
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1554

Decision Maturity Framework: Introducing

Maturity In Heuristic Search

 Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes

Abstract— Heuristics-based search methodologies normally

work on searching a problem space of possible solutions toward

finding a “satisfactory” solution based on “hints” estimated from the

problem-specific knowledge. Research communities use different

types of methodologies. Unfortunately, most of the times, these hints

are immature and can lead toward hindering these methodologies by

a premature convergence. This is due to a decrease of diversity in

search space that leads to a total implosion and ultimately fitness

stagnation of the population. In this paper, a novel Decision Maturity

framework (DMF) is introduced as a solution to this problem. The

framework simply improves the decision on the direction of the

search by materializing hints enough before using them. Ideas from

this framework are injected into the particle swarm optimization

methodology. Results were obtained under both static and dynamic

environment. The results show that decision maturity prevents

premature converges to a high degree.

Keywords— Heuristic Search, hints, Particle Swarm

Optimization, Decision Maturity Framework.

I. INTRODUCTION

H euristic-based optimization methods use heuristics

clues (or hints) to advance the search process towards

areas (in the search space) of potentially good solutions.

Spanning the heuristic algorithms, we can deduce that

heuristics are intelligent hints extracted from problem-specific

knowledge used to direct the search toward areas favored at

the time when they are obtained. Hints are usually extracted

with respect to the current status of the search process. Thus,

they are most often “local” and “immature”: local in their

affects and immature in their influence to the decision making

process in the search algorithm. Utilizing such immature hints,

optimization methodologies tend to loose their ability to

search globally and therefore converge prematurely. Hence,

an apparent solution for such problem is by controlling the

hint utilization process and formulating it toward becoming

more “mature”; mature in a sense that hints utilized only when

they are mature enough to provide better (i.e., global) insight

about the best direction to forward the search.

Decision maturity framework is can be used as a general

way of enhancing the guidance system of the heuristic-based

optimization methodologies. The framework is based on the

very basic idea of accumulating individual hints (from a time

window) and delaying their utilization until the end of the

time window set by the algorithm. In this context, hints

accumulation works as an incubator of their affects in order to

provide an overall better affect on the decision than applying

them individually. Philosophically speaking, one may think

about the framework as a wiser brain versus an intelligent one:

wiser brain tend to accumulate knowledge and experiences

through time and build up a wisdom of multiple experience

and information (i.e., many hints) that it can use for better

decisions afterward. On the other hand, an intelligent brain

tends to think intelligently under certain circumstances and

provides an intelligent decision using available information

(i.e., local hints) it can gather at that moment.

In this paper, we tested the validity of this framework by

injecting some of the ideas into particle swarm optimization

technique, and testing its suitability under problem with

dynamic environment.

In the next section the decision maturity concept is

described and the logic behind it is explained. Section III

shows how this framework is applied to particle swarm

optimization. Section IV presents experimental setting used to

test the validity of the idea. Experimental results are shown in

Section V. Section VI shows results of applying the idea

under dynamic environments. Finally, Section VII presents

conclusion of this paper.

II. DECISION MATURITY FRAMEWORK

Manuscript received January 16, 2004.

Ayed Salman, , Fawaz Al-anzi, Aseel, Computer Engineering Department,

Kuwait University (Tel: 965-4985833 KUWAIT; e-mail:

{ayed/alanzif}@eng.kuniv.edu.kw)

To illustrate the decision maturity framework we preferred

using a life example to make the idea more easier to grasp.

Imagine the situation where a frog and turtle are having a race

to who reaches a piece of food first. We assume that there is

only one piece of food in the forest (and both animals have an

appetite for). Both animals search the forest for the food by

continuously moving in directions that each think the food is

located. The two animals are smart enough to learn from their

own movement. There is one major difference between the

two animals that is the step size. While the turtle tend to take

small steps the frog has the tendency to take long leaps.

