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Abstract—An automatic method for the extraction of feature points
for face based applications is proposed. The system is based upon
volumetric feature descriptors, which in this paper has been extended
to incorporate scale space. The method is robust to noise and has
the ability to extract local and holistic features simultaneously from
faces stored in a database. Extracted features are stable over a range
of faces, with results indicating that in terms of intra-ID variability,
the technique has the ability to outperform manual landmarking.
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I. INTRODUCTION

THE ability to consistently extract features is at the heart of
most facial correspondence and recognition algorithms.

In particular the construction of statistical models requires
point correspondences to exist between different faces. The
“ground truth” in correspondence is achieved via manual
landmark selection. With large databases this is not only time
consuming and tedious, but can also lead to substantial errors
being introduced when noise is present ie. spikes caused by
reflection of 3D scanner data from the retina.

The anatomical landmarks which are often used in facial
correspondence algorithms are:

• Eye corners both inner and outer;
• Nose, including the tip, nostril edges, nasion and subnasal

points;
• Chin;
• Lips can consist of lip corners, and also the midpoints of

upper and lower lips;
• Glabella

It is important to recognise that landmarks such as the eyes,
glabella and nose are reasonably invariant to variations in
expression whereas, the chin and lips can vary quite markedly.

This paper presents a method for the extraction of facial
feature points in 3D faces. The system is built upon integral
based volume descriptors which are robust to noise. This
is expanded to a scale based approach allowing accurate
detection of features of various sizes, enabling automatic
labelling of landmark points.
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The outline of this paper is as follows. Section II provides
some background on facial biometrics and how they have been
previously extracted and used in large databases. Section III
describes feature extraction using volume descriptors, with
Section IV showing how to use these features in facial biomet-
ric extraction. Section V presents results that were achieved
with data extracted from the spring 2003 component of the
Facial Recognition Grand Challenge (FRGC) Database [1] and
this is followed by conclusions and future directions which are
provided in Section VI.

II. FACIAL LANDMARK IDENTIFICATION

Facial Landmark algorithms can be broadly categorised
into model based and non-model based methods. Hutton [2]
showed how a dense surface model of the human face can be
built from a database where active shape models (ASMs) are
combined with the iterative closest point (ICP) algorithm to
fit the model to new faces. The model is built by aligning the
surfaces using a sparse set of hand-placed landmarks. Thin
plate spline warping is then used for dense correspondence
creation with a base mesh. All of the mesh vertices are then
used as landmarks to build a 3D point distribution model.

Rueckert et al. [3] developed statistical deformation models
(SDM) which allow the construction of average models of
the anatomy and their variability. SDMs are constructed using
the statistical analysis of the deformations required to map
anatomical features in one subject into the corresponding
features in another subject. A non-rigid registration algorithm
is used to compute the deformations required to establish cor-
respondences between the reference subject and the subjects
in the population class under investigation. Although the paper
presents results using the human brain the technique is easily
adapted for faces.

Blanz and Vetter [4] present a method for face recognition
across variations in pose and across a wide range of illumi-
nations. To account for these variations, the algorithm fits a
statistical, morphable model of 3D faces to images. These
morphable face models are built by establishing dense point to
point correspondences between the probe and template faces
using a modified optical flow algorithm.

Non-model based algorithms attempt to extract fea-
tures/regions of the face based on the shape of the face and
classify these regions based upon the results. Differential ge-
ometry has been used by a number of authors. Wang et al. [5]
determine correspondence between points on pairs of surfaces
based on shape using a combination of geodesic distance
and surface curvature. An initial sparse set of corresponding



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2511

points are generated using a shape based matching procedure.
Geodesic interpolation is employed in order to capture the
complex surface. In this case the results are applied to human
cerebral cortical surfaces however a similar approach could be
used for faces.

Brett [6] finds correspondences between two triangulated
mesh surface representations. The algorithm produces a match-
ing pair of sparse polyhedral approximations, one for each
shape surface, using a global Euclidean measure of similarity.
A method of surface patch parameterisation is presented and
its use in the interpolation of surfaces for the construction
of a merged mean shape with a densely triangulated surface
is described, which may be used as a basis for automated
landmarking.

This paper presents a non-model based strategy which is
based upon the extraction of volume descriptors from a face.
The volume descriptors are more robust than curvature based
strategies and are very effective at consistently extracting the
anatomical landmarks that exist upon a face.

