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Abstract—This paper describes dynamic analysis using proposed 

fast finite element method for a shock absorbing structure including a 

sponge. The structure is supported by nonlinear concentrated springs. 

The restoring force of the spring has cubic nonlinearity and linear 

hysteresis damping. To calculate damping properties for the structures 

including elastic body and porous body, displacement vectors as 

common unknown variable are solved under coupled condition. Under 

small amplitude, we apply asymptotic method to complex eigenvalue 

problem of this system to obtain modal parameters. And then 

expressions of modal loss factor are derived approximately. This 

approach was proposed by one of the authors previously. We call this 

method as Modal Strain and Kinetic Energy Method (MSKE method). 

Further, using the modal loss factors, the discretized equations in 

physical coordinate are transformed into the nonlinear ordinary 

coupled equations using normal coordinate corresponding to linear 

natural modes. This transformation yields computation efficiency. As 

a numerical example of a shock absorbing structures, we adopt double 

skins with a sponge. The double skins are supported by nonlinear 

concentrated springs. We clarify influences of amplitude of the input 

force on nonlinear and chaotic responses. 

 

Keywords—Dynamic response, Nonlinear and chaotic motions, 

Finite Element analysis, Numerical analysis. 

I. INTRODUCTION 

O reduce influences of external loads from precision 

instruments, shock absorbing structures are used. The 

shock absorbing structures often include springs and sponges. 

The springs sometimes have nonlinearity between their 

restoring forces and deformations under relatively large load. 

The sponges as air cushions are utilized to decrease impacts to 

human bodies. Therefore, it is of importance to clarify 

nonlinear dynamic motions of shock absorbing structures 

including elastic metal, nonlinear springs and sponges under 

external loads. 

Dynamic responses of systems including nonlinear springs 

have been examined by many researchers [5], [6]. On the other 

hand, there are many reports [1], [2], [7]-[12] about problems 

having sponges using FEM or BEM. However, there exist very 

few studies dealing with the coupled problem between dynamic 
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problem of nonlinear springs with elastic structures and 

dynamic problems including sponges as porous materials. As 

an example of a shock absorbing structure, we analyze dynamic 

properties using finite element method for double skins with a 

porous material supported by nonlinear springs. The double 

skins are comprised of a porous material sandwiched between a 

rectangular thin steel panel and a thin cover plate. On the edges 

of the thin steel panel, we set rigid frames. The rigid frames are 

supported to reduce influences of external forces by nonlinear 

concentrated springs. The external forces are acted on a point in 

the steel panel. Dynamic responses at a point in the cover plate 

are computed. 

The restoring force of the springs has cubic nonlinearity and 

linear hysteresis damping. Damped dynamic characteristics of 

air inside of the porous materials are defined by complex 

effective density and complex bulk modulus. Particle 

displacements of the internal air in the porous materials are 

chosen as unknowns. Displacements in the solid materials for 

the skins are also formulated using finite elements including 

complex modulus of elasticity. Thus, displacement vectors are 

common unknown variables for the coupled equations of 

motion of the shock absorbing structure. Under small 

amplitude, we apply asymptotic method to complex eigenvalue 

problem of this system to obtain modal parameters. And then 

expressions of modal loss factor are derived approximately. 

This approach was proposed by one of the authors previously. 

We call this method as Modal Strain and Kinetic Energy 

Method (MSKE method [1], [2]. Further, using the modal loss 

factors, the discretized equations in physical coordinate are 

transformed [3], [4] into the nonlinear ordinary coupled 

equations using normal coordinate corresponding to linear 

natural modes. To calculate dynamic responses, the derived 

equations are integrated numerically using Runge-Kutta-Gill 

method. This approach helps us to obtain fast computation. 

Influences of nonlinearity of the springs on the nonlinear and 

chaotic responses and the spectrums are investigated. 

II.  NUMERICAL MODEL 

Fig. 1 shows the detail geometry of the simulation model 

composed of (a) double skins with a porous material, (b) rigid 

frames supported by nonlinear / linear concentrated springs. As 

shown in Fig. 1 (a), the double skins are constituted of a flat 

steel panel, a porous material and a steel cover plate. Thickness 

of the steel panel is 0.7mm. The porous material is sandwiched 

between the steel panel and the cover plate. Both the porous 
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material and the cover plate are laminated on the rectangular 

central portion (126.0mmx112.27mm) of the steel panel. 

