of the channel of unit breadth is defined by

Q =

∫ +H

−H
Cuxdη. (17)

Substituting (15) and (12) in (17), we get the volumetric
rate Q as

Q = − 2d6

λμ2D

∂C

∂ξ

(
∂p

∂x

)2

F (ξ, ε, α,m,H∗) (18)

where

F (ξ, ε, α,m,H∗) =
1

(H∗)4

{
S2 csch(αH)

α(m2
1 − α2)

(
m1S2 sinh(m1H)

m2
1 − α2

− m2S1 sinh(m2H)

m2
2 − α2

)
B1

+
S1 csch(αH)

α(m2
2 − α2)

(
m2S1 sinh(m2H)

m2
2 − α2

− m1S2 sinh(m1H)

m2
1 − α2

)
B2

+
S1S2

α2H
sinh(m1H) sinh(m2H)

(
m1

m2(m2
1 − α2)

+
m2

m1(m2
2 − α2)

)

−S2
2 sinh

2(m1H)

α2m2
1H

−S2
1 sinh

2(m2H)

α2m2
2H

− S2
2

m2
1 − α2

(
H +

sinh(2m1H)

2m1

)

+
B3S1S2

m2
1 − α2

(
1

m2
1 − α2

+
1

m2
2 − α2

)
− S2

1

m2
2 − α2

(
H +

sinh(2m2H)

2m2

)

− S1S2

m1m2H
sinh(m1H) sinh(m2H)

(
1

m2
1 − α2

+
1

m2
2 − α2

)}
,

(19)

B1 = m1 cosh(αH) sinh(m1H)−α cosh(m1H) sinh(αH),

B2 = m2 cosh(αH) sinh(m2H)− α cosh(m2H) sinh(αH),

B3 = m1 cosh(m2H) sinh(m1H)−m2 cosh(m1H) sinh(m2H)

Comparing (18) with Fick’s law of diffusion, we find that
the solute is dispersed relative to a plane moving with the mean
speed of the flow with an effective dispersion coefficient D∗

given by

D∗ = 2
d6

μ2D

(
∂p

∂x

)2

F (ξ, ε, α,m,H∗). (20)

Let the average of F be F and is defined by

F =

∫ 1

0

F (ξ, ε, α,m,H∗)dξ. (21)
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B. Diffusion with Combined Homogeneous and Heteroge-
neous Chemical Reactions

We now discuss the problem of diffusion with a first-
order irreversible chemical reaction taking place both in the
bulk of the medium (homogeneous) as well as at the walls
(heterogeneous) of the channel which are assumed to be
catalytic to chemical reaction. The diffusion equation is same
as given by (10), i.e.,

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
− k1C.

The differential material balance at the walls (Philip and
Chandra [8]) gives the boundary conditions

∂C

∂y
+fC = 0 at y = h =

[
d+ a sin

2π

λ
(x− ūt)

]
, (22)

∂C

∂y
− fC = 0 at y = −h = −

[
d+ a sin

2π

λ
(x− ūt)

]
.

(23)
If we introduce the dimensionless variables (11) and assume

the limiting condition of Taylor [1]–[3], the diffusion equation
remains as (13) but subject to the boundary conditions

∂C

∂η
+ βC = 0 for η = H = [1 + ε sin(2πξ)], (24)

∂C

∂η
−βC = 0 for η = −H = −[1+ ε sin(2πξ)], (25)

where β = fd is the heterogeneous reaction rate parameter
corresponding to catalytic reaction at the walls.

The solution of (13) satisfying the boundary conditions (24)
and (25) is

C(η) = A
′
cosh(αη) +

d2

λD

∂C

∂ξ

1

σB2
0

∂p

∂x

×
[

S2

m2
1 − α2

cosh(m1η)− S1

m2
2 − α2

cosh(m2η)

+
S2

α2m1H
sinh(m1H)− S1

α2m2H
sinh(m2H)

]
(26)

where

A
′
=

d2

λD

∂C

∂ξ

1

σB2
0

∂p

∂x

1

L′

[
m1S2

m2
1 − α2

sinh(m1H)

− m2S1

m2
2 − α2

sinh(m2H) +
βS2

m2
1 − α2

cosh(m1H)

− βS1

m2
2 − α2

cosh(m2H) +
βS2

α2m1H
sinh(m1H)

− βS1

α2m2H
sinh(m2H)

]
(27)

and L
′
= α sinh(αH) + β cosh(αH).

