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Abstract—The deterministic quantum transfer-matrix (QTM) 

technique and its mathematical background are presented. This  

important tool in computational physics can be applied to a class of 

the real physical low-dimensional magnetic systems described by the 

Heisenberg hamiltonian which includes the macroscopic molecular-

based spin chains, small size magnetic clusters embedded in some 

supramolecules and other interesting compounds. Using QTM, the 

spin degrees of freedom are accurately taken into account, yielding 

the thermodynamical functions at finite temperatures. 

In order to test the application for the susceptibility calculations to 

run in the parallel environment, the speed-up and efficiency of 

parallelization are analyzed on our platform SGI Origin 3800 with 

128p  processor units. Using Message Parallel Interface (MPI) 

system libraries we find the efficiency of the code of 94% for 

128p  that makes our application highly scalable. 

Keywords—Deterministic simulations, low-dimensional 

magnets, modeling of complex systems, parallelization. 

I. INTRODUCTION

N this article we describe numerical simulation based on the 

quantum transfer-matrix (QTM) method, we present some 

applications in computational physics and analyze the 

characteristics of parallelization which make our code suitable 

to run in the parallel environment. The domain of applications 

of the QTM method is very wide and includes not only 

simulations of the thermodynamic properties of the low-

dimensional systems [1], but also phase transitions [2]. 

Before presenting the modeling and the simulation QTM 

technique, we review physical systems belonging to the class 

of low-dimesional magnets, in particular the molecular 

magnets. First we consider the compound [Mn(hfac)2NITPh]6
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(hfac, hexafluoroacetyl acetonate; NITPh, 2-phenyl-4,4,5,5-

tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy-3-oxide) 

belonging to a class of nano-compounds actively investigated 

for their magnetic properites [3], [4]. Synthesis of polynuclear 

metal complexes with oxygen atom bridges has resulted in a 

series of new molecules with unusual geometric symmetries 

and patterns [5]. Their magnetic properties, associated to a 

large number of interacting paramagnetic centers in a single 

aggregate, have significantly stimulated the research effort 

with the prospect of technological applications [3]. The 

interest in spin assemblies stems from the fact that they set the 

low-size limit for magnetic nanoparticles. They can display 

magnetic quantum tunneling [5] and quantum-size effects in 

the thermodynamic properties [6].  

II. MICROSCOPIC MODEL AND SIMULATION TECHNIQUE

To simulate the finite-temperature properties of low-

dimensional magnetic systems, we model rings or chains in 

the framework of the spin Hamiltonian with the nearest 

neighbour interaction, which can be described by the 

following operator: 
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where iS  is interpreted as the spin located at the i -th site of a 

one-dimensional lattice of N  equally spaced sites. N  may 

become infinite for the macroscopic chain. J  denotes the 

nearest neighbour exchange integral (negative for the 

antiferromagnetic coupling) and D  stands for the anisotropy 

parameter. B  is the external magnetic field which can be 

applied along the chain z  or in the perpendicular direction 

( yx, ), g  is the corresponding gyromagnetic ratio and 

N  is the size of a given one-dimensional system (the chain or 

the ring). The spin values iS  may be uniform or non-uniform 

and define the matrix representation of the corresponding non-

commuting operators. 

We calculate the thermodynamic properties from the 

derivatives of the free energy related to the partition function 

Z . For the spin system described in (1) we can calculate the 

canonical partition function Z  from the definition 
H

Tr eZ  (2) 

The Hilbert space of states of an N -site low-dimensional 

system is a direct product of single spin spaces, therefore, the 
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base states can be labelled by the N -tuple of the eigenvalues 

of the z  component of the single spin operator 
z

N
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i SSSS  (3) 

The values of matrix elements of He  cannot be calculated 

for large N  because of non-commuting operators in (1). 

Thus, to eliminate this restriction, we look for systematic 

approximants to the partition function Z .

We express Hamiltonian (1) in terms of the spin-pair 

operators 1,iiH  as 
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In the checker-board decomposition (CBD) we divide the 

Hamiltonian (4) into two non-commuting parts [7] 

1,3,2,12,1 NNN
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, (5) 

each part defined by the commuting spin-pair operators 

1,iiH . Then the series of the classical approximants of the 

quantum thermal values can be found, using the general 

Suzuki-Trotter formula [7]. The partition function is 

calculated from the expression 
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where miiii 1,1, exp HV Ni ,,2,1  and m  is a 

natural number (reffered to as the Trotter number). 

Fig. 1 The structure of the classical map of the quantum ring of the 

alternating spins in the checker-board decomposition. The shaded 

squares denote the Boltzmann vertices, whereas the full circles and 

the open circles stand for spins at the odd and even sites of chain. 

The approximant Z  can be calculated numerically, without 

any restrictions on the value of N , by the quantum transfer-

matrix method. The computation of mZ  is possible for 

relatively small values of m , because of computer storage 

limitation, but the leading errors in taking a finite m

approximant are of the order of 2/1 m  and therefore, 

extrapolations to m  can be performed. 

The trace in (6) is taken over all the configurations of the 

classical Ising variable riS , (the eigenvalues of z

ri ,S ) on a 

planar lattice of the size mN 2 . The lattice is obtained in the 

checker-board decomposition and sketched in Fig. 1. The 

shaded squares denote the corresponding Boltzmann weights 

1,iiV  present in (6) which are determined by some 4-spin 

operators. 

