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Non-Polynomial Spline Solution of Fourth-Order
Obstacle Boundary-Value Problems

Jalil Rashidinia, Reza Jalilian

Abstract— In this paper we use quintic non-polynomial
spline functions to develop numerical methods for approxi-
mation to the solution of a system of fourth-order boundary-
value problems associated with obstacle, unilateral and contact
problems. The convergence analysis of the methods has been
discussed and shown that the given approximations are better
than collocation and finite difference methods. Numerical
examples are presented to illustrate the applications of these
methods, and to compare the computed results with other
known methods.

Keywords—Quintic non-polynomial spline, Boundary for-
mula, Convergence, Obstacle problems.

I. INTRODUCTION

In this paper, we apply non-polynomial spline
functions to develop numerical methods for ob-
taining smooth approximations to the solution of a
system of fourth-order boundary-value problem of
the form:

u(4) =




f(x), a ≤ x ≤ c,
g(x)u(x) + f(x) + r, c ≤ x ≤ d,
f(x), d ≤ x ≤ b,

(1)

subjected to the boundary and continuity condi-
tions

u(a) = u(b) = α1, u′′(a) = u′′(b) = α2,
u(c) = u(d) = β1, u′′(c) = u′′(d) = β2,

(2)

where f(x) and g(x) are continuous functions on
[a, b] and [c, d], respectively. The parameters r, αi

and βi, (i = 1, 2) are real constants. Such type of
system arise in the study of obstacle, unilateral,
moving and free boundary-value problems and has
important applications in other branches of pure
and applied science [1-5,10,12-14]. In general it
is not possible to obtain the analytical solution
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of (1) for arbitrary choices of f(x), g(x). A spe-
cial form of problem (1) have been considered
by the numbers of authors [1-4,13,14] they used
finite difference, collocation and spline methods. In
the present paper, we apply non-polynomial spline
functions [16,17,20] that have a polynomial and
trigonometric part to develop numerical methods for
obtaining smooth approximation to the solutions of
such system. These methods are based on a non-
polynomial spline space. The spline functions we
propose in this paper have the form

a sin(kx) + b cos(kx) + cx3 + dx2 + ex + f.

We develop the class of various methods. Our
method perform better than the other collocation,
finite difference and spline methods of same order.
This approach has the advantage over finite differ-
ence methods that it provides continuous approxi-
mations to not only for u(x) but also for u(i)(x), i =
1, 2, 3, at every point of the range of integration.
Also, the c∞-differentiability of the trigonometric
part of non-polynomial spline compensates for the
loss smoothness inherited by polynomial spline. The
spline function we propose in this paper has the
form

Span{1, x, x2, x3, sin(|k|x), cos(|k|x)},

where k is the frequency of trigonometric part of
the spline function,when k → 0 our spline reduce
to the form:

Span{1, x, x,2 , x3, x4, x5}, (when k=0).

The above fact is evident when correlation between
polynomial and non-polynomial splines basis is
investigated in the following manner,

T5 = span{1, x, x2, x3, sin(kx), cos(kx)}

= span{1, x, x2, x3,
24

k4
(cos(kx) − 1 +

(kx)2

2
),

120

k5
(sin(kx) − (kx) +

(kx)3

6
)}.
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From the above equation it follows that limk→0 T5 =
{1, x, x2, x3, x4, x5}, so that the Usmani’s method
[18], based on quintic splines is a special case (k =
0) of our approach.

II. CLASS OF METHODS

For simplicity we first develop the quintic non-
polynomial spline for solving the fourth-order
boundary value problem

d4u

dx4
= g(x)u + f(x), for x ∈ [c, d],

u(c) = u(d) = β1, u′′(c) = u′′(d) = β2. (3)

For this purpose, we divide the interval [c,d] into
n equal subintervals using the grid points. Let u(x)
be the exact solution of the boundary-value problem
(3) and uj be an approximation to u(xj), in order
to develop the numerical method for approximating
solution of differential equations (3), we introduce
the set {xj} so that xj = c + jh, h = d−c

n
, j =

0, 1 . . . , n, the non-polynomial quintic spline pj(x)
in subinterval xj ≤ x ≤ xj+1, has the form

pj(x) = aj sin k(x − xj) + bj cos k(x − xj)

+cj(x − xj)
3 + dj(x − xj)

2

+ej(x − xj) + lj, j = 0, 1, . . . , n, (4)

where aj, bj, cj, dj, ej and lj are constants and k
is free parameter. If k → 0 then pj(x) reduces to
quintic spline in [c,d]. By using continuity condi-
tions at the common nodes (xj, uj), and to derive
expression for the coefficients of (4) in terms of
uj, uj+1, mj, mj+1, Sj and Sj+1 we have:

pj(xj) = uj, pj(xj+1) = uj+1,

p
(2)
j (xj) = mj, p

(2)
j (xj+1) = mj+1,

p
(4)
j (xj) = Sj, p

(4)
j (xj+1) = Sj+1. (5)

