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Exact Solutions of Steady Plane Flows of an
Incompressible Fluid of Variable Viscosity

Using (€, v)- Or (n, v)- Coordinates

Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib

Abstract—The exact solutions of the equations describing the
steady plane motion of an incompressible fluid of variable viscosity
for an arbitrary state equation are determined in the (&,y)- or

(0, )- coordinates where y/(x,y ), is the stream function, & and 77

_are the parts of the analytic function, @ =&(x,y)+in(x,y).

Most of the solutions involve arbitrary function/ functions indicating
that the flow equations possess an infinite set of solutions.

Keywords—Exact solutions, Fluid of variable viscosity, Navier-
Stokes equations, Steady plane flows

1. INTRODUCTION

AEEM and Nadeem [1] extended Martin’s [2] approach to

study the steady plane flows of an incompressible fluid of
variable viscosity for an arbitrary state equation. Naeem and
Nadeem determined some new exact solutions to the flow
equations and also indicated applicability of some of the
solutions to physically possible situations. In Martin’s
approach a natural curvilinear coordinate system (¢,y) in the

physical plane (X, y) is introduced in which y = constant are
the streamlines and @ = constant is an arbitrary family of

curves. In Martin’s approach, the transformed system of flow
equations becomes undetermined and is due to arbitrariness of
the coordinate lines@ = constant. The system can be made

determinate in a number of ways. Nacem and Nadeem [1]
made the system determinate by making system orthogonal, in

which case coefficient F of the first fundamental element ds >
is zero. Naecem and Ali [3], following Martin’s approach made
the system governing the motion of fluid in [1] determined by
taking ¢ = x.

Recently Labropulu and Chandna [4] extended Martin’s
approach to study the steady plane infinitely conducting MHD
aligned flows and made their system of flow equations
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determinate by taking #(x, y) =&(x,y) or ¢(x,y)=n(x,y) where
&(x,y)and n(x,y)are the real and imaginary parts of an

analytic function @ . Labropulu and Chandna obtained exact
solutions for the flows when the stream line pattern is of the
form 7=/ _ Constant or ¢~%UD _Constant.

g($) m(n)

In the present work, we extend Labropulu and Chandna
approach to study the steady plane flows of an incompressible
fluid of variable viscosity for arbitrary state equation and
present some exact solutions. The most of the solutions
contain arbitrary function(s) allowing us to construct an infinite
set of solutions to flow equations. The plan of this is as
follows:

In the next section description of basic flow equations are
discussed.  Section-III presents the flow equations in the
physical plane and Martin’s system (@,y). The coefficients E,

F, G of first fundamental ds”are also given in (&,y)- and
(n,¥) - coordinate system. In Section-IV, exact solutions to
flow equations are determined.

II. Basic FLow EQUATIONS

The basic non-dimensional equations governing the steady
plane motion of an incompressible fluid of variable viscosity in
the presence of an unknown external force with no heat
addition are:

u, +v, =0 (D

w4y, ==+ () 4 G, +9,0), 1+ 2% @

e

1
uv, +v, =—p + F[(Zluvy)y +(ulu, +v)), J+A* 1, 3)
1 E
ul +vl, =—— ([T +T, )+—
x y R P ( XX y}) R

e’ r e

[2p(u,” +v})
: 0
+uu, +v,)’]

u=u(T) %)
where u,v are the velocity components, p the pressure, x the

fluid viscosity, 7 the fluid temperature, R, the Reynolds
number, P, the Prandtl number and E, the Eckert number,
p the density of the fluid and fl’ f 5 are the components of

the external force. In (2) and (3) A* is a non-dimensional
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number, and in case of motion under the gravitational force, A",
is called the Froude number (F,).