The thermodynamic functions for all systems described by 

Hamiltonian (1) are related to the free energy which can be 

calculated from the formula ZTkF B ln . The specific 

heat is given as its second derivative with respect to 

temperature, the magnetization is then evaluated from the first 

and the zero-field susceptibility from the second derivative 

with respect to the field. 

III. SIMULATION RESULTS

The QTM method has been applied to simulation of the 

21S  and 1S  one-dimensional Heisenberg model and 

our results are compared with the experimental results for 

many compounds [1]. We have studied the finite temperature 

static properties in wide ranges of temperatures and the single-

ion anisotropy (the D  parameter in (1)).  

The simulations of the finite chains with arbitrary size N

are challenging due to the experimentally observed effects of 

the non-magnetic dilution of Yb4As3. The specific heat data 

calculated for the finite segments 20N  and 29N , are 

plotted in Fig. 2 in order to show the sizeable dependence on 

N  at low temperatures and applicability of our method for a 

diluted system. 

Fig 2 Temperature dependence of the specific heat numerical 

results for finite chains ( 20N  and 29N  spins) and infinite 

chain. 

Here we report the susceptibility of the Mn6 molecule [1]. 

Depending on temperature and the number n  of the spin pairs 

21S  and 25S , in some cases the calculations 

preserving 5 decimal places required as many as 900m

steps in the Trotter direction. To save the supercomputer time, 

for temperatures higher than 05.0/ JTk B  we performed 

our simulations only up to 5n  pairs. Then we extrapolated 

the estimates of the zero-field susceptibility to 6n  which 

corresponded to Mn6. The uncertainties, smaller than 1% at 
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higher temperatures, reached the order of 5% for about 

05.0/ JTkB  and at this point the QTM simulations were 

performed for 6n  pairs. 

The measured susceptibility of Mn6 [8] is drawn for the 

monomeric formula in Fig. 3 by small circles. To fit our 

theoretical data, we have fixed 0.2g  due to the negligible 

spin-orbit coupling for Mn ion. The best fit has been found for 

the isotropic parameter )(10)(350 KKkJ B , which is 

consistent with the existing qualitative estimates [3]. Our 

“exact” estimate for 6n  (the large full circle) at 

05.0/ JTk B  is also depicted in Fig. 3. and confirms the 

approximate extrapolated results. 

Fig. 3 The temperature dependence of the product T  for Mn6

in molar units (emu K mole-1) divided by the number of pairs. The 

experimental data are given by small full circles and the extrapolated 

QTM results by open circles. The large full circle shows the 

numerically exact QTM estimate at 05.0/ JTk B . The error bars 

are indicated where they exceed the size of the symbols. 

From the computational point of view, the diagonal 

elements of the transfer matrix with size 984985212 6n

had to be calculated. Their number was reduced 

approximately by a factor of 6 due to the symmetry 

considerations so that we had to evaluate about 0.5 106 matrix 

elements. It is a formidable task typical for the currently 

sinthesized magnetic supramolecules [9] and needs effectives 

methods of parallelization on the large number of processors 

and ultimately the grid environment. 

In the remaining part of our work we analyze the properties 

of our code with respect to the distribution of the 

computational task over a number of processors available in 

the Supercomputing and Networking Centre in Poznan. 

We have performed tests for a model molecule consisting 

of 4n  pairs with 211S  and 252S  corresponding to 

the real Mn6 cluster. The size of the transfer matrix is equal 

20736 and a number of independent diagonal matrix elements 

amounts to about 5000. 

Fig 4 The speed-up p  of the parallel computation for the number 

of processors 128p  tested on the SGI Origin 3800 

supercomputer. The line describe the function pS p .

The performance of our parallelized code is presented in 

Fig. 4. We have run the program in the SGI Origin 3800 

supercomputer. To reach the convergence for our simplified 

model system, we need in the sequential version of the 

algorithm about  14600 CPU seconds for the SGI platform. 

The speed-up of the parallelization based on the MPI librares 

is drawn by circles in Figure 4. The speed-up has been 

computed as the quotient of the CPU time of the sequential 

version of the algorithm divided by the maximum CPU time 

used by the slave processes plus the master process CPU time 

[10], [11]. 

IV. CONCLUSION

We have worked out QTM approach to characterize the 

finite temperature magnetic properties of the high nuclearity 

cyclic spin clusters with large and alternating spins and a 

number of the macroscopic quasi-one-dimensional magnets.  

We have carried out large-scale computations obtaining 

high resolution data for the 1S  spin chains down to low 

temperatures and in the wide range of single-ion anisotropy 

parameters. For Mn6 cluster the QTM technique provides the 

numerically exact results [1].  

Our simulations demonstrate that the QTM approach is a 

valuable tool for calculations of the finite-temperature 

properties of the low-dimensional magnetic systems. This 

approach is also expected to be effective for magnetic 

properties of large clusters of interacting magnetic centers. 

The computational complexity of our numerical problems is 

exponential so that for the finite ring simulations we are 

limited by the CPU time resources and a new grid 

environment should be envisaged. The efficiency of the 

parallel computation is diminished from 100% for 4p  to 

94 % for 128p  but still very high and efficiently scalable.  
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