Because the frog has to use more energy in leaping, it has to

rest for a while before it can make the leap. Meanwhile, the

turtle continues to move during that resting period of the frog

and manages to walk a distance equivalent to that the frog has

made in its last leap. Given this scenario, the questionAseel Al-Menyes, Master Student, Kuwait University, {e-mail:

aseel@eng.kuniv.edu.kw).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1555

III. PARTICLE SWARM OPTIMIZATION (PSO) WITH DECISION

MATURITY

remains; who will reach the food first?

Since both animals are trying to explore more ground to

find food, it is logical that both animals will be probably

making almost equal number of moves in wrong directions

from the food to discover the right general direction for the

food. Hence, it is logical to assume that the turtle will be

getting more smarter as time progresses since it make more

moves the frog is getting its rest. But because it is slower,

there is no grantee that it will reach the food before the frog

DOES. A wise frog comes into the forest that will behave

differently from our previously described frog. As the wise

frog rest for its next leap, it will watch the movements of the

turtle as it progresses and get a general idea of the knowledge

it acquires due its continuous movement. The wise frog then

will use this knowledge to enhance the direction of where it

should leap as the resting period come to an end. This wise

frog is most probably going to find the food faster than the

turtle because it is faster and getting as smart as the turtles, so

it will be always few steps ahead of the turtle in tHE RIGHT

DIRECTION AS IT LEAPS.

We introduce Particle swarm optimization in the following

subsection and then we show how its can be modified within

the decision maturity framework.

A. 3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based

evolutionary computation technique developed by Dr.

Eberhart and Dr. Kennedy in 1995 [4]. It was inspired by

social behavior of bird flocking or fish schooling. The system

works by initializing a population with random solutions to

the problem at hand and searching for optima through creation

of multiple generations. In PSO, the potential solutions called

particles and are "flown" through the problem space by

following the current best particle behaviors.

Each particle keeps track of its coordinates in the search

space. These coordinates associate to a potential solution in

the problem domain. Particles are evaluated according to a

fitness they achieved so far. The algorithm keeps track of two

potential decision influencers: Best solution each particle

achieve up to the moment of the decision (called lbest) , and

best solution achieved by all particles (called gbest). These

two attracters guide the search process toward areas of

potentially good solutions. PSO uses a model that intermix the

affect of both attracters. The particle swarm optimization idea

relies on accelerating the velocity of each particle toward a

location somewhere in the distance between its gbest and lbest

locations. Acceleration factors are randomly weighted in order

to avoid bias towards one attractor over the other. Researchers

find particle swarm optimization an attractive technique

because there are few parameters to adjust. PSO has been

used across a wide range of applications with large success.

To illustrate the picture mathematically, we will use a

simplified version of it. We will assume that the turtle can

make a step of length x every minute and the frog makes a

leap of 2x every two MINUTES AS SHOWN IN FIGURE I. At start,

the two animals are in the same place. The food is at distance

L with and angle t0 from both. The turtle will make a first step

of length x in angle t1. The next turtle step is a step of length

x in angle t2 from the position it stopped at form the first step.

Because the wise frog is watching the movement of the turtle,

when the time comes for a leap it will choose to leap its 2x

step on same path as the direction of the last step of the turtle,

with an angle t3. This smart move of the wise frog will ensure

that if the food is in the current path of the turtle, the frog is

also getting closer to it, and most of the time faster than the

turtle. It is not difficult to mathematically prove that, if the

food is still far enough, at the end of 2 minutes the frog is

always closer to the food than the turtle using this strategy.

However, as the two animals get closer to the food, smaller

step strategy tends to be more logical to use. This strategy of

the wise frog has been proven to produce more maturity on

decisions of movement.