We define the following functions:

W=vy —Uy (6)
Leps @V 2 %)
2 R

In term of these functions, the system (1-5) is replaced by the
following system:

v, +u, =0 (®)
Cvo——L + [peu, +v))], ‘F 9)
TR
4 , +
uo=-L, - (Wx)},_"_[/l(uy Vx)]x+Fv2 (10)
RE RE
w=vy-uy (11)
1
uTx+va —W(Txx +Tyy) (12)
E.
o 2puy? v By ey, v

e
u=u(T) (13)
of six equations in eight unknowns u,,v,L, u,T,w,F1,F>
as functions ofx,y. The advantage of this system over the

original system is that the order of (2) and (3) has decreased
from two to one. In (9) and (10) for convenience we have put

£ :/ﬁt*flan :Ifz
Equation (8) implies the existence of a stream function w(x, y)
such that
U=Yy,V="Yy (14)

Let w(x,y) =constant defines the family of streamlines. Let
us assume ¢(x,y) = constant to be some arbitrary family of
curves such that it generates with w(x,y)= constant a
curvilinear net (¢,y) in the physical plane.
Let

x=x(d.p).y=y(pv) (15)
define the curvilinear net in (x, y)- plane and let the squared
element of arc length along any curve be

ds® = E(p.p)dg? + 2F gy dddy + Glg.y My (16)
where
2 2
E=x,+y; 1
F=xx,+y, a7
szf, + yf,
Equation (15) can be solved to obtain
$=4(x. v =yl(x) (18)
such that
x¢=Jl//y,x,/,=—J¢ (19)
Vg ==IVx, vy =JP

provided that 0 < | J | < oo, where J is the transformation
Jacobian, and is defined as

J= XpVy — Xy Vg (20)

If « is the angle of inclination of the tangent to the coordinate
line y = constant directed in the sense of increasing 4, we

have from differential geometry, the following results:

J=xw 3\
x, = \/E Cosa,xy, _ FCosa — JSina
JE @21
v, = \/ESina,yw _ FSma\/%JCosa >
J J
a, =fr121’% =Erlzz )
where
-FE,+2EF, — EE,
Fﬁ:[ ¢ 2¢ v
2w
EG,—FE,
F122:[ [ 2 z//] (22)
2w

W =VEG - F?

The three functions E, F, G of ¢, satisfy the Gauss equation:

AL
Ea NP, (23)

w
where K is the Gaussian curvature.

K=

I1I. TRANSFORMATION OF BASIC FLOW EQUATIONS IN THE
STREAMLINED COORDINATE SYSTEM (@, )

If the arbitrary curve ¢(x,y)= constant and the streamlines
w(x,y) = constant generate a curvilinear net in the physical

frame, the system of equations (8-13) is transformed to the
following system:

= JE (24)
w
2 _ 52 ’
Jo=-JL, + [(F = ; E)S’”Z‘” + L JC;"‘Z“]Aq, - (FSinaCosa + JCosza)Aw
2FJSin2a — F2Cos2a + J%Cos2 (23)
+[ mea - EOS at] tos a}M,ﬁ +(FCosa—JSin2a)M,/,
+ %{F(FlCasa + FySina)+ J(FyCosa + FiSina)}
0=—JL, +(FSimaCosa ~ JSirta)d, - ESimaCosad, 26)

+(JSir2e.~ FCo2a)M, + ECo20M, + JVE(FCosa+ FSina)

(GT¢ FT,/,] (ETU, FT¢]
Sl My [Ely T4
RPN EcRe(A2+4M2)+ﬁ @7
JR,P, 4y E
), )
w w
7 Ny 28
® 7 (28)
[Wfﬁj (Wﬂéj
ks Eo VE o (29)
w
u=u(T) (30)

which in ¢ and y are considered as independent variables.
This is a system of seven equations in ten unknown functions
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E,F,G,W,L,T,q,u,F,F,. In(25-27), the functions 4 and
M are given by

) :% (M\/E‘]C"saj(qﬂjcosa—qsmaa,ﬁ)— @31
¢ \/ESina(q,/,Cosa—qSinaa,/,)

U — FCos2a + JSin2a

+ (FSinZoH—JCosZa
JE

Recently Labropulu and Chandna [4] presented a new

approach for the determination of exact solutions of steady

plane infinitely conducting MHD aligned flows. In their

approach (&,y)—coordinate net or (77,i) — coordinate is used

]+qV,\/EC0s2a (32)