Using the (5) we get the following expressions:

bj =
h4Sj

θ4
, lj = uj −

h4Sj

θ4
,

aj =
Sj+1 − Sj cos θ

k4 sin θ
, dj =

k2mj + Sj

2k2
,

cj =
h(Sj+1 − Sj) + θk(mj+1 − mj)

6θ2
,

ej =
uj+1 − uj

h

+
h3[(6 − 2θ2)Sj − (6 + θ2)Sj+1]

6θ4

−
h(mj+1 + 2mj)

6
, (6)

and θ = kh. Using the continuity of the first and
third derivatives at (xj, uj), we get the following
relation for j = 1, 2, . . . , n − 1:

mj+1 + 4mj + mj−1 =
6(uj+1 − 2uj + uj−1)

h2

+
6(Sj+1 − 2Sj cos θ + Sj)

hk3 sin θ
−

3(Sj + Sj−1)

k2

−
(6 + θ2)Sj+1 − (12 − θ2)Sj

k2θ2

+
(6 − 2θ2)Sj−1

k2θ2
, (7)

and

mj+1 − 2mj + mj−1 =
2Sj − Sj−1 − Sj+1

k2

+
h(Sj+1 − 2Sj cos θ + Sj−1)

k sin θ
. (8)

Using equations (7) and (8), we get the follow-
ing scheme:

uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

= h4[α(Sj+2 + Sj−2)

+β(Sj+1 + Sj−1) + γSj], (9)

where j = 2, 3, . . . , n − 2 and

α =
θ3 − 6(θ − sin θ)

6θ4 sin θ
,

β =
12θ(1 + cos θ) − 2θ3(cos θ − 2) − 24 sin θ

6θ4 sin θ
,

γ =
36 sin θ − 12θ(1 + 2 cos θ) − 2θ3(4 cos θ − 1)

6θ4 sin θ
.

If θ → 0 then (α, β, γ) → ( 1
120

, 26
120

, 66
120

).

Using u
(4)
j = gjuj + fj + r, fj ≡ f(xj), uj ≡

u(xj), gj ≡ g(xj), at nodal points xj and by
Taylor expansion, the local truncation errors tj, j =
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2, 3, ...n − 2, associated with our scheme is:

tj = (1 − 2(α + β) − γ)h4u
(4)
j

+(
1

6
− (4α + β))h6u

(6)
j

+(
1

80
− (

16

12
α +

1

12
β))h8u

(8)
j

+(
17

30240
−

1

360
(64α + β))h10u

(10)
j

+(
31

1814400
− (

4α

315
+

2β

20160
))h12u

(12)
j (ζj)

+O(h13).

For different choices of parameters α, β and γ we
get the class of methods such as:
(i) Second-Order Method
For α = 1

120
, β = 26

120
and γ = 1 − 2α − 2β gives:

δ4uj = h4u
(4)
j −

1

12
h6M6+O(h7), j = 2, 3, ..., n−2.

(10)
(ii)Second-Order Method
For α = −6

4319
, β = 72

400
and γ = 1 − 2α − 2β gives:

δ4uj = h4u
(4)
j −

2519

323925
h6M6 + O(h7), (11)

j = 2, 3, ..., n − 2.

(iii) Fourth-Order Method
For α = 0, β = 1

6
− 4α and γ = 1− 2α− 2β gives:

δ4uj = h4[u
(4)
j+1 + 4u

(4)
j + u

(4)
j−1] −

1

720
h8M8

+O(h9), j = 2, 3, ..., n − 2. (12)

(iv) Sixth-Order Method
For α = −1

720
, β = 3

20
− 16α and γ = 1 − 2α − 2β

gives:

δ4uj =
h4

720
[−(u

(4)
j+2 + u

(4)
j−2) + 124(u

(4)
j+1 + u

(4)
j−1)

+474(u
(4)
j )] +

1

3024
h10M10

+O(h11), j = 2, 3, ..., n − 2, (13)

where
M6 = maxc≤x≤d | u(6)(x) |,
M8 = maxc≤x≤d | u(8)(x) |,
M10 = maxc≤x≤d | u(10)(x) |.
Each of the above recurrence relations gives n − 2
linear equations in n unknowns, we need two more
equations at each end of the rang of integration.

III. DEVELOPMENT OF THE BOUNDARY

FORMULAS

For discretization of boundary conditions we
define:

(i)
3∑

k=0

b′kuk + c′h2u
′′

0 + h4
3∑

k=0

d′
ku

(4)
k + t1 = 0,

(ii)
3∑

k=0

b′kun−k + c′h2u
′′

n + h4
3∑

k=0

d′
ku

(4)
n−k

+tn = 0, (14)

where b′k, c′ and d′
k are arbitrary parameters to

be determined. In order to obtain the second-order
method we find that:
(b′0, b

′
1, b

′
2, b

′
3, c

′) = (−2, 5,−4, 1, 1),