Thickness of the cover plate is 0.6mm and that of the porous 

material is 15mm. In the double skins, vibrations and dynamic 

amplitudes of the cover plate are floated due to the soft porous 

material. This leads to decrease impacts from the cover plate to 

the damped panel through the soft porous material. The length 

of the edges of the steel panel is 226.0mm x212.27mm. Outside 

of the central portion is sandwiched by the two rigid steel 

frames as shown in Fig. 1 (b). Thickness of the flames is 17mm. 

In this study, these frames can be regarded as rigid bodies 

because of their high stiffness. At the four corners of the bottom 

of the lower flame as shown in Fig. 1 (b), the flame is supported 

by the concentrated springs. At the corners, we set nonlinear 

concentrated springs in y direction (i.e. vertical direction). The 

concentrated nonlinear springs have cubic nonlinearity in the 

relation between their restoring force
myR  and their 

displacement 
myU  as shown in Fig. 2. Moreover, we introduce 

linear hysteresis damping into the restoring force of the 

nonlinear springs. Namely, linear components of the spring 

constants have complex quantity as )1( 111 mymymy jηγγ += . 
my1η

shows the loss factor of the springs. Further, there also exist 

linear concentrated springs in x and z directions (i.e. 

horizontal directions) at the corners.  

We set the origin at the center in the xz plane on the bottom 

surface of the lower flame. The excitation point is (x, y, 

z)=(-34.30, 17.00, 42.00) on the bottom surface of the steel 

panel. We evaluate impact responses of this simulation model. 

The evaluation point is (x, y, z)= (24.95, 35.30, -35.00) on the 

cover plate. 

III. NUMERICAL PROCEDURE 

Next, we propose a numerical method to calculate nonlinear 

and chaotic responses by considering coupled damping 

properties for the double skins connected to the nonlinear 

concentrated springs as a shock absorbing structure. The double 

skins contain the solid materials and the porous materials. To 

deal with the problem having arbitrary shapes and arbitrary 

boundary conditions, the solid material and the porous material 

are modeled using finite elements. And then, they are 

superposed in consideration of coupled conditions. Restoring 

force of the nonlinear springs with linear hysteresis is 

formulated to connect to the double skins. 

A. Discretized Equation for Nonlinear Concentrated Springs 

with Linear Hysteresis 

First, we deal with the nonlinear concentrated springs with 

hysteresis. As shown in Fig. 1 (b), it is assumed that nonlinear 

concentrated springs with viscoelasticity have the principal 

elastic axes in the y  direction (i.e. vertical direction). We 

denote the displacement as 
myU ,( ,...3,2,1=m ) in the y direction 

at the nodal points
mα ( ,...3,2,1=m ) where the nonlinear 

concentrated springs are connected with the frame around the 

double skins. Nonlinear functions using the power series are 

given for the nodal forces at the points
mα . If cubic nonlinearity 

is considered, then the restoring forces
myR of the springs are 

expressed as 

 
3

3

2

21 mymymymymymymy UUUR γγγ ++=
          

(1) 

 

 

(a) 

 

 

(b) 

Fig. 1 Simulation model 

 

 

Fig. 2 Restoring force of nonlinear concentrated springs 

 

Further, linear hysteresis damping is introduced as 

)1( 111 mymymy jηγγ += .
my1γ is the real part of 

my1γ , and  
my1η  is the 

material loss factorof the concentrated spring. j is the 

imaginary unit. These relations can be rewritten in the matrix 
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form as follows [3], [4]: 
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(2) 

[ ]















=

000

00

000

11 mym γγ ,{ } { }T
mymymymym UUd 0,,0

3

3

2

2 γγ +=
  
(3) 

 

where { } { }Tmzmymxm RRRR ,,= , 0== mzmx RR ,is the nodal force 

vector at the node
mα . { } { }Tmzmymxsm UUUU ,,= is the nodal 

displacement vector at the node 
mα . [ ]m1γ is the complex 

stiffness matrix involving the linear term of the restoring force. 

{ }md  
is the vector containing the nonlinear terms of the 

restoring force. 

B. Discrete Equation for Double skins with Porous Material 

Next, we explain modeling of the frames and the double 

skins with the porous material.  

For the porous material in the double skins, a damped field of 

the internal air in the porous material is discretized using finite 

elements. Assuming small amplitude, equations of motion of in 

viscid compressive perfect fluid can be expressed as follows. 