]a¢ - q\/fSinZaaV,]

to obtain exact solution of these flows where coordinates
w(x,y) is the stream function and & ,) and ., ,) are the real
and imaginary parts of an analytic function @ = &(x,y)+in(x,y),
Labropulu and Chandna following Martin’s transform their
flow equations in (g,y)-system where y = constant is
represents family of streamline and ¢ = constant is an arbitrary
family of curves. The system of flow equations becomes
undetermined due to arbitrariness of the coordinate lines ¢=
constant. Labropulu and Chandna made the system determinate
by taking ¢=¢(x,y) or g=n(x,y) where &(x,y) and n(x,y)
are real and imaginary part of the analytical functions @ as
outlined blow:
Let

d=¢+in (33)
be an analytic function of z=x+iy where ¢&=¢(x,y) and
n=n(x,y). Since @ is analytic function of X and y, then
real and imaginary part must satisfy Cauchy-Riemann
equations:

o _om a5 __on (34)

ox Oy Oy ox
The equations

&=l yhn=n(xy) (39)
can be solved to get

x=x(&n)y=y&n) (36)
such that

o _pr0On Oox 06 Oy gr0n Oy _ yx0¢ (37)

o& oy on dy o0& ox on Ox

*
J

provided that < <o Where J " s given by

) ma axy (38)

Calgn) ocen ones
Employing (35), (36) and (39) in ds2 = dx? + dy? , we get

2 2 2 2
(o) (o) () (2 (39)
(%) (@‘J ’(anJ (%J
Equation (39), employing (35) and (37), yields
ds? =" (422 +an?) (40)
To analyze whether a family of curves 7= f(¢) _ Constant, can
g($)

or can’t be streamlines in (£, )— coordinate net, they assumed
affirmative so that their exist some function y(y ) such that

-1 _ (41)
g($)

ds = 1 +[ @+ g OrF g +27 (@ +g O} (42)

&y sty +J &)y dy’

E=s" 14 [r© + g @l (43)
G=J"g* &% W) (44)
F=J"[1(&+g©rwle@r w) (45)
w=J"g@&)r W) (46)
J=J"g&r' W) (47

Similarly to whether a
S — k@)
m(1)
coordinate net, they assumed affirmative so that their exist

some function y(y ) such that

analyze family of curves

= Constant, can or can’t be streamlines in (-

EKD ), ()20 (48)
m(1)

E=I" oo + mr R (49)

G=J"m )% ) (50)

F=J [k () + m' oy ) )y ) (51)

W =J mmy' ) (52)

J==J mm)y ) (53)

For both family of streamlines there exists some function
y(w) [4] such that

n—f(&) =g(&Ery).rw)=0 (54)

&= k() = m(my ),y ()= 0 (55)
Now in the next section, we determine the solutions of the (24-

30) by assuming ¢=¢ or g=p5 and utilizing (42-55) for the

family of streamlines in (&,y) and

(n,w) coordinate net,
respectively.

IV. SOLUTIONS

In this section, we assume analytic function z-¢+i; and
determine the solutions of the (24-30) for the flow
characterized by the family of the stream lines

Sk _ Constant & 7=/ = Constant

m(1) g($)
In the absence of external force.

(i) Assume
w=(+in=Inz (56)
where ; = x +jy . The (56) yields.

§:%ln(x2 +y2

(57)
n= tan_l[lj
X
OR
x=e§C0s77 (58)
y= eéSim]

A Examplel (Flows with & = constant as streamlines)
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We let [4]
£=rw).y'(y)=0 (59)
where y(y) is an unknown function and & is given by (57).
Comparing (59) with (55), we get
k() =0,m(n)=1 (60)
Utilizing (60) in (49-53), we get

E=J"
F=0 (61)
G=J"r
J==J"7w)
w=J"w)
where
T = e2rw) (62)

