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Abstract—A novel biologically inspired controller for the au-
tonomous navigation of a mobile robot in an evasion task is
proposed. The controller takes advantage of the environment by
calculating a measure of danger and subsequently choosing the
parameters of a reinforcement learning based decision process.
Two different reinforcement learning algorithms were used: Q-
learning and Sarsa (\). Simulations show that selecting dynamic
parameters reduce the time while executing the decision making
process, so the robot can obtain a policy to succeed in an escaping
task in a realistic time.

Index Terms—Autonomous navigation, mobile robots, rein-
forcement learning.

I. INTRODUCTION

The use of mobile robots to substitute human beings in
high risk tasks has been multiplied due to the increase of
flexibility, reliability, robustness, speed, accuracy, and many
other advantages that advances in technology have brought. In
the last ten years, many researchers have focused their efforts
on the analysis of multi-robots with autonomous behaviours.
They combine the advantages of multi-agent systems and tools
provided by artificial intelligence methods and control analysis
[2].

In a dynamic challenging environment, finding hostile con-
ditions (e.g. collapsing structures, opponents) may become
a possibility. Therefore, the necessity of designing and im-
plementing robust systems that respond intelligently to these
threats and can replace human beings becomes a priority task.
A realistic and available alternative is the use of mobile robots.
However, this implies several challenges not only in terms of
the design and assembly of the hardware, but even more in
the control structure.

The complexity of the analysis of a high risk and dynamic
challenging environment which includes threats, in order to
build realistic and fully useful control systems for autonomous
mobile robots, is the main motivation behind this paper.

Animals are often under risky circumstances that can be
interpreted as a high risk environment when predators are
trying to feed. Many studies have been conducted to identify
the behaviours of both prey and predators, including forma-
tions (flocking, schooling) [9], irregular changes in movement
(protean behaviour) [7], or risk assessment factors [12]. Never-
theless, the possibilities of using this biological knowledge to
improve control strategies in mobile robotics result in a broad
and interesting area that is explored in the work presented.

The study of pursuit and evasion in general is justified
from different points of view. Pursuit and evasion games are
common in real life and scientifically interesting to evaluate
evolution of behaviour, as well as robust and adaptive be-
haviours due to their presence in dynamic, stochastic and con-
tinuous environments. The broad range of obtained behaviours
implies that some areas of knowledge such as behavioural
biology, neuroethology and game theory have been focusing
their efforts in finding the mechanics and models behind them.
Also the applications of pursuit and evasion behaviours have
been extended to robotics, video games, virtual environments
and multi-agent domains, to mention some examples [10],
[16].

In biology, escaping behaviours from various animal species
have been deeply reviewed, leading to the identification of
three main prey responses: freezing, fleeing and fighting back
[4]. Although a random combination of freezing and fleeing is
also present in individuals, groups also observe randomness in
movement and roles. This kind of erratic behaviour has been
named protean [7].

In robotics and multi-agent systems, pursuit and evasion
behaviours have been targeted from different points of view.
The simplest approaches include evasion of static and dynamic
obstacles with different resources in terms of acquisition,
analysis and processing information, also sometimes trying
to find the shortest path with a specific goal [8]. Game
theory has studied predator-prey games as a decision making
problem where an equilibrium is the goal for competitors -
collaborators [6], [11]. Also, machine learning algorithms such
as reinforcement learning [14] or simple neural networks [5]
have been adapted or evolved under a prey-hunter scenario
to obtain optimality in the behaviours that would be closer
or even better than biological efficiency. Another approach is
the study and simulation of animal evasion behaviours through
mobile robots and simulation, such as group evasion dynamics
like swarms and schooling, with a clear translation to the
automatic control field in protean controllers.

