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Abstract—For the characterization of the weld defect region 

in the radiographic image, looking for features which are 

invariant regarding the geometrical transformations (rotation, 

translation and scaling) proves to be necessary because the 

same defect can be seen from several angles according to the 

orientation and the distance from the welded framework to the 

radiation source. Thus, panoply of geometrical attributes 

satisfying the above conditions is proposed and which result 

from the calculation of the geometrical parameters (surface, 

perimeter, etc.) on the one hand and the calculation of the 

different order moments, on the other hand. Because the large 

range in values of the raw features and taking into account 

other considerations imposed by some classifiers, the scaling 

of these values to lie between 0 and 1 is indispensable. The 

principal component analysis technique is used in order  to 

reduce the number of the attribute variables in the aim to give 

better  performance to the further defect classification. 

Keywords—Geometric parameters, invariant attributes, 

principal component analysis, weld defect image.  

I. INTRODUCTION

HEN an image was segmented into object and 

background, the stage coming after is to extract the 

objects from the background to compute the values of 

the most adapted attributes to differentiate the objects from 

each other. It is what we call the quantitative analysis of the 

images. Often, the aim of these measurements is to constitute 

a base of descriptors which will be exploited during 

classification.

In an ideal case, each object in a binarized image is 

represented like only one connected region. However, in 

practice, we often find on this image noise, spots and small 

hanging branches. Some methods of post-processing must be 

employed to eliminate all the useless components. We have 

used in [1] a post-processing which is based on morphological 

filtering. When each object is extracted, the attribute 

measurement procedure is then implemented. 

The radiogram images of the welded joints often contain 

defects which we must identify and quantify in order to decide 

on their acceptability by referring to non destructive testing 

standards and codes [2]. After the segmentation of a 

radiographic image providing a description in term of regions 

(weld defect and background), the problem is then to interpret 

their  contents. It is thus a question of determining effective 

attributes which permit to characterize these defect regions 

and to even recognize them like class elements easily 

identifiable. In industrial radiography, we can obtain 

radiograms on which weld defects, if they exist, can have 

various sizes and orientations. For an example, a crack is 

identified as crack whatever its size and its orientation 

may be, and an inclusion is recognized as being an 

inclusion in spite of its position and its dimension [3]. 

A major problem in the recognition of such defects is 

that these defects can be viewed from several angles and 

this, according to the orientation and the distance of the 

irradiated welded joint in regard to the radiation source. 

Therefore, with an aim to compare a given defect image 

with another which is stored in a data base, the methods 

which are not based on invariants must search in a 

multidimensional parameter space, i.e. to carry out several 

versions obtained by transformations, applied to the model 

image to see whether a version coincides with the original 

image. The purpose of the invariant geometrical attributes 

is thus to facilitate research, by making a correspondence 

between the observed defect images and the stored or 

referenced images from the already computed invariants. 

To characterize a given weld defect represented by its 

boundary or its region, the simplest attributes which be 

computed are the area and the perimeter [4]. The latter 

cannot be used because of their sensitivity to geometric 

transformations. For this reason, we will employ 

geometric characteristics invariant regardless geometric 

transformations of translation, rotation and scaling. 

Panoply of attributes satisfying the above conditions will 

be proposed in this paper. These geometric invariant 

attributes will follow from the calculation of geometric 

parameters (area, perimeter, etc.) on the one hand and the 

calculation of the various order moments, on the other 

hand. They will be implemented on binarized images [1] 

issued from real radiographic films of welded joints. 

After, we will show the invariance accuracy of the 

different proposed attributes. 

In order to reduce the computational time required for 

the classification stage it is necessary to select attributes; 

thus the classifier only works with non-correlated 

attributes that provide defect detection information. There 

are a variety of methods for evaluating the performance of 

the computed attributes. 