 

{ }fusgrad ɺɺρ=
                            

(4) 

 

Continuity equation can be written as: 

 

{ }fudivEs =
                                  

(5) 

 

where particle displacement vector in the region of an element 

is set as { } { }Tfzfyfxf uuuu ,,= . fxu  , fyu and fzu  are the 

components of the vector in x , y  and z  direction, 

respectively. s is the force per unit area where the force s  has 

plus quantity under expansion. Therefore, s  has a relation 

ps −=  with pressure p . E and ρ  are the volume elasticity 

and the effective density of the internal air.  

Using the particle displacement vector in the region of an 

element }{ fu , relations between }{ fu and particle displacement 

vectors }{ feu  at the nodal points in the element can be 

approximated as follows. 

 

}{][}{ fe

T

ff uNu =
                              

(6) 

 

where ][ fN represents a matrix comprised of appropriate shape 

functions 

We also introduce irrotational condition as }0{}rot{ =fu . 

Next, kinetic energy, strain energy and potential energy are 

obtained from (4)-(6). The following expressions can be 

derived applying the Lagrange equation. 

 

[ ] { } [ ] { } { }fefefefefe fuKuM =+ɺɺ
                        

(7) 

[ ] [ ]feefe MM
~ρ=

                                 
(8) 

 

 
[ ] [ ]feefe KEK

~
=

                                
(9) 

 

{ }fef  
is the nodal force vector. [ ] feK is the element stiffness 

matrix, while [ ] feM is the element mass matrix. 
eρ and

eE  are 

the effective density and volume elasticity for materials in the 

region of the elements. [ ]feM
~

and [ ]feK
~  are the matrix consisted 

of the shape functions and their derivatives.  

Many models for a field in porous materials have been 

proposed [1], [2], [7]-[12]. There exists a model using complex 

effective density and complex propagation speed [9]. The 

parameters for this model can be identified easily by improved 

cavity method [9] using impedance tube. In this paper, we adopt 

the following model using complex effective density ∗
eρ  and 

complex volume elasticity ∗
eE  for the field inside the porous 

materials: 

 

eIeR ρρρρ jee +=⇒ ∗

                         
(10) 

 

eIeR EjEEE ee +=⇒ ∗

                        
(11) 

 

eRρ and
eIρ  are the real part and imaginary part of ∗

eρ , 

respectively. The imaginary part 
eIρ  has a relation with flow 

resistance. 
eRE and

eIE  represent the real part and imaginary 

part of ∗
eE , respectively. In (8), ∗

eE  can be easily obtained from 

2)( ∗∗∗ = eee cE ρ . The authors confirmed the effectiveness of this 

model previously [1], [2]. 

By substituting (10) into (8), the element mass matrix [ ]feM  

can be written as: 

 

[ ] [ ] ( ) RIR /,1 eeeefefe jMM ρρχχ =+=
                  

(12) 

 

where [ ]
fe

MR
 is the real part of element mass matrix [ ]feM .

eχ

corresponds to the material damping due to the flow resistance. 

In the same manner, substitution of (11) into (9) yields the 

following element stiffness matrix [ ]feK . 

 

[ ] [ ] ( ) RIR /,1 eeeefefe EEjKK =+= ηη
               

(13) 

 

In (13), [ ]
fe

KR
 represents the real part of the element 

stiffness matrix [ ]feK . 
eη shows damping effect concerning 

hysteresis between pressure and volume strain in the porous 

materials. 

According to equations from (7) to (13), both the element 

stiffness matrix [ ]feK  and the element mass matrix [ ]feM  for 

internal gas in the porous materials have complex quantities 
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[1], [2].  

Isoparametric hexahedral elements (14) are used for the 

porous material. The complex effective density for the porous 

material in this paper is set as
eRρ =1.40kg/m

3
,

eχ =-0.500. And 

the complex volume elasticity is
eRE =1.19 × 10

5
N/m

2
,

eη
=0.100. 

For vibration of the steel panel, the cover plate and the 

frames, we used discretized equations written in the following 

equations from (14) to (18). They correspond to conventional 

linear finite element model in consideration of hysteresis 

damping. Stress-strain relation and strain-displacement relation 

are expressed as: 

 

}]{[}{ εσ D=                                 
(14) 

 

}]{[}{ suA=ε
                                 

(15) 

 

}{σ stands for the stress vector. }{ su is the displacement vector 

for the solid bodies and }{ε is the strain vector. ][A is the 

matrix comprised of differential operators, while ][D  is the 

matrix including modulus of elasticity and Poisson's ratio. 