Protean controllers [5] have been developed as artificial
neural networks, but not with the objective of achieving a
complex system capable of autonomous navigation of a robot,
but to apply genetic encoding to the parameters and study
the effect of protean behaviours on evolutionary dynamics.
The reported results of these studies reflect the importance of
randomness translated into noise for the controllers embedded
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in the prey, with the objective of achieving a protean behaviour
[16]. However, these results have not been extrapolated to
the design of an optimal autonomous controller for a robot
that can be used in real life tasks such as search and rescue
in hostile environments. Multi-agent systems, reinforcement
learning and game theory have been focusing their efforts on
designing efficient predators, but not efficient prey that can
defeat them successfully.

This first attempt at proposing a more realistic control
structure is based on two premises. First, it does not try to
model or simulate an accurate dynamic high risk environment,
as it is not the purpose to study in the control system. The
control structure tries to represent the relevant variables with
a realistic approach. Second, the priority is the design and
analysis of an effective autonomous navigation controller to
succeed in the escaping task, in a way likely to imitate
animal behaviour. The goal is not trying to find the shortest
path through a search algorithm, but emulating biological
reasoning.

Biologically inspired behaviours have been incorporated
into widely used learning methods and decision making strate-
gies for the design of the controller. Particular interest is
devoted to the prey, its reactions as evasion behaviours, and
how to use them to control the navigation of an autonomous
mobile robot.

Section II describes briefly the preliminary considerations
in the design, including the definitions of concepts used in the
paper. A brief outline of the design is presented in Section III.
Section IV presents the results obtained in a specific scenario
used to evaluate the proposed controller. Finally, Section V
includes the conclusions.

II. PRELIMINARY CONSIDERATIONS
A. The environment

Formal definitions for all the components in the scenario
(obstacles, threats, opponents) are stated as follows: an obsta-
cle corresponds to any object or entity that blocks the free
navigation of a robot in a spatial location. Hostility or hostile
threats in this case means the presence of an imminent risk
(collapsing of structures, mobile obstacles) that will cause an
increase in the level of danger. An opponent is a human or
machine whose objectives are chasing and/or destroying the
robots, equivalent to a predator.

B. Quantification of risk

With these three anteriorly defined entities located in the
scenario, a method to evaluate their presence and subse-
quently their immediate importance is proposed. In previous
biological-psychological studies, a way to determine the in-
dividual fear has been based on the flight initiation distance
[12]. The studies show the relevance of factors such as en-
vironmental (refuges), experiential (previous experience with
predators) and physical characteristics of the predators, in the
assessment of risk and therefore the beginning of the flee [12].

The logical extension of animal studies about risk as-
sessment to robotics is impractical as some specific factors

mentioned in [12] become impossible to achieve, or irrelevant
to evaluate, such as morphological changes in hardware. After
a realistic and practical analysis, the only aspects that will
be considered relevant for the studies conducted in this paper
are the position of the opponent (equivalent of a predator) and
estimation of its capabilities, hostile threats in the environment
itself, eliminating any possibility of a refuge, and previous
experience, seen as an evaluation of the history. Although this
aspect will not be covered in the work of this paper, it is
intended for the near future.

In order to measure and evaluate the aspects mentioned
before, with the purpose of incorporating this knowledge to
the design of a more realistic controller, the concept and a
mathematical model of danger is proposed. This model con-
siders two parts: first, an evaluation of the probable risks that
may cause the damage or destruction of the robot considering
the history and the actual conditions. As explained before,
history is not incorporated in the design. Second, an evaluation
of the opponents, which can be simply measured through the
proximity, or with a complex model to predict their behaviour.

Danger is defined as a function of three variables: (i) the
opponents, (ii) static obstacles, and (iii) dynamic obstacles.
Although some attempts have been made in biology to define
and measure the risks encountered by a prey due to a predator,
in this case distance has been the only measured factor that
determines the degree of danger and the space of possible
movements that the robot can make in a precise instant of
time after a deliberative process.