B. Simple PSO

Simple PSO [4] consists of swarm of particles moving in

an n-dimensional search space where the fitness (i.e quality

measure) can be calculated. Each particle has a position

represented by a position-vector X and a velocity represented

by a velocity-vector V. Each particle remembers its own best

position so far in a vector lbest, which represents the position

where it achieved its best fitness. In addition, a neighborhood

relation is defined for the swarm. The best position vector

among all the neighbors of a particle is then stored in the

particle as a vector gbest. Velocities are updated every time

step then particles moves to a new position according to the

new velocities. Velocities are updated with the following

equation:

x <t1

x <t2 Turtle

L

 Frog 2x <t3

food

star

Figure I: Graphical representation explaining the logic

behind Decision maturity framework

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1556

)(*()

)(*()*

i

iioldinew

XgbestRand

XlbestrandVWV (1)

Then, the new position is determined with the following

equation

iii newVoldXnewX ___

vector of particle,

X

ve bias towards any of the

tw

tude of the old velocity towards

calculating the new velocity.

he Simple PSO algorithm is summarized as the following:

ia

gle

eader position among different

ach particle according

id

(2)

Where V_new is the new velocity

is the particle position vector,

rand() and Rand() are both real numbers generated

randomly between (0,1) to remo

o (global and local) attractors.

The parameter W (inertia weight) is a real number that

controls the affects of magni

T

Loop until meeting termination criter

Calculate the fitness of all particles.

Record the best experience so far for every sin

particle (i.e. best position visited so far: lbest).

Record the global l

particles (gbest).

For each particle I, for each dimension d; Adjust

velocity and position for e

to the following equation:

)(*()

)(*()* ididid

XgbestRand

XlbestrandVoldWVnew

newVoldXnew ___ ididid

ecision Maturity Into Particle Swarm

Optimization

nd so on. The basic algorithm is

summ

best position visited so far

der position among different

d; Adjust

r2, accumulates hints (don’t apply them

yet):

id

X

C. Injecting D

The decision maturity framework was injected into the step

of updating position and velocity of particles in the simple

PSO algorithm. First, PSO attractors (i.e. lbest and gbest)

effects are separated rather than mixed in equations used by

simple PSO. Two factors are being accumulated separately:

gbest velocity factor and lbest velocity factor. We dealt with

these factors as separate hints. We changed the algorithm such

that those hints are accumulated during a randomly varying

period of time, then applied to the PSO process at the end of

this period. Accumulation is repeated again for another

random period of time, a

arized as following:

Loop until termination:

Calculate the fitness of all particles.

Record the best experience so far for every single

particle (i.e.

p_Local).

Record the global lea

particles (p_global).

For each particle i, for each dimension

velocity and position for each particle:

Initialize two random numbers r1 and r2.

If r1 >

)

hints id

X(*()hints idid lbestrand

idid

Otherwise, apply accumulated hints

)(*()hints

hints id

Xgbestrandid

VWV ints* idid h

VX

id

X ididid

optimization

techniques such as Genetic Algorithm and PSO.

the population) and the fitness of each method

are recorded.

IV. EXPERIMENTAL SETTINGS

Four hard optimization functions developed by De Jong [4]

used in the experiments as shown in Table I. These functions

were used to compare simple PSO to PSO with maturity

framework embedded.

These functions are widely known and used (by many

researchers) as benchmark functions for

Both the simple PSO performance (measured in fitness

yielded) and our modified algorithm were compared

thoroughly using variation of different parameters such as

iteration number and problem dimension’s size parameters.

The diversity (i.e. the measure of differences between location

of particles in

The diversity function is defined as:

S
)

TABLE I: DE JONG FUNCTIONS

jij
Diversity

S

i

N

j
pp

1 1

2

)((3

Name Expression Range

+10}
-5.12 x 5.12

Sphere F(x)= xi^2

1/4000 xi^2

-5.12 x 5.12

cos(xi/ i) +1

Rastrigin
F(x)= {xi^2–10cos(2 xi)

Griewank
F(x)= –

-600 x 600

Schewefel
F(x)=418.9829-xi sin(

(abs(xi)))
-500 x 500

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1557

i
ii xgF

1

(4)

In these experiments, we compared the three methods we

described in previous section using the same settings as

previous experiments and varying only the following:

maximum allowed velocity of the particles, and number of

generations to change the goal (i.e degree of goal dynamics).