Equations (24-29), utilizing (61) and (62), become
. (63)
a= 7‘('/’)97(1@

©=-Ly, —% Ay —Sinzr]Ay, +y'Cos2nM y; + Sin2nM , (64)
0=-L, - 4,Cos?p - S"”’yﬂ Ay — Sin2nM ) + C‘”IZ” M, (65)
V3 Y2 1 "
-y T7777 +y ReP,,Tn -y Tl//ll/ +y Tl//
66
e eZVEcP,RZ(A2 +am? (66)
du
o (67)
}/.3 62;/
where in (64-66), the functions 4 and M are given by
4=— i_#) [2+ 4 2(‘”) ]smzq (68)
Ry W)
M=- 3 £ {2+ 7' W) ]CosZn (69)
Ryl y2w)

In order to determine the solutions of (64-66), we make use of
the compatibility condition Lyy =Ly and this yield

2 z,,,,_f[z_{ﬂ)]zw_zw 0 (70)
7' (W)
where
_ M 7" (71)
Z= 2+
Roe?” 7'[ 7'2j

Equation (70) is the equation which the viscosity x and ()
must satisfy.
Equation (70) possesses many solutions and we consider only
those solutions for which the exact solution of (66) can be
determined. These solutions are for the following cases:
Casel »''=0
Casell »"#0
We study these cases separately
Case 1
When y''=0 we get
Y —ay+b (72)
The (70) provides
az;(,m =2ayy — Xyy =0 (73)
where

2% () (74)
aR,

Two solutions of (73) are determined which employing (74)

give us

x(m,y)=

at\R,
e 75
2e7 (73)
M= \aR.e¥ (1,n? Ly )
. ~2ay
2 247 TP e T (76)
where  t,(#0),t,(z0),t;(0),t,,t;, t,, t, are arbitrary
t, ot
constant, and fo=ty 4o
2a 4a

The temperature distribution 7 for x given by (75) satisfies the
equation
a’T,, +T,, —aR PT, =-2aR,P.E t, (77)

nn
whose solution is

t(//2 tn RLn 78
T=-aR,P.Ety’ - 82 +[9V/_aR876P,_+tlze ‘ot (78)

where o s ia
3= ———F5 5~
RZP? R.P,

For ,, given by (76), the temperature distribution T satisfies

the equation
® Ty + Ty —aRoBTy = ~2aR,PoE 7 (1. 0) (79)
The solution of (79) is

ReBn(  ReBn SRPE
T=e @ [|e @ [—#jyz(u)dn+t16]dﬂ+117 (80)
a

- ZaRePrEc”yl(t//)du/d w+t4y +1s

where

7] {3 -2ay (81)

=Y 2 5
nw) 2 2.2 "o +1ge
2
yo(n) = tziz+l‘377+f4 (82)
2a
Case Il
Wheny "= 0, the (70) possesses trivial and non-trivial

solutions.
Now Z =0 is the trivial solution of (70) and provides
2+7 2 =0 (83)
5
Equation (83) yields
(84)

y(w) =%ln(2y/+c1 )+ cy
where cj,co are arbitrary constants. Equations (68) and (69),
employing (83), yield

A=0 (85)
M=0
Equations (64) and (65), utilizing (85) yields
L = constant = ¢; (say). (86)

We note that in this case the viscosity function g is arbitrary.
Now the (66), on using (84) and (85), becomes

T, - +¢)RET, + 2y +cfT,, +22p +¢)T, =0 (87)
The solution of (87) is
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2|//+C1)+C5 ln(21//+cl)+66 (88)

_ 4Re r
T=cqn+——— (
where c4(#0),c5(20),cq are arbitrary constants.For a non-
trivial solution of (70) we let

Z = constant= C7 (say).

Then (71) yields
_eRre 5, 7L (89)
[2 +Z zj 4
]/V
Equations (64) and (65) on using Z = ¢4, yield
- 90)
Ly =—2c7 @+ CosZ?]) on
Equations (90) and (91) give
_ 7" . Sin2n (92)
Lf—J. y,3 e27 dl//—2c7(r]+ 2 J+cs

where ¢, (¢ 0) and cg are arbitrary constants.