The main idea behind the principal component analysis 

(PCA) is to represent multidimensional data with fewer 

number of variables retaining main features of the data. It 

is inevitable that by reducing dimensionality some 

features of the data will be lost. It is hoped that these lost 

features are comparable with the “noise” and they do not 

tell much about underlying population [5].  

The method PCA tries to project multidimensional data 

to a lower dimensional space retaining as much as 

possible variability of the data.  
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This technique is widely used in many areas of applied 

statistics. It is natural since interpretation and visualisation in a 

fewer dimensional space is easier than in many dimensional 

space. Especially if we can reduce dimensionality to two or 

three then we can use various plots and try to find structure in 

the data. PCA is one of the techniques such factorial analysis, 

used for dimensional reductions. 

For this purpose, in this work, the principal component 

analysis technique will be used to reduce the number of the 

attribute variables. In other words, by this technique, the initial 

data can be replaced by new data in which the same 

observations appear, but described by variables in smaller 

number. 

II. MORPHOLOGICAL ATTRIBUTES

After each connected component which represents an object of 

interest (weld defect) is isolated, its geometric parameters : 

Area (A), perimeter (P) [6]., centre of gravity ),( yxG , angle of 

orientation ( ), principal axes of inertia, width (W) and length 

(L) of the minimal surrounding rectangle, maximal diameter 

(Dmax), radius of maximal inscribed circle (Rmax), semi 

major and semi-minor axes (a,b) of the image ellipse [8] (see 

Fig. 1) are computed.  

Fig. 1 Illustration of the geometric parameters 

III. GEOMETRIC INVARIANT ATTRIBUTES

The geometric attributes which we will define below are 

invariants regardless geometric transformations of translation, 

rotation and scaling.  
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the normalized central moments [9]. 

IV. RESULTS AND DISCUSSION

A. Graphic illustration of geometric parameters on 

weld defect images 

We present in Fig. 2 some radiographic film images and 

their associated weld defects [1] useful in the computation 

of the invariant geometric attributes and the construction 

of training and testing sets in the defect classification step. 

Fig. 2 Some radiographic films and their associated weld defects 

used in the attribute measurement 

B. Relationship between the proposed invariant 

attributes and weld defect types  

Compactness (Comp): Its value is included in [0,1]. It 

has little values for sharp defects (crack, lack of fusion) 

and it has values near to 1 for spherical defects (porosity, 

tungsten inclusion, etc.). 

Elongation (Elong): It describes the occupied area in the 

bounding box of defect. Big values of this attribute 

characterize longitudinal defects (crack, lack of fusion, 

lack of penetration, elongated porosity, undercut, etc.). 

Rectangularity (Rct): Its value is included in [0,1]. It is 

equal to 1 for a rectangle. It characterizes rectangular 

defects (lack of penetration).             

Anisometry (Ani): It depends on the direction of 

principal axis of defect. Its value is proportional to defect 

lengthening.  

Symmetry (Sym): Its value is included in [0,1]. The 

value 1 describes a perfectly symmetrical shape. The 

asymmetrical aspect of defect (slag inclusion, warm holes, 

etc.) can be related by little values of this attribute.  

Lengthening index (Ia): Big values of this indicia put in 

obviousness fine and rectilinear cracks.      
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Deviation index to inscribed circle (Ir): The indicia value is 

maximal (near to 1) for lengthened defects and minimal (near 

to 0) for round defects. 

Invariant moments ( 1, 2): They gives measures in relation 

with the pixel spreading  in comparison with the centre of 

mass. 
C. Geometric invariance of the proposed attributes  

In order to show the invariance performance of the proposed 

attributes, we have used a set of test images representing a 

binary image of weld defect (see Fig. 3). Usual geometric 

transformations are applied on this image: rotation (10° and 

20°), reduction by scale change (60% and 80%), their 

combination (rotation of 15° and reduction of 70%) and mirror 

effect). Invariant attributes are computed and compared 

between those of original image and those of its transforms. 