Table III and IV summarize the measurement results showing

the average diversity each method attained during different

iterations and the average best fitness obtained by each

method. Results show clearly that the fitness of both

suggested method within the decision maturity framework is

much better than the simple PSO. This su

Where S is the population size, N is the dimensionality of

the problem, pij is the jth value of the ith particle and pj is the

jth value of the average point p.

e two is the

“h

d 2 applies hints in a deterministic order

(r

hm. We see that

mbedding the idea leads towards better fitness functions and

slower convergence (i.e. larger diversity).

O

aturity idea implemented

fo

D. Particles attempt to locate the goal on the basis

of he strength of the goal signal. Equation 1 was used in

[1].

V. EXPERIMENTAL RESULTS

We devised two variation of the same idea of embedding

the maturity into PSO. The difference between th

ow-about” of application of hints: method1 applies hints as

shown in the algorithm described in section II;

Whereas metho

ather using randomization to determine the timing of

application) but

very similar to the mechanism above. Results shown in

Table II shows that both methods utilizing the maturity idea

beat the simple PSO in both measures: fitness and diversity of

best solutions obtained by any algorit

e

VI. DECISION MATURITY IN DYNAMIC ENVIRONMENTS

In previous sections, the framework of Decision Maturity

idea was tested under static problem search spaces (e.g. De-

jong problems). In this section, we extend the experimental

analysis into dynamic environments. Many real-world

problems has a dynamic nature where objective changes

through time and/or space. The main objective of this type of

analysis is to explore the strength of the proposed framework

when it encounters problem with such nature. In particular, we

are interested in two criteria: performance of the method,

compared to others, in achieving a good solution and

maintaining more diverse population through time. The PS

algorithm with embedded decision m

D 2

periority gets clearer

as

sion

m

ithm can live longer and converge

lower thus yield better results in dynamic environments.

From all these results we concluded that the idea of

Decision Maturity h ency when used in

ynamic environment.

h is

success b d Dempster-

application is yielded,

ncouraging results and being fully tested, and finally different

situations where the decision maturity can be embedded into

TABLE II: RESULTS COMPARING SIMPLE PSO AND PSO WITH

DECISION MATURITY FRAMEWORK

Si M M

we increase the number of generation to change the

objective of the problem (i.e., the goal position). In addition,

the diversity attained by methods incorporating deci

aturity idea is much better than the

others, which don’t do that. Instead, using this idea, a

population-based algor

s

as proven its effici

d

VII. CONCLUSION

Decision maturity concept can be applied to many real life

application and can be embedded into many heuristic

algorithm. In this paper, we embedded it into PSO. It achieved

better results and maintains larger diversity in the population.

In both the static and dynamic environments, the modified

PSO have proven its efficiency and it yielded better fitness

and diversity than the simple PSO. Currently, the approac

being investigated from different directions: Theory behind its

eing developed using hint theory an

Fitness mple_PSO ethod 1 ethod 2

Rastrigin 82.69643 67.74201 56.39222

Sphere 1.35795 1.05539 2.37642

Griewank 0.06527 0.01842 0.00777

Schewefel 6658.45752 2877.62988 2748.18311

Diversity Si M Mmple_PSO ethod 1 ethod 2

Rastrigin 0.00011 0.21540 0.33377

Sphere 0.00006 0.00013 0.00031

r static environment in previous sections was adapted to

handle the dynamic environments.

The dynamic fitness function depicted in equation

measure the distance of the particle xi from the goal gi,

which moves at some random velocity through the search

space

t

Shafer theory [3] [7] [8], real life

chewefel 128.00948 314.60673 0.22739

Griewank 0.00019 0.19325 0.08236

S

e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1558

d

S

REFERENCES

[1] c Environments,

EC99) (July) 1951-1957

[3]

St

[4] berhart, (1999), Empirical study of particle swarm

[5] ke, (1999), Evolutionary Approaches to Dynamic

[6] nd

] Kohlas, J., & Monney, P. A. (1995). A mathematical theory of hints:

An approach to dempster-shafer theory of evidence. Lecture Notes in

Economics and Mathematical Systems No. 425. Springer- Verlag.