Using the matrix ][ sN containing shape functions, relations 

between displacement }{ su  in an element and displacements 

}{ seu  at nodal points are approximated as: 

 

}{][}{ se

t

ss uNu =
                                

(16) 

 

Kinetic energy, strain energy and potential energy are 

calculated using (14)-(16). The following expressions can be 

obtained by applying the Lagrange equation. 

 

[ ] { } [ ] { } { }sesesesese fuKuM =+ɺɺ
                       

(17) 

 

[ ] [ ] ( )esese jKK η+= 1R                        
(18) 

 

{ }sef is the nodal force vector in an element e  for the solid 

bodies, and [ ]seK and [ ]seM  are the element stiffness matrix 

and element mass matrix, respectively. 

By replacing complex modulus of elasticity with real 

modulus of elasticity in the matrix ][D  in (14), the solid bodies 

with damping can be modeled using finite elements. 

Consequently, the element stiffness matrix [ ]seK  in (17) 

becomes to have complex quantities in (18). 
eη is the material 

loss factor corresponding to each element e.  [ ]
seRK is the real 

part of element stiffness matrix for the solid bodies. 

For the elastic materials, isoparametric hexahedral elements 

with the non-conforming modes [15], [16] are selected.  

C. Discrete Equation for System between the Double Skins 

and the Frames 

All elements for the porous materials and the solid bodies in 

the double skins having the frame are superposed appropriately 

using equations from (4) to (18). At boundaries between the 

solid bodies and the porous materials, normal components of 

the displacements to the boundaries are continuous. Tangential 

components of the displacements along the boundaries are 

independent mutually. With taking these conditions into 

account, the following equation can be obtained. 

 

[ ]{ } [ ]{ } { }aaaaa fuKuM =+ɺɺ
                 

(19)
 

 

where { }
af  is the nodal force vector and { }au  is the nodal 

displacement vector. { }au is consisted of { }feu and{ }
seu . In the 

same way, [ ]aK  includes [ ] feK and [ ]seK , while [ ]aM  

involves [ ] feM  and [ ]seM . 

D. Discrete Equations for the Global System between the 

Double Skins and the Nonlinear Springs 

The restoring force{ }mR in (2) is added to the nodal force at 

the attached nodes
mα  between the nonlinear concentrated 

springs and the frame. Moreover, the linear springs are also 

connected. Subsequently, the following expression can be 

obtained for the global system: 

 

[ ]{ } [ ]{ } { } { }fduKuM =++ ˆɺɺ
, ∑

=

=
1

}ˆ{}ˆ{
m

mdd

    

(20) 

 

where }{u , ][M , ][K , and }{ f are the displacement vector, 

complex mass matrix, complex stiffness matrix, and external 

force vector in the global system, respectively. }ˆ{ md is modified 

from }{ md to have a vector size identical to d of the global 

system. 

E. An Expression for Modal Damping 

We propose a calculation method [1], [2] to obtain modal 

damping for the concentrated springs and the double walls 

containing the solid bodies and the porous materials in the 

global system. Under small deformation, we neglect the 

nonlinear term and the external force in (20). Further, we 

assume that }{u can be written as tjeu ωφ}{}{ = . t and ω
denote the time and the angular frequency, respectively. 

Consequently, we obtain homogeneous equation of (20). This 

corresponds to complex eigenvalue problem as: 

 

}0{})){1(])[1()()1(]([
max

1e

)(

R

)(2)(

R =++−+∑
=

e
i

ee

i

tot

i

ee jMjjK φχηωη
  

(21)

 
 

In this equation, superscript )(i  stands for the i-th 

eigenmode. 2)( )( iω is the real part of complex eigenvalue. 

}{ )(iφ is the complex eigenvector and )(i

totη  is the modal loss 

factor. Next, we introduce the following 
seβ and 

keβ using the 

maximum value
maxη  among the elements' material loss factors 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:7, 2013

1359

 

 

eη and 
eχ , ( e =1,2,3,... 

maxe ) 

 

1,/,1,/ maxmax ≤=≤= keekeseese βηχββηηβ
   
(22) 

 

On assumption of 1|| max <<η , solutions of (21) are 

expanded [14], [1], [2] using a small parameter 
maxηµ j= : 

 

 ,...}{}{}{}{ 2

)(2

1

)(

0

)()( +++= iiii φµφµφφ      
(23) 

 

,...)()()()( 2)(

4

42)(

2

22)(

0

2)( +++= iiii ωµωµωω
     

(24) 

 

,...)(

7

7)(

5

5)(

3

3)(

1

)( ++++= iiiii

totj ηµηµηµµηη
     

(25) 

 

In these equations, under conditions of 1≤seβ , 1≤keβ  and 

1|| max <<η , we can obtain 1|| max <<seβη  and 1|| max <<keβη . 