III. DESIGN

In a hostile, dynamic environment, some resources can be
very limited, such as the time for deliberation. With this
specific consideration in mind, the design of the controller has
been oriented to the adaptability to fast decision making, from
measuring the danger present in the current environment sur-
rounding a mobile robot. The following subsections describe
the aspects that were modified from a reinforcement learning
based controller to achieve a faster deliberation, according to
a coherent measure of danger.

A. Structure of the controller

The structure of the controller has been divided in three
sections for its design: (i) the mapping from the environment
to a measure that allows shaping parameters in order to achieve
more efficiency of resources while deliberating; (ii) the learn-
ing method, in this case a reinforcement learning algorithm;
and (iii) the biological influence in both the selection of the
action and the learning process.

B. Reinforcement learning

Reinforcement learning is based on a mapping from states
of the environment to actions after a Markov decision making
process. An agent has to discover by itself which action is
optimal through the reward (or reinforcement signal) that it
gets when choosing and performing the action. At the end of
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the process, the agent has an optimal policy or set of actions
[13].

In reinforcement learning, the goal for the agent i is to
maximise the discounted reward of executing a determined
action a; and causing a transition of the state, at each time step
k. In order to choose the optimal action in a reinforcement
learning mechanism, the agent computes the value of the
action or the value of the pair action-state (Q value) measured
in the terms of the reward, using Bellman equations [15].

C. Q-learning and Sarsa (\)

Two different popular reinforcement learning algorithms
were used to obtain a comparison in performance for the
specific selected task with the incorporation of the biologically
inspired module: Q-learning and Sarsa (A\) [13] with radial
basis functions neural networks.

In the Q-learning algorithm described in detail in [13], the
Q values are updated at a certain learning rate « from a
discounted reward R:

Q(s,a) = (1 —a)Q(s,a) + a(R + ’yng&}xQ(s',a'L 1)

where -y is the discount rate, and Q(s’,a’) is the Q value for
the actions of next predicted state.

The Sarsa (\) algorithm [13] updates a series of parameters
g from a bootstrap of A steps of past history evaluated with
an eligibility trace €, and an error d:

g — 0+ ade, 2)

5~ 5+4Q(s a). 3)

A radial basis functions neural network (RBFNN) has been
used to approximate the Q values in the Sarsa algorithm as
well as the reward function R. A RBFNN [3] with inputs, Z,
and outputs, yy, is defined by a relation between weights and
M radial basis functions

M
Yk = Zwkj¢j(f) + wyo, 4
=1
() R
¢J($) = €xrp < TJQ_ , (5

where [i; are the centers and o; are the parameters for each
7 gaussian radial basis function.

In the escaping task, several implications in a reinforcement
learning scheme can be observed due to the necessity of a
faster deliberation. First, the compromise between exploration
and exploitation needs to be changed favouring the second to
look for the best immediate solution. Second, the learning rate
and the chances to run the learning algorithm to find the opti-
mal solution (number of iterations, number of episodes) need
to be adjusted to reduce the time. Finally, the bootstrapping
has to be bounded to a reasonable measure to facilitate the
processing.

D. Immediate decisions

In order to adjust the parameters of the reinforcement learn-
ing method, a numerical determination of danger is needed.
Danger shortens the time for decision making, and it is defined
inversely proportional to the distance r; in centimeters from
the robot to any of the factors of risk in the environment:
opponents and obstacles (expressed as a total n)

D=y =
; - (6)
"

K3

The function D has a maximum value of 1.

E. Biologically inspired module

The presence of an identified threat triggers several kinds
of escaping behaviours in animals [4], where a decision has
to be made as fast as possible. This necessity of immediate
response has been modelled from a measure of the danger, by
shaping the parameters of the algorithm to make it faster and
more precise versus exploring alternatives. The use of dynamic
reinforcement learning parameters such as the learning rate or
the discount rate has been proposed in few articles like [1].
However, typically a fixed value is taken as enough, and the
number of iterations is not important when trying to look for
the best optimal solution in long time. In this case, functions
for the parameters have been proposed

a =0.01exp (3.219D), (8)
~v=0.6exp (0.511D), 9
Iterations = 300 exp (—3.401D), (10)
¢ = 0.5exp (—1.609D). (11)

The bootstrapping parameter A\ in the Sarsa algorithm is
fixed.