[8] Smets, P., & Kennes, R. (1994). The transferable belief model.

Artificial Intelligence, 66, 191–234.

DIFFERENT PSO CONFIG SING 1000 ITERATION

AND ING BO AX UM AL WABL RTI

OCITY AN E BER GEN TION CH E

E

MaxV

ifferent heuristic algorithms such as Genetic Algorithms and

imulated Annealing is being explored.

TABLE III: DIVERSITY MEASURED AS EQUATION (1) FOR

URATIONS U

VARY TH M IM LO E PA CLE

VEL D TH NUM OF ERA S TO ANG

TH GOAL

0.5 1 5 50 500

PSO 0.0 0.0 0.0 0.0 0.0

M1 429.6 445.5 426.7 444.6 442.01

M2 295.6 300.3 299.7 301.0 271.9

PSO 0.0 0.0 0.0 0.0 0.0

M1 313.7 286.3 285.8 312.3 340.95

M2 129.0 139.2 135.2 126.4 117.6

PSO 8.0 703.3 9.4 12.1 8.6

M1 227.6 1466.0 249.2 245.6 248.550

M2 42.0 947.2 33.6 34.5 27.1

PSO 11.8 10.5 11.3 12.4 11.4

M1 181.5 166.1 164.0 197.9 182.7100

M2 20.3 20.6 19.9 20.3 23.4

N
u

m
b

er
 o

f
g

en
er

at
io

n
s

to
 c

h
an

g
e

th
e

g
o

al
.

A. Dempster, (1968), Generalization of Bayesian inference. J. Roy.

atist. Soc. B., 30, 205–247.

Y. Shi, R. E

optimization, Proceedings of the Congress on Evolutionary

Computation (CEC99) (July) 1945-1950.

Jurgen Bran

Problems, A survey, Technical Report 387, Insitute AIFB, University

of Karlsruhe

Philippe Smets, (1996), Imperfect Information: Imprecision a

Uncertainty. Uncertainty Management in Information Systems:

pp225-254.

[7

PSO 13.0 8.7 5.3 9.5 3.7

M1 17.5 13.9 16.8 22.0 15.8500

M2 11.7 11.4 23.3 17.6 6.9

TABLE IV: FITNESS RESULTS FOR DIFFERENT PSO CONFIGURATIONS USING 1000

ITERATION AND VARYING BOTH MAXIMUM ALLOWABLE PARTICLES VELOCITY

AND THE NUMBER OF GENERATIONS TO CHANGE THE GOAL.

MaxV 0.5 1 5 50 500

PSO 4193.6 4141.1 4260.5 4154.4 4186.6

M1 3936.3 3973.6 3930.3 4042.9 4008.61

M2 3242.6 3302.1 3269.1 3368.2 3929.8

PSO 4202.4 4086.7 4165.7 4193.0 4230.0

M1 3808.6 3880.6 3917.7 3875.1 3909.25

M2 3533.1 3624.1 3706.2 3686.7 3905.2

PSO 3134.4 2937.2 2814.2 2958.7 3066.8

M1 2423.5 2116.0 2030.4 2208.9 2167.650

M2 2629.2 2450.0 2415.0 2533.0 2719.8

PSO 2175.1 1970.2 2004.7 2121.6 2284.3

M1 1460.9 1390.0 1410.3 1447.2 1486.6100

M2 1872.4 1847.2 1868.3 1936.0 1892.2

PSO 939.9 911.1 1020.0 897.3 1071.3

M1 410.2 467.3 447.5 431.5 470.0

N
u

m
b

er
 o

f
g

en
er

at
io

n
s

to
 c

h
an

g
e

th
e

g
o

al
.

500

M2 773.8 766.6 720.1 757.4 825.8

A. J Carlisle, (2000), Adapting PSO to Dynami

International Conference on Artificial Intelligence (ICAI 2000), Las

Vegas ,.

[2] M. Clerc, (1999), The swarm and the queen: towards a deterministic and

adaptive particle swarm optimization, Proceedings of the Congress on

Evolutionary Computation (C