III. VOLUME DESCRIPTORS

Feature extraction algorithms which rely on differential
geometry generally require some form of smoothing to remove
noisy components which are amplified when derivatives are
computed. This then leads to other questions such as the type
of smoothing to undertake and of course the magnitude of
smoothing that is required in the given conditions.

An alternative is to use integral descriptors. Manay [7]
showed that integral invariants have the desirable properties
of their differential cousins, such as locality of computation
(which allows matching under occlusions) and uniqueness of
representation (in the limit), however, they are not as sensitive
to noise in the data.

Gelfand et al. [8] further developed this work through the
integral volume descriptor. A sphere is convolved with a given
object along its surface to determine a feature value at every
point on the surface of the object. For a shape P consisting
of N points p1 . . .pN, this is defined as follows,

Vr(p) =
∫

Br(p)∩S

dx. (1)

The integration kernel Br(p) is a sphere of radius r centred
at the point p and S is the interior of the surface represented
by P. The quantity Vr(p) is the volume of the intersection
between the sphere Br(p) and the surface defined by the input
mesh. This is illustrated in Figure 1.

This quantity can be calculated efficiently by performing a
multiplication of the input shape occupancy voxel grid VP with
the sphere grid VB in the Fourier domain V (f) = VP (f) ×
VB(f). The value of the volume descriptor v at each vertex
can then be calculated via an inverse Fourier transform.

A point on the object surface is regarded as a feature point
depending on its ‘uniqueness’ compared to other points along
the surface. This is done by calculating a histogram over
the feature values and taking the points present in the lower
occupancy bins. For the experiments performed in this paper,
the lower percentile of histogram bins is taken. These feature
points form a compact representation of the shape which may

Fig. 1. Integration kernel.

then be used for tasks such as registration, correspondence
and recognition. For this to be performed consistently over
a designated class of shapes it is necessary to be able to
consistently extract the same feature points for a surface.
This can be done effectively by using scale based volume
descriptors.

IV. SCALE BASED VOLUME DESCRIPTORS

Face recognition literature is populated with a range of
techniques which capture holistic features, local features or
a fusion of these features in order to produce the best possible
recognition performance. This motivates the development of a
scale based volume descriptor for use in faces.

Building upon the volumetric feature descriptor described in
Section III, the radii of the spherical kernel used is varied over
a range of sizes. Specifically, small scale features are persistent
for small radii of the descriptor and large scale features are
persistent for the large radii. Empirical tests with faces has
indicated that the range of radii for feature extraction lies
between rmin = 7 × ρ and rmax = 46 × ρ where ρ is the
voxel resolution of the face, which is equivalent to 1mm in
our test cases. The experiments presented in this paper used
ten equi-spaced sphere radii in the range rmin and rmax.

This implementation of scale space differs from that of [8]
where they deem a point as a ‘persistent’ feature if it is selected
as a feature point over consecutive scales. Their method did
not lend well for our application, however, as the feature
points extracted failed to line up consistently with landmark
locations. We developed a different scale space approach,
changing the classification of ‘persistent’ points, along with the
addition of a clustering step. Our novel approach was designed
to maximise the consistency in locating facial feature points.

The first stage of the scale based algorithm, is an iterative
process where each sphere Bri(p) with radius rmin < ri <
rmax is passed over the surface and the captured feature points
are used to cast votes in an M × N matrix Vf . The matrix
Vf is identical in size to the X, Y, Z data input matrices.

Once all the votes have been entered over the different
scales, we define a persistent feature as being those which
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exists over three or more scales at the same location, and use
this information to build a map Vfp of persistent features as
they exist across the face. By having the features exist over
three scales we are able to have both local and holistic features
retained in the representation.

The resulting map Vfp is used to ‘activate’ points on
the original surface. These points are then clustered using
Euclidean distances with a threshold of 10mm. This figure
was derived via empirical tests performed on the face class.
The centroids of the resulting clusters form the scale-based
volume descriptors which accurately and consistently extract
the landmarks of the human face.

The method for the extraction of the scale based volume
features is as follows:

Initialise the matrix Vf .
for all radius ri, do

Extract feature points as described in Section III,
Cast votes in the appropriate elements of Vf .

end for
Calculate persistent points in Vf to form Vfp.
Use Vfp to index points on the original surface.
Perform clustering on the recovered points and use the
centroids of the clusters as features.
The entire feature extraction process is summarised in

Figure 2.