The biologically inspired module so far is in charge of
measuring the danger and choosing a set of parameters to
perform the decision making process. Besides, the module
creates the map for the rewards in order to suggest not
to collide against obstacles and opponents, which can be
observed in the results. In the future, protean behaviours
are intended to be implemented as part of the autonomous
navigation to complete the module.

F. Deliberation process

The controller containing the three sections mentioned be-
fore executes the following deliberation process:

1) Reading the environment, which is considered static at
time t to obtain the best actions to follow according to
the circumstances.

2) Mapping the environment into probabilities of colliding
against obstacles and opponents, where a probability of
1 denotes the location of an obstacle or opponent.
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3) Selecting a reward function R and the parameters:
learning rate «, discount rate -, number of iterations
and probability for exploration-exploitation e.

4) Performing a reinforcement learning method with the
parameters obtained before.

5) Obtaining the best policy corresponding to the best set
of actions for the static scenario, which is true when the
scenario has not changed significantly.

6) If the scenario changes, then a new learning process to
obtain a new set of actions is needed, and the process
starts again.

IV. RESULTS

A square scenario of 10x10 meters with obstacles and
opponents randomly distributed was used as the test bed in
the evaluation. An example is shown in Figure 1. The robot
is located in an initial position at the centre of the grid (cell
x =5, y =05), and it has to navigate to a target point defined
for the scenario in Figure 1 at cell x = 5, y = 9. For a discrete
set of tests, the scenario is divided with a grid of 1x1 meters.
The robot is allowed to move to 9 different positions: towards,
forwards, right, left, towards right, towards left, forwards right,
forwards left and stay in the same place.

Fig. 1. Example of scenario used for the tests, where triangles correspond
to fixed obstacles, circles to opponents, a square to the initial position, and a
cross to the target.

From the environment shown in Figure 1, a map of rewards
was obtained after analysing the probabilities of colliding
against obstacles or opponents when the robot moves through
different positions in the grid. The resulting maps are presented
in Figure 2.

A run of the Q-learning or Sarsa (\) corresponds to a set of
iterations where the parameter for exploration-exploitation, e,
is decreased linearly by €/iterations. 100 Monte Carlo runs
of each reinforcement learning algorithm were made with the
fixed parameters shown in Table 1. With this, the variation of
the mean in the average of needed movements to go from the
initial position to the target was obtained as a measure for
exploitation. A map of the average of visits to each cell was

-1000

0
)

Fig. 2. (a) Map of tabular probabilities obtained after analysing the scenario
shown in Figure 1, and (b) its corresponding map of rewards.

also computed as a measure of exploration to identify the most
visited regions in the grid.

TABLE I
FIXED PARAMETERS

PARAMETER FIXED VALUE
Learning rate o 0.1
Discount rate ~y 0.7
Iterations 100
Bootstrap A for Sarsa 0.5
Initial exploration-exploitation probability e 0.5
Radial basis functions for Sarsa 30

Figure 3 shows the exploitation, with a mean of 188.4497
movements to reach the target for the Q-learning and 187.4431
movements for the Sarsa, and a standard deviation of 18.1919
and 27.0804 respectively. Figure 4 shows a map of the average
of visits to each cell, where it is possible to observe the
similarity in the exploration of both methods.

Wean-188 4497
ool crearmnd 50191619 i
T Barsa Wean: 167.4431
S0r 5D: 27,0004 1
0 . . . .
0 20 40 El %0 100

Runs

Fig. 3. Average of movements in each run for Q-learning and Sarsa()\).