The temperature distribution in this case, satisfies

12

3 2 ) " 2 " 93
P2 Tyn — 72 RBTy + 7' Ty — 7' Ty =7 c7EcPng[2+ 4 ] 93)
7

whose solution is

jy dy jy—tdu/ 1"
T=L'g?]+j(, 4 J.e r cg7' R, Py —c7;/'2 ECP',RB[Z‘F%] dy dy (94)
4

idu,
+L’10J.e 7 dy +c11

where ¢, (;t 0), €105 €y, are arbitrary constants. We mention that

the function y(y) is arbitrary in this case, and therefore we
can construct an infinite set of solutions to the flow equations.

B Example-2 ( Flows with ;= constant as streamlines)
Assume [4]
n=yrWy) (95)

where y(y) is unknown function and 7 is given by
(57).Equations (96) and (54), give
f(©=0.g(5)=1 (96)
Equations (43-47), employing (96) yield
E=e%
F=0
G=eXy2 ) 97
J=e¥yw)
W=y W)
Equations (24-29), employing (97), give
1 (98)
<YW
w=-L, —Cos?y(w) A, — Sin2yW)M,, ~

+7'(w)Cos2y(y )M £

Cosy(y)Siny(y) , , Cos2y(y)
7w Y rw

'(w)Sin2
7'W) 12” () Az (99)

0=—Lg—

C]

(100)

My, —Siny(p)4¢

+ SinZ;/(y/)Mg

J _ ezfy'(W)ECP,RE(AZ+4M2)+PrReT§ (101)

W [T
TR S 4u

W) (102)
Fr3w)
where the functions 4 and M are given by
A :247”{—0)52;/(1//)+ yHZ(V) SinZy(l//)] (103)
P IR, 2% )
= (ad [SmZ;/(l//)+ 7w Cos27(y/)J (104)
YWk, 272 )
Equations (99) and (100), employing (102-104), can be
rewritten as
ﬁ— —Ly, —4y'Sin2yX —y "Ye +4Cos ;/X (105)
—4y'Cos ;/Y = Sin2yY,,
0=—y'Lg *47'51'"27)(5*4;/'X7;/'Sin2;/Y§ -, (106)
where
_n (107)
Ry
7 (108)
TR,

Proceeding in the same manner as in example—1, a solution of
(105) and (106) is

n=aree ([ £ 2@ + 2300 )
L=e (gl + 4C032yZZ (gy))+ 2Cos2yZ3(&)— g167§

—223(6)—4_[23(5)d§+g2
provided y =ay +b.1In (109) and (110), z (£), Z5 () and

(109)

(110)

Z3(¢) are arbitrary functions and g;, g, are arbitrary

constants.
The temperature distribution 7 satisfies the equation
0Tz + Ty, - aP R T = —4?2# (111)
where 4 is given by (109). The solution of (111) is
PRS
a P.RE
__4ERRe ([Z iz ] o
a R,
—4aE, P,_R‘,J.(J-Zz(z// dl//)dy/ -ay +a,, fora=—-R,P,
PRE
4E,PRe [ -
— cr e a d a
p [ e ([ 5)45] e
+ als(fos\/aZ +aP Ry + aﬁSin\/a +aPRy
4L1(Cos(,/az + aP,,RL,y/)J. Zz(y/)Sin(,/az + aPrR(,l//)dy/)
+ % - (J‘ZZ(I//)COS(\/GZ + azP,_R(,u/)h//)S'in(\/uz + aP,_R‘,u/)
\a +aPR,
E.FR,
(112)
fora#—-RP.

where a,,a,,a;,a,,as,d, are all arbitrary constants. We

note that the expressions for £ L and T involve arbitrary

functions, and this allows us to construct a large number of
solution to the flow equations.