Thus, both 
seµβ and 

keµβ  are regarded as small parameters 

like µ . In the equations, 
0

)( }{ iφ ,
1

)( }{ iφ ,
2

)( }{ iφ ,… and 

2)(

0 )( iω , 
2)(

2 )( iω , 
2)(

4 )( iω ,… and 
)(

1

iη ,
)(

3

iη ,
)(

5

iη ,… have real 

quantities. Substituting equations from (23) to (25) into (21) 

yields approximate equations using 0µ and 1µ orders. The 

following equation can be derived by arranging the 

approximate equations: 

 

( ) ( ) ( )i
ke

i

se

i

tot ηηη −= ( ) ( )( ) ( ) ( )( )∑∑
==

==
max

1

max

1

,
e

e

i

kee

i

ke

e

e

i

see

i

se SS χηηη       (26)
 

 

According to these expressions, modal loss factor 
( )i
totη  can be 

calculated using material loss factors eη  of each element e , 

share )(i

seS  of strain energy of each element to total strain 

energy, material loss factors eχ  of each element e  and share 
)(i

keS of kinetic energy of each element to total kinetic energy. 

We call this method as Modal Strain and Kinetic Energy 

Method, MSKE Method [1], [2], [13]. This method helps us to 

diminish computational time for large scaled finite element 

models for the shock absorbing structure. 

F. Conversion from the Discretized Equation in Physical 

Coordinate to the Nonlinear Equation in Normal Coordinate 

Considerable computational time is required to directly 

calculate (20) in physical coordinates. In this section, a 

numerical method is proposed to decrease the degree of 

freedom for the discretized equations of motion [3], [4]. 

First, we assume that the linear eigenmodes }{ )(iφ  can be 

approximated to 
0

)( }{ iφ . Next, by introducing normal 

coordinates 
ib
~
 corresponding to the linear eigenmodes

0

)( }{ iφ , 

the nodal displacement vector can be expressed as follows: 

i

i

i

i nbu /}
~
{

~
}{

1

0

)(∑
=

= φ
                             

(27) 

 

where
i

ii

i

i nm /}
~

{}
~

{}{ 0

)(

0

)(

0

)( φφφ ==  ,
ii mn /1= , 

0

)(

0

)( }]{[}{ i

R

i

i Mm φφ T= , 1}
~

]{[}
~
{ 0

)(

0

)( =i

R

i M φφ T  

 

By substitution of (27) into (20), the following nonlinear 

ordinary simultaneous equations with regard to normal 

coordinates 
ib
~
can be obtained. 

 

( ) ∑∑+++
j k

kjijki

i

i

ii

toti bbDbbb
~~~~~~ 2)()()( ωωη ɺɺɺ  

∑∑∑ =+
j k l

ilkjijkl PbbbE
~~~~~

                         

(28) 

 
T

32221110

)( },
~
,

~
,

~
,

~
,

~
,

~
,

~
{}

~
{ ⋯xiziyixiziyixi

i φφφφφφφφ =
, 

 