Substituting (26) and (12) in (17), we get

Q = −2
d6

λμ2D

∂C

∂ξ

(
∂p

∂x

)2

G(ξ, ε, α, β,m,H∗) (28)

where

G(ξ, ε, α, β,m,H∗) =
1

(H∗)4

×
{

S2

L′(m2
1 − α2)

(
m1S2 sinh(m1H)

m2
1 − α2

− m2S1 sinh(m2H)

m2
2 − α2

)
B1

+
S1

L′(m2
2 − α2)

(
m2S1 sinh(m2H)

m2
2 − α2

− m1S2 sinh(m1H)

m2
1 − α2

)
B2

− sinh(αH)

αHL′

(
S2
2 sinh

2(m1H)

m2
1 − α2

+
S2
1 sinh

2(m2H)

m2
2 − α2

)

+
S1S2

αHL′

(
m1 sinh(αH)

m2(m2
1 − α2)

+
m2 sinh(αH)

m1(m2
2 − α2)

)
sinh(m1H) sinh(m2H)

+
βS2

L′(m2
1 − α2)

(
S2 cosh(m1H)

m2
1 − α2

− S1 cosh(m2H)

m2
2 − α2

)
B1

+
βS1

L′(m2
2 − α2)

(
S1 cosh(m2H)

m2
2 − α2

− S2 cosh(m1H)

m2
1 − α2

)
B2

− β

αHL′

(
S2
2 cosh(m1H) sinh(m1H)

m1(m2
1 − α2) csch(αH)

+
S2
1 cosh(m2H) sinh(m2H)

m2(m2
2 − α2) csch(αH)

)

+
βS1S2

αHL′

(
cosh(m1H) sinh(m2H)

m2(m2
1 − α2) csch(αH)

+
cosh(m2H) sinh(m1H)

m1(m2
2 − α2) csch(αH)

)

+
βS2

α2HL′(m2
1 − α2)

(
S2 sinh(m1H)

m1
− S1 sinh(m2H)

m2

)
B1

+
βS1

α2HL′(m2
2 − α2)

(
S1 sinh(m2H)

m2
− S2 sinh(m1H)

m1

)
B2

− β sinh(αH)

α3H2L′

(
S2
2 sinh

2(m1H)

m2
1

+
S2
1 sinh

2(m2H)

m2
2

)

+
2βS1S2 sinh(m1H) sinh(m2H)

α3m1m2H2L′ csch(αH)
− S2

2

m2
1 − α2

(
H +

sinh(2m1H)

2m1

)

+
S1S2

m2
1 − α2

(
1

m2
1 − α2

+
1

m2
2 − α2

)
B3 +

S2
2 sinh

2(m1H)

m2
1H(m2

1 − α2)

− S1S2

m1m2H
sinh(m1H) sinh(m2H)

(
1

m2
1 − α2

+
1

m2
2 − α2

)

− S2
1

m2
2 − α2

(
H +

sinh(2m2H)

2m2

)
+

S2
1 sinh

2(m2H)

m2
2H(m2

2 − α2)

}
.