The logarithm of 1 and 2 are taken to reduce the dynamic 

range. 

Fig. 3 Original binary image of a weld

As shown in histograms (see Fig. 4), the results for the 

geometric transformed images are in reasonable agreement 

with the invariants computed for the original image. The 

major cause of error can be attributed to the digital nature of 

the data. This invariance property is very important in the case 

of our work because we can obtain, in radiographic testing of 

weld joints, discontinuities having various sizes and 

orientations.  

Fig. 4 Attribute values of Fig. 3 and its geometric transforms 

D. Normalization of the attribute values  

Because the different raw geometric attributes have values 

ranging from the order of 0 to 200, the features were rescaled 

to lie between 0 and 1, to avoid the effects of the larger 

features “swamping” those of the smaller features and possible 

numerical errors caused by a large range in values. This was 

done for each data using the maximum and minimum values 

for each attribute as observed in the data set, i.e. 
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minmax
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PP

PP

ii

ii
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with P1 = Compactness, P2 = Elongation, ... , P9 = 2

and 1 = rescaled compactness, …, 9 = rescaled 2

The choice of max and min values to use for scaling 

data is difficult. The most obvious choices are the 

maximum and minimum values observed over the entire 

data set. However, in this experiment we are attempting to 

train a classifier on one data set and test it on a completely 

unseen test set. Therefore, it should be made sure that the 

values max and min represent really the extreme cases of 

the attribute in question, and that they are related to a 

physical significance of the shape of the defects to 

characterize. 
E. Dimensionality reduction of the attribute vector 

based principal component analysis (PCA)   

With an aim of reducing the number of variables 

representing the attributes, the first result interesting to 

analyze is the correlation matrix of the attribute variables 

(see Table I). However, it would be hazardous to use only 

the table of the correlations to eliminate the variables 

which presents a great correlation. It can generate a loss of 

information. This is why, panoply of the variable 

reduction methods proposed in the literature like as 

principal component analysis (PCA), factorial analysis, 

etc. Let us add the fact that the number of measurement 

for each variable plays a significant role in the correlation 

calculation between the different attribute variables.  

In our study, we investigate the use of PCA relevant 

features from the morphologic feature. PCA is a statistical 

tool, which is useful to extract dominant features 

(principal components) from the set multivariate data. 

They explain the maximum amount of variance possible 

by linear transforms by projecting the data into ortho-

normal sub-spaces. In our case, PCA will enable us to 

reduce the dimension of the feature vector and the 

extracted features should contain the most relevant 

information. To obtain eigenvectors, the database is 

formed into a column vector, n, whose length N is 

depending on the number of individuals used (weld 

defect). For M features, we will have an array matrix 

with the size of M×N. Therefore, we have 

M21 ,,, (2) 

The mean of the column vector is defined by: 
M

1n
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M

1
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The subtracted training set is represented as matrix: 

M21 ,,,   with 
ii
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The covariance matrix is calculated using 

TC (5) 

and the correlation matrix is then deduced by  
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The eigenvector of matrix C as i
v  with corresponding 

eigenvalues can be computed by  
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Any weld defect can be identified as a linear 

combination of the eigenvectors. The principal 

components for any weld defect are defined by: 
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The matrix P with the size of N×L represents the database 

into the axis corresponding to the eigenvector. The values of 

this matrix are the new features that can be used for 

classification and recognition purposes.  

By examining the initial database eigenvalues (see Fig. 5), 

we remark that the four first initial components gives more 

that 97 % of information on entire observations. For this 

purpose, the first matrix representing the feature variables 

(invariant attributes)/the individuals (weld defects) was 

transformed in another matrix where the data is projected in 

orthonormal sub-spaces with four principal components (see 

Table II). It is pointed out that these components are variables 

without physical meaning and are not directly observable. 
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Fig. 5 Initial eigenvalues and cumulative variance percentage 

V. CONCLUSION

Concerning the quantitative analysis of the weld defect 

images thus extracted, the major problem remains how to 

build a set of attributes which characterize the most 

accurately possible these defect regions, while taking in 

account the specificities of the defects that they represent, 

the subjectivity and the risks of their interpretation. This is 

why, it may be that only one attribute plays a decisive role 

in the discrimination of two defect classes, really distinct, 

either by the cause of their occurrence or by the severity 

of the codes and standards in their interpretation. 