}{}
~
{

~ T

0

)( FnP i

ii φ= , ∑
=

=
4

1

2

~~~
))/((

~

m

kmyjmyimykjimyijk nnnD φφφγ  

 

lmy

m
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~~~~
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~ 4

1

3∑
=

=  

 

Because (28) has a much smaller degree of freedom than 

(20), we can save considerable computational time. 
iimyφ
~

is the 

y-component of the eigenmode
0

)( }
~
{ iφ at the m -th connected 

node 
mα  between the frame and the nonlinear concentrated 

springs. Note that the damping term in (28) can be derived in an 

identical form to (26) through this numerical manipulation.  

G. Impact Response 

Nonlinear responses are calculated by applying 

Runge-Kutta-Gill method to(28), when an external force 

having a cosine wave in y direction is given for the component 

of the force vector }{F as )2cos(~
max tfFp exi π= in(28) at the 

node β , which is excitation point as we specified in Fig. 1. exf

is the frequency of the periodic force. We compute nonlinear 

time histories by varying the maximum amplitude 
maxF of the 

cosine external force. 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. Eigenmodes, Resonant Frequencies and Modal Loss 

Factors 

Figs. 3 and 4 represent resonant frequencies )2/()(

0 πω i , 

modal loss factors 
)(

tot

iη  and eigenmodes
0

)( }
~
{ iφ . To visualize 

the deformations of each layer in the double skins easily, the 

frames are removed from the display of the specified 

eigenmodes (i.e. modes 7 to 25) in Figs. 3 and 4. For the 
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eigenmodes in Fig. 3 from mode 1 to mode 3, deformation in 

the cover plate is dominant. On the other hand, deformations in 

the concentrated springs are large for the eigenmodes from 

mode 4 to mode 9. In these modes, we can regard as rigid for 

both the double skins and the frames. For the eigenmodes from 

mode 10 to mode 12, deformation of the porous material is 

large. In these modes, the air spring in the porous material 

magnifies the vibration amplitude of the cover plate. As shown 

in Fig. 4, the first, the second and the third flexural modes of the 

steel panel (i.e. lower skin) correspond to mode 18, mode 23 

and mode 25, respectively. Note that the deformation of the 

only steel panel (i.e. lower skin) is displayed for the mode 18, 

mode 23 and mode 25. For the other eigenmodes in Figs. 3 and 

4, we can find that the deformations of the layers are coupled 

complicatedly in the doubles skins. 

B. Dynamic Responses under Periodic External Force   

We compute dynamic responses of the shock absorbing 

structure when the cosine periodic force in y direction is applied 

upon the excitation point, which is on the bottom of the steel 

panel (i.e. lower skin). And the displacementsw in y direction 

at the evaluation point on the cover plate (i.e. upper skin) are 

evaluated. Especially, we focus on investigations of the 

nonlinear motions under the 1:3 internal resonance condition 

between the mode 6 (i.e. the bouncing mode having dominant 

deformation in the nonlinear concentrated spring in y direction) 

and the mode 10 (i.e. the mode with the rigid motion of the 

cover plate in y direction having large deformations of the 

pneumatic spring in the porous material). These modes are 

expected to have nonlinear coupling motions mutually under 

the excitation in y direction. We fix the excitation frequency 

exf  as 64.95 [Hz] in the vicinity of the eigen frequency of 

mode 6. We investigate responses of the shock absorbing 

structure due to nonlinear springs by varying the maximum 

amplitude 
maxF of the input force. Fig. 5 (a) shows the 

calculated time history under small force amplitude
maxF

=0.01[N]. Fig. 5 (b) represents the Fourier spectrum of the time 

history in Fig. 5 (a). As for (m,n) in Fourier spectrum, m 

denotes the m-th eigenmode, while n denotes types of the 

spectrum. For example, n=1/2 shows sub- harmonic component 

of the 1/2 order, and n=3 corresponds to super-harmonic 

component of the third order. 
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Fig. 3 Eigenmodes of shock absorbing structure (from mode 1 to mode 16) 
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Fig. 4 Eigenmodes of shock absorbing structure (from mode 17 to mode 25) 

 

From Fig. 5 (a), we can find a periodic wave having the 

excitation frequency 
exf =64.95Hz in the calculated time 

history. As we described previously, this frequency exf  is also 

almost same with the eigen frequency of mode 6. The only one 

peak appears corresponding to 
exf  in the Fourier spectrum. 

Thus, there is a rigid motion of the whole shock absorbing 

structure in y direction. The deformations of the nonlinear 

concentrated springs are dominant in this peak. This response 

can be regarded as a typical linear response under small input 

force.  

Fig. 6 shows the calculated results under middle force 

amplitude