V. EXPERIMENTAL RESULTS

This section will examine: the features that are typically
extracted on faces; the intra-facial variance that is obtained
and how this compares with manual landmarking; and finally
the number of features that are extracted at each of the
different scales of the spheres that are run across the face. The
scale based volume descriptors were tested using the FRGC
1.0 database. The 3D data of the FRGC database contained
640 × 480 images and our experiments used 943 images of
over 300 different people.

Figure 3 presents an example of four faces from the FRGC
database with the resulting voting matrix and extracted features
from the scale based volume descriptors. The voting matrix is
colour mapped according to the number of votes received at
each point, ranging from blue (zero votes) to red (10 votes).

In all of the cases, the nose-tip and eye corners accurately
match up to 3 of the extracted scale based volume descriptors,
with the nostrils and lip corners showing up fairly consis-
tently. These points were earmarked in Section II as crucial
landmarks which are required for face based applications. By
extracting this number of points, combined with a reasonable
correspondence algorithm it is not hard to see how this would
form the basis of a registration/active shape model system.
Given that this is the intended use of this algorithm the
next step is to investigate the reproducibility of the landmark
extraction by the volume descriptors.

Using a very simple algorithm, the nose-tip and inner eye
corners were identified. The nose is assumed to be the front-
most point on the face, with the eyes being the dominant (most
populous cluster) point in each of the top two quadrants of the
face. This method was effective, with only a few cases where
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Fig. 2. Feature extraction process.
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Fig. 3. Examples of the voting matrix (top) and resulting feature centroids (bottom).

the eyes were not correctly identified. In such instances, points
on the eyebrows or the outer eye corner were usually identified
instead, though some cases did fail due to excessive distortions
caused by reflections of the scanning laser on the retina. This
could be overcome by applying further pre-processing to the
data [9].

A singular vector decomposition (SVD) was performed to
align these points over all instances of the same ID (same
person). Given X1 and X2 are k × n matrices for k points in
n dimensions, and the SVD of XT

1 X2 is USV T, X1 can be
aligned to X2 by the rotation matrix V UT. Some examples of
the alignment can be seen in Figure 4. The plots are coloured
such that points belonging to the same person have the same
colour.

To quantify the accuracy of the alignment, the variance of
each of the three aligned marker locations within the same
ID is calculated. Figure 5 presents the histograms of these
variance values for the eyes and nose where two or more scans
of the same person exists in the database.

The median intra-ID variance for the inner eye corners were
0.5168mm and 0.5599mm, and the nose tip variance were
0.7437mm. This compares favourably to manual selection of
these points which has been shown in studies to produce
intra-ID variations of the order of 1-2mm [10]. The histogram
did produce some outliers due to the incorrect identifications
mentioned previously. Having the ability to correctly identify
4 or more points consistently from the front view of a face
also means that accurate registration results can be obtained
from simple SVD calculations rather than performing the
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Fig. 7. Number of features extracted at each scale.

computationally intensive ICP algorithm.
Ten scales of radii were used in the experiments presented

in this paper. The average number of features extracted at
each scale is plotted in Figure 7. An example of the detected
features can be seen in Figure 6, using the first face shown in
Figure 3.

The results clearly show the need for the scale based
extension. At the smaller scales, many features are detected
though larger structures, such as the nose, are missed. The
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Fig. 4. Example alignments of nose tip and eye corner points.
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Fig. 5. Histogram of intra-facial feature variance.

Fig. 6. Detected features at each scale. Kernel size increasing from left to right with scales 1-5 on top row and scales 6-10 on bottom. Persistent features
(right).
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larger kernel sizes are able to detect the nose though little
else. Combining the results of the various scales enables
the detection of different sized features. By taking only the
persistent features, a clean feature representation of the face
is able to be obtained. In these tests, features that are extracted
over 3 or more scales are considered persistent.

VI. CONCLUSION

We have proposed an automatic method for the extraction of
feature points for 3D faces. The scale based volume descriptors
used are robust to noise and have the ability to extract local
and holistic features simultaneously. Extraction of features are
stable across multiple instances of the same face, with the
variations comparing favourably to manual landmarking.

In the future we plan to develop a scale based volume
descriptor driven correspondence algorithm which will have
the ability to automatically determine corresponding points
across different faces. This can be further enhanced by having
a system which has the potential to develop partial corre-
spondences, thus extending practical use to situations where
occlusion may be present. Obviously, having the ability to
generate such correspondences would also lay the foundation
for a recognition system to be built based upon corresponding
feature points that may exist between different faces.
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