(2) Assume
w=Etin=a'z+b (113)

where 4" =a +ia2,b* =by +ib
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C Example 3 (Flows with 7—A&= constant as streamlines)

Proceeding in the same manner as in examples 1 and 2, we
find

2

1+ 4
=2 2 A
ay +a

G- 72w)
T2, 2
ay +az

Fo MW

ot +d3 >

7'
o +db
s 2%
ay +az

(114)

W=

7'W)
J=
e R

For this example, in (24-29), employing (114), become
,lil#—ﬂz ialz +a; )
7'w)
G2V ipr v wra - s,
7 W)
+ By ()M + By (v )M
0=—y' WAL+ By WA+ BiA, + By )M + M, (117)

g- (115)

(116)

('( )T—ﬁT) 1+ZZT lT _PRT
7‘//5 v v() el (118)
74
By WEPR (4 +4M?)
4pu
where
4o taar'y) (119)
Rey® ()
M=,M# (120)
Rer® )

and f3,, 3, By, By Bs» Be» By, Py By are given in - ppendix-
B.
Equatlons ¢! 16 118), employing (119) and (120), become

ﬁm , +ﬂ127X +ﬂn (121)
X
LE = _ﬁIOX.;“ _18117, (122)
, 1+2. 7 (1+/12)
VT =240y +— Ty =51, ~ BRI (123)
_EPRy'X
u
where
X ="y (124)
Ry )

and Bio» Biis Bas Bis» B aT€ given in appendix B.

On eliminating the generalized energy function L from (121)
and (122), we obtain
%XW (P10 + P13)X ey =0 (125)

Equation (125) is the compatibility equations for example (3).
We found that this compatibility equation possesses solutions

for the following possible cases for which equation (123) is
exactly solvable.
Casel  y"(y)=0

Casell y"(y)=0

We study these two cases separately as follows.
Case-1

When »"(y)=0,y(y)=ay +b. Equation (125) is identically
satisfied. The viscosity function , is arbitrary and the

generalized energy function L turns out to be constant.
The solution of (123), for any value of A , is given by

_ 2
T=mly+ (mel n; )W +m3gy +my
21+ 4

})I'Reg PVR€§ P)'Reg
a mzé a a
+e —5tms e d& + mge
a

where m; m,,m3, my, ms, mg are all non-zero arbitrary

(126)

constants.
Case-11

When () %0,
considered constant or non-constant. When, X =constant=,,,

the function x in (124) can either be

(say), the equation is identically satisfied and therefore

_miRer® W) (127)
7"y
Equation (123), employing (127), yields
2 " 2
Y'Tee =201y, + 1+.ﬂ Ty -1 122 Ty — BRI
r 4 (128)
4l oy
__ EB-Romyy"™ | 7"
}/" }"3

whose solution is

[Zav| o [Zav( EPRm,
ro e B o

+m& +my, (129)
where my,mg,mg,mpg are all non zero arbitrary constants. We

note that in this case the function y(y) is arbitrary. The

generalized energy function L can easily be determined from
(121) and (122).
When Xis not a constant, the solution of (125) is

P

X = m11§+m12J. A 7 dy +m3 (130)

where  mqq,myp,m3 are non-zero arbitrary constants. The

viscosity 4 is given by

3
=M(m11§+)(1(l//)) (13
7"w)
Equation (123), in this case becomes.
2 " 2

T;’i_ZA.Tfl//-"1+./1 TWW_}/ (1:A)TW_PJ?FTE

v /e /e vy
BRI (4 ,0) (132)

The two solutions of (132) are obtained and these are
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EPRy" PRm
- ,37 X(y)+ }/, Ly

}/V
T= ! d
707 (PR +20m,) dad
0] 4 (133)
+ l/,"n” + le + ”11562 + ml(yg + mmgy/
) ER,Pm,
Jor my, :Tﬁzllan‘lls =0
(i) and
2msP.R,
- y

T = = (A ) mums+Qyms—Ecmymg)P.R,

I 2mys PR,
(Je (1+2%ymygmyg +(2ymys = Emyymyg ) PR,

dy

—2m5 + (2/1””14 + (‘/’mm + My )PrRe)

ERPXW)+|( 2ym, PR,
: (1 + A )'”14 —E.m, PR,

2
2wm,sP.R
1+ A% m, + 157 r e dy)d
[( { 19 (l"'/lz)mm_EcmnP,RejJ w)dy

2misPyR,
_‘[(H/{Z Jnismig +Qymys —E.my myg )P, R, v
mzoje . R dy
2
+my +ymy; + m &+ myé + my gy
mE PR
form,, = 7 =0
1+ A 134)

For solution given by (133), the function } is arbitrary, and
for (134) it is given by
_ (1+ 22 Jnyg - Ecmyy PR,
B 2PRemys

(135)
2PRomisy
2
(1+ A }”14 —Ecm11 PR,
The constants

In

+mq9 |+ mp

iy 17 s migg, mag,mpy TE @ll NOM Zero arbitrary
constants. In (131) and (132) X;(y) is given by
Ay,
Xl(w):mlzjeﬂ“ Y dy +mg (136)
The generalized energy function L can easily be determined
in this case in the same manner as in examples 1 and 2.