maxF =490 [N]. The periodic wave in Fig. 6 (a) is 

distorted due to the nonlinear effects of the concentrated 

springs. This leads to the three peaks in the Fourier spectrum in 

Fig. 6 (b). In the spectrum, there are super harmonic 

components of the third and fifth orders (i.e. (6, 3) and (6,5)) 

related to the eigenfrequency of mode 6. The frequencies of 

these peaks are also corresponding to the super harmonic 

components of the excitation frequency exf . Especially, the 

peak (6,3) also corresponds to the eigen frequency (i.e. (10,1)) 

of mode 10.This means that the 1:3 internal resonance is 

generated as we expected previously due to the nonlinearity of 

the concentrated springs in y direction. 
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(a) Time history                                                                               (b) Fourier spectrum 

Fig. 5 Dynamic response of shock absorbing structure under small force amplitude ( exf =64.95Hz, 
maxF =0.01N) 

 

 

(a) Time history                                                                               (b) Fourier spectrum 

Fig. 6 Dynamic response of shock absorbing structure under middle force amplitude ( exf =64.95Hz, 
maxF =490N) 

 

 

(a) Time history                                                                               (b) Fourier spectrum 

Fig. 7 Dynamic response of shock absorbing structure under large force amplitude ( exf =64.95Hz, 
maxF =4899N) 
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(a) Time history                                                                               (b) Fourier spectrum 

Fig. 8 Chaotic response of shock absorbing structure under large force amplitude ( exf =64.95Hz, 
maxF =4900N) 

 

Fig. 7 (a) shows the time history of the Fourier spectrum in 

Fig. 7 (b) under large force amplitude
maxF =4899N.Under the 

large input, the time history is distorted complicatedly. Thus, 

many super harmonic, sub-harmonic and ultra-sub- harmonic 

components of the excitation frequency appear in the Fourier 

spectrums. The components of the typical peaks from A to D in 

this spectrum are also listed Table I related with Fig. 7 (b). The 

peak A corresponds to the excitation frequency 
exf  and the 

principal component of mode 6. The peak C is the 1:3 internal 

resonance between mode 6 and mode 10 as we found 

previously in Fig. 6 (b). The peaks B and D newly appear 

accompanying internal resonances as listed in the table in Fig. 7 

(b). The peak B has the 3/2 ultra-sub-harmonic components of 

both the excitation frequency exf and the eigen frequency of 

mode6.In the vicinity of this frequency, there are two eigen 

frequencies for modes 8 and 9. The modes 8 and 9 involve rigid 

rotating motions of the whole shock absorbing structure about z 

and x axes, respectively. Among these three eigenmodes, 

multiple internal resonances are generated around peak B. On 

the other hand, the frequency of the peak D corresponds to the 

eigen frequency of mode 18, which is the first bending mode of 

the steel panel (i.e. the lower skin).This frequency corresponds 

to the fifth super-harmonic components of the modes8 and 9. 

Moreover, this frequency is also related to the 15/2 

ultra-sub-harmonic component of excitation frequency exf . 

Therefore, among these three modes, the multiple internal 

resonances appear around peak D near 500Hz.  

We can regard that there exist complicated nonlinear 

couplings including many internal resonances among multiple 

modes under large input. 

Fig. 8 (a) shows a time history under slightly larger force 

amplitude 
maxF =4900N than 

maxF =4899Nused in Fig. 7 (a). 

As can be seen in this figure, the time history loses periodicity 

and becomes a random-like and chaotic response. According to 

the related Fourier spectrum represented in Fig. 8 (b), the peaks 

as we focused on previously in Fig. 7 (b) change to be broader 

band. Further, number of the peaks in Fig. 8 (b) increase than 

those as we observed in Fig. 7 (b). For these peaks, we clarify 

the components as listed in the Table II related with Fig. 8 

(b).As we can see in this table, many internal resonances are 

observed accompanying the couplings among multiple 

eigenmodes.  
 

TABLE I 

FREQUENCY COMPONENTS OF DYNAMIC RESPONSE OF SHOCK ABSORBING 

STRUCTURE UNDER LARGE FORCE AMPLITUDE ( exf =64.95HZ, 
maxF

=4899N) 

A B C D 

(6,1) (6,3/2) 
(8,1) 

(9,1) 

(6,3) 
(10,1) 

(8,5) 
(9,5) 

(18,1) 

 

Next, we focus on the mode 10 (peak C in Fig. 8 (b)), which 

magnify the amplitudes of the double skins. In this mode, the 

internal air of the porous material plays a roll of a pneumatic 

spring. Under small input force, this mode cannot be found as 

shown in Fig. 5 (b).But, under large input force, there exist the 

complicated nonlinear and chaotic couplings between this 

mode and the super harmonic components of the mode from 6 