(29)

Comparing (28) with Fick’s Law of Diffusion, we find that
the solute is dispersed relative to a plane moving with the mean
speed of the flow with an effective dispersion coefficient D∗

given by

D∗ = 2
d6

μ2D

(
∂p

∂x

)2

G(ξ, ε, α, β,m,H∗). (30)

The average of G denoted by G is defined as

G =

∫ 1

0

G(ξ, ε, α, β,m,H∗)dξ. (31)

III. RESULTS AND DISCUSSION

As given in (21)and (31), the expressions for F and G
have been obtained by numerical integration using MATH-
EMATICA software. The effects of various parameters on
the average effective dispersion coefficient can be observed
through the functions F (ξ, ε, α,m,H∗) (for homogeneous
case) and G(ξ, ε, α, β,m,H∗) (for combined homogeneous
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and heterogeneous case). The functions F and G have been
numerically evaluated for different values of relevant param-
eters and presented graphically. The important parameters
involved in the expressions are: the amplitude ratio ε, the
homogeneous reaction rate parameter α, the heterogeneous
reaction rate parameter β, the magnetic field parameter (or
Hartmann number) H∗, and couple stress parameter m.

A. Homogeneous Chemical Reaction

Figs. 2-4 show that average effective dispersion coefficient
F decreases with homogeneous reaction rate parameter α.
This implies that homogeneous chemical reaction tends to
decrease the dispersion of the solute. This result is expected
since increase in α leads to increasing number of moles
of solute undergoing chemical reaction, which results in the
decrease of dispersion. The result that dispersion decreases
with α agrees with previous results obtained by Gupta and
Gupta [10], Dutta et al. [5], Ramana Rao and Padma [11],
[12], Padma and Ramana Rao [13], Shukla et al. [6]. Further,
average dispersion decreases with magnetic field parameter
(or Hartmann number) H∗ (Fig.2), couple stress parameter m
(Fig. 3) and amplitude ratio ε (Fig.4). The result that dispersion
decreases with couple stress parameter m agrees with the
result obtained by Soundalgekar and Chaturani [9].

F

H*=8

H*=7

H*=6

H*=5

α
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Fig. 2. Effect of H∗ on F for m = 5.0 and ε = 0.2.

F

α

m=5
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m=7
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 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Fig. 3. Effect of m on F for ε = 0.2 and H∗ = 7.0.

B. Combined Homogeneous and Heterogeneous Chemical Re-
actions

Figs. 5-8 show the effects of various parameters on the
average dispersion coefficient G for the case of combined first
order chemical reactions both in the bulk and at the walls.
Average dispersion coefficient G decreases with magnetic field

F

α

ε=0.2

ε=0.3

ε=0.1

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Fig. 4. Effect of ε on F for m = 5.0 and H∗ = 7.0.

parameter H∗ (Fig.5), amplitude ratio ε (Fig.7) and homo-
geneous chemical reaction parameter α (Fig.8) but increases
with couple stress parameter m (Fig.6). The decrease with
amplitude ratio ε is less significant for lower heterogeneous
chemical reaction rate (β ≤ 2) (Fig.7). Further, Figs. 5-8 show
that average dispersion increases with heterogeneous reaction
rate parameter β.

G

β

H*=7 H*=6
H*=5

H*=4

 0
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 2

 2.5
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 1  2  3  4  5  6  7  8  9  10

Fig. 5. Effect of H∗ on G for α = 1.0, m = 6.0 and ε = 0.2.
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Fig. 6. Effect of m on G for α = 1.0, H∗ = 5.0 and ε = 0.2.
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Fig. 7. Effect of ε on G for m = 6.0, H∗ = 5.0 and α = 1.0.
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Fig. 8. Effect of α on G for m = 6.0, H∗ = 5.0 and ε = 0.2.

IV. CONCLUSION

The dispersion of a solute in peristaltic motion of a couple
stress fluid in the presence of magnetic field with both ho-
mogeneous and heterogeneous chemical reactions has been
studied under long wavelength approximation and Taylor’s
limiting condition. It is observed that average effective coeffi-
cient of dispersion decreases with magnetic field parameter (or
Hartmann number) H∗, homogeneous chemical reaction rate
parameter α and amplitude ratio ε in both the cases. Further,
dispersion decreases with couple stress parameter m in the
case of homogeneous chemical reaction but increases with
it in the case of combined homogeneous and heterogeneous
chemical reactions. Dispersion also tends to increase with
heterogeneous chemical reaction rate parameter β.
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