V. CONCLUSION

Labropulu and Chandna approach is extended to study the
steady plane flows of an incompressible fluid of variable
viscosity for arbitrary state equation. The exact solutions to
flow equations are determined. The solutions involve arbitrary
function(s) indicating that flow equations possess an infinite
set of solutions.

APPENDIX A

Martin’s [2] introduced curvilinear coordinates ¢,  in
which curves y = constant are the streamlines and the curves
¢ = constant are left arbitrary so that the physical coordinates
can be replaced by ¢,y
Martin assumed that

x=xlgy)y=pv) (A.1)

define a system of curvilinear coordinates in (, ,y — plane such

that the Jacobian, J :M of the transformation (A.1) is
o(g.y)

non-zero and finite. The first fundamental form of differential
element is defined by

ds? = E(pw)dg? + 2F (b.p \dddy + G(g,y )dy? (A2)
in which E, F, G are given by
dy)=x;+y,
Blgy) = +7] (A3)

Flgw)=xx,+y,,
GQow)=x +y,

Differentiating (A.1) with respect to x and , and solving the
resulting equations for Vol s s By yields

xg=Jvy,xy ==J@), } (A4)
Vg ==V, vy =Jox
wherein
J=+EG-F? (A.5)

= i(X¢X'// - y¢yu,): W (say)
Let o be the angle between the tangent vector at the point
p(x.y) | see Fig.1] to the coordinate line y = constant and the

tangent

@ = constant v = constant

Psa

X-axis
Origin
X — axis »
Fig. 1 (@, ) coordinate system

then

Tana =22 (A.6)

¢

Equation (A.4), on utilizing (A.3, A.6), gives

xp= JE Cosat,x, = FCosa — JSina

VE (A7)

v =\/ESina, Yy = FSzna\/%JCosa
The integrability conditions

Yoy = Yy Yoy = Yy (A-8)

for variables x and Vs yield
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LT
’E (A9)
I
aw = E
wherein
[-FE, +2EF, - EE, ]
17— (A.10)
2= [EG¢7FEW]
? oW

Equation (A.9), on employing” integrability condition for
a($.v), agy =ay, yields

2 2
Wi | [ Wi
E E
v ¢ _o

w
wherein K is called the Gaussian Curvature and (A.11) is
called the Gauss equations. This equation represents a
necessary and sufficient condition that E, F, G, are coefficient
of the first fundamental form in (A.2).

(A.11)

K=

APPENDIX B
B :_M (B-1)
1
(1+22Xa12 -szz)2
__al + 20,0, - 4a) (B-2)
(1+2,2Xa,2 +a22)2
__aa B.3)
ﬂ — 12 (
’ (af+a§)2
5, lai—a) (B.4)
(@ +af
1 (B.5)
pi= iaf +a§i
B, = al(“l_ﬂaz) (B6)
’ (1+}L2Xa,2-¢—azz)2
RORIATEN ®7)
’ (1+12Xa12+a§)2
4 _ (e 2 ) +42a,0, -1+ 22 )a) (B.8)
) (l+/12Xa,2+a§)z
4 _ e} +20,0, - 2a3) (B.9)
’ (1+Z.2Xa,2 +a§)Z
_plal -a)+ 4paa, (B.10)
B = s
5
4ﬂ3a1az +ﬁ4(alz _ai) (Bll)
B :#
5
g, = Bilad =ai)-4praa, ®.12)
12— ﬁs
ﬂls:ﬂa%—_afﬂ;w@ (B.13)
2
ﬂ14=M (B.14)

Bs
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