having large deformation in the nonlinear concentrated springs. 

And then, coupled spectra between the multiple modes appear 

as peak C in Fig. 8 (b). 
 

TABLE II 

FREQUENCY COMPONENTS OF DYNAMIC RESPONSE OF SHOCK ABSORBING 

STRUCTURE UNDER LARGE FORCE AMPLITUDE (
exf =64.95Hz, 

maxF

=4900N) 

A B C D E 

(6,1) (6,3/2) 
(8,1) 

(9,1) 

(6,3) 
(10,1) 

(11,1) 
(12,1) 

(13,1) 
 

F G H I J 

(14,1) (15,1) 

 

(8,5) 

(9,5) 
(18,1) 

(19,1) 

 

(22,1) 

 

K L    

(23,1) (25,1)    

 

Next, by using the random-like time history as discussed 

previously in Fig. 8 (a), we calculate the largest Lyapunov 

exponent maxλ as shown in Fig. 9 by means of Wolf’s algorithm 

[17], [18] to investigate the chaotic motions. In Fig. 9, the 
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vertical axis is the largest Lyapunov exponent
maxλ , while the 

horizontal axis is the embedded dimension e .The exponent 
almost converges to a constant positive value as the embedded 

dimension e  increases. We can confirm the random-like 

motion in Fig. 8 (a) as chaos because the converged largest 

Lyapunov exponent maxλ  is positive. The embedded 

dimension e is about 10 when the largest Lyapunov exponent 

maxλ  converges. This implies that number of the dominant 

components of this chaotic motion is about 10. By considering 

number of the state valuables about the dynamic motion, half of 

the embedded dimension e can be regarded as number of the 
dominant eigenmodes in the chaotic motion. Therefore, we can 

estimate number of the dominant modes is about 5. 
 

 

Fig. 9 Largest Lyapunov exponent of chaotic time history for shock 

absorbing structure 

 

 

Fig. 10 A typical example of an instantaneous displacement 

distribution when chaotic motion appears 

 

Fig. 10 shows a typical example of the instantaneous 

displacement distribution for the shock absorbing structure 

when the chaotic motion as shown in Fig. 8 (a) appears. When 

the response is the linear motion as shown in Fig. 5(a), the 

distribution can include only mode 6, which is the bouncing 

motion of the whole shock absorbing structure in y direction. 

As can be seen in Fig. 10 for the nonlinear and chaotic 

responses, there exist not only the motion of mode 6, but also 

complicated coupled motions of modes 8 and 9 (i.e. the rotating 

motions of the whole shock absorbing structure with large 

deformation in the nonlinear concentrated springs), mode 10 

(i.e. the bouncing motion of the cover plate in y direction), 

mode 18 (i.e. the first bending mode of the lower steel panel). 

These five modes correspond to the identified number of modes 

from Fig. 9. Moreover, according to Fig. 10, we can also find 

the other small motions, for example, modes 11 and 12 (i.e. 

rotating motions of the cover plate about x and z axes). This 

causes the incompleteness of the convergence for the largest 

exponent maxλ against the embedded dimension e . 

V. CONCLUSION 

We investigated nonlinear dynamic characteristics of a shock 

absorbing structure including elastic panels, a porous material 

and nonlinear concentrated springs using our proposed fast 

computational method. As an example of the shock absorbing 

structure, we deal with a sponge sandwiched between double 

skins (i.e. a cover plate and a steel panel) supported by 

nonlinear concentrated springs. In this structure, the sponge 

plays a role of air cushion. The restoring force of the nonlinear 

springs has cubic nonlinearity and linear hysteresis damping. 

To compute the responses of the structure, we selected 

displacement vectors as common unknown variable to solve 

under coupled conditions in damping among the elastic 

materials, the porous material and the concentrated springs 

using finite element method. We computed approximate values 

of modal loss factors using Modal Strain and Kinetic Energy 

Method proposed previously by the authors. Further, to reduce 

degree-of –freedom, the discretized nonlinear equations in 

physical coordinate were transformed into the nonlinear 

ordinary coupled equations using normal coordinate 

corresponding to linear eigenmodes. We applied periodic forces 

on this structure to clarify qualitative basic dynamic behaviors 

by changing force amplitude.  

We focused on investigations of the nonlinear motions under 

the 1:3 internal resonance condition between the bouncing 

mode having dominant deformation in the nonlinear 

concentrated spring and the mode with the rigid motion of the 

cover plate having large deformations of the pneumatic spring 

in the sponge. Under large input force, there exist the 

complicated nonlinear couplings among these modes and other 

eigenmodes in the shock absorbing structure. This leads to have 

the coupled spectra between multiple modes. Further, chaotic 

responses involving the multiple eigenmodes having multiple 

internal resonances were observed. 
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