We have proposed in this work, a set of attributes which 

are based on the geometric characteristics of the extracted 

weld defect regions. We have showed the invariance of 

these attributes in relation to usual geometric 

transformations. The attribute values thus calculated were 

normalized, in order to adapt them for the classification 

problem. The variable reduction of these attributes must 

be done judiciously, by taking into account the number of 

individuals (defects) and the detailed analysis of the 

correlations between the various variables. The principal 

component analysis (PCA) technique permits to reduce 

the raw attribute vector to give a vector with four (04) non 

correlated components which are more suitable to use in 

the classification stage.  

The objective in this work remains then, the research of 

the attributes which characterize the weld defect images 

according to two criteria:  

Maximal discrimination : Different defect shapes give 

different values of a given attribute.  

Minimal redundancy : An attribute don’t vary in the 

same way that another for a given defect shape.      

In further work, we will try to classify the weld defects in 

some classes representing the principal shape class  

defects usually met in practice. Thus, the four principal 

components values will be introduced as input data to 

supervised or unsupervised classifiers.   
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TABLE I : CORRELATION MATRIX OF ATTRIBUTES VARIABLES

Cmp Elg Rct Anis Sym Ia Ir 1 2

Cmp 1.00         

Elg -0.66 1.00        

Rct 0.53 -0.28 1.00       

Anis -0.64 0.98 -0.41 1.00      

Sym 0.00 0.18 0.34 0.14 1.00     

Ia -0.64 0.89 -0.34 0.89 0.04 1.00    

Ir -0.95 0.62 -0.45 0.59 0.06 0.59 1.00   

1 -0.62 0.90 -0.58 0.94 -0.02 0.85 0.56 1.00  

2 -0.43 0.82 -0.53 0.87 -0.05 0.74 0.38 0.94 1.00 

TABLE II

DATABASE INTO THE FOURTH PRINCIPAL AXES

 Pr.Cp1 Pr.Cp 2 Pr.Cp 3 Pr.Cp 4 

D 1 0.16 -0.36 -0.61 -0.21
D 2 0.07 -0.23 -0.82 -0.54
D 3 0.24 -0.30 -0.68 -0.32
D 4 0.04 -0.16 -0.78 0.05
D 5 0.84 -0.40 -0.13 -0.13
D 6 0.89 -0.33 -0.11 -0.45
D 7 0.67 -0.62 0.05 -0.06
D 8 0.27 -0.26 -0.74 -0.11
D 9 0.06 -0.25 -0.80 -0.03
D 10 -0.06 -0.15 -0.98 0.29
D 11 0.47 -0.39 -0.41 0.08
D 12 -0.00 -0.26 -0.81 0.19
D 13 -0.31 -0.10 -1.04 0.02
D 14 -0.03 -0.23 -0.82 -0.11
D 15 -0.99 0.40 -0.40 -0.07
D 16 -0.79 0.23 -0.66 -0.22
D 17 -1.05 0.50 -0.16 0.11
D 18 -1.01 0.53 -0.30 -0.13
D 19 -0.94 0.34 -0.47 -0.09
D 20 -0.40 -0.02 -0.66 -0.16
D 21 -0.40 -0.03 -0.71 -0.22
D 22 -0.39 -0.15 -0.39 0.06
D 23 -0.28 -0.23 -0.19 0.24
D 24 -0.18 -0.26 -0.35 0.12
D 25 0.52 -0.09 -0.58 0.04

 