Once incorporating the selection of parameters based on
the measure of danger, several experiments were conduced as
before, with 50 Monte Carlo runs over each set of iterations
for both methods Q-learning and Sarsa. This time, one of
the four dynamic parameters was adjusted with the equations
(8) to (11) and the other three fixed in the sets shown in
Table II. The measure of danger was variated from O to 1
to observe the effect of the adjustment of each one of the
parameters separately from the others in the exploitation or
average of movements from an initial position to the target.
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Fig. 4. Map of exploration for (a) Q-learning and (b)Sarsa(\), where the
darker the cell the lower number of visits.

The expected results were: (i) reducing the time of deliberation
when increasing danger, (ii) a bounded mean in the number
of movements needed to go from the initial position to the
target similar to the obtained with parameters of Table I, and
(iii) a standard deviation closer to the shown in Figure 3 when
adjusting the parameters for a faster deliberation.

TABLE II
PARAMETERS FOR EVALUATION OF THE EFFECT OF DANGER
PARAMETER SET 1 SET2
Learning rate o 0.07 0.19
Discount rate 0.7 0.9
Iterations 227 73
Initial exploration-exploitation probability e 0.4 0.2

Figures 5, 6, 7 and 8 show the mean and standard deviation
for the variation of the learning rate «, the discount rate
v, the number of iterations, and the exploitation-exploration
parameter ¢, respectively. When variating «, v and e the mean
remained bounded with some oscillations, not the case of the
variation in the number of iterations, where a great oscillation
is present for danger = [0.5, 1]. The standard deviation also
remained bounded with small oscillations, excepting when
variating the number of iterations again, where its growth is
obvious.
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""""" Sarsa Set 1
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200

170 -
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a0l —==C-learing Setz | |
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——--Barsa Set?
40+ E
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Fig. 5. (a) Mean and (b) standard deviation of the movements when varying
« and combinations of two sets of fixed parameters shown in Table II

Finally, Figure 9 shows the behaviour of the mean and stan-
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Fig. 6. (a) Mean and (b) standard deviation of the movements when varying
~ and combinations of two sets of fixed parameters shown in Table IT
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Fig. 7. (a) Mean and (b) standard deviation of the movements when varying
the number of iterations and combinations of two sets of fixed parameters
shown in Table I1

dard deviation when variating the danger and using equations
(8) to (11) for all the parameters. According to Figure 9, the
time of deliberation is reduced, but the standard deviation
increases significantly. Although the results stay bounded, a
larger standard deviation introduces an error in the obtained
policy, but it is a trade off when a faster deliberation is needed.

V. CONCLUSION

A novel controller that incorporates biologically inspired
behaviours has been proposed and explained. As mentioned
before, the necessity of realistic algorithms to be used in
real life demanding tasks such as the one presented here
introduces constraints in terms of using as less time as possible
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Fig. 8. (a) Mean and (b) standard deviation of the movements when varying
€ and combinations of two sets of fixed parameters shown in Table II
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Fig. 9. (a) Mean and (D) standard deviation of the movements, and (¢) mean
of deliberation time (seconds), when varying all the parameters according to
danger.

to give more emphasis to the reaction, without being a reactive
controller. A biologically inspired module has been added to
commonly used reinforcement learning algorithms to find the
best policy, in order to modify the parameters such as the
learning rate and find a solution in less time.

The results show that the biological module works success-
fully as expected, decreasing the total time of processing as
a result of an increase in danger but with some associated
costs (e.g. an increase in standard deviation, presence of
oscillations). Therefore, a tradeoff between the costs has to
be reached according to the possibilities allowed by the task.

Further work is planned to analyse the effect of the resolu-

tion of the grid in the measure of danger to formulate a balance
between the precision of the movements and the complexity
of the deliberation process in terms of hardware. Moreover,
the use of artificial potential fields in the reward functions is
being contemplated for future comparisons between the effect
of the rewards obtained through a function of danger and some
others based on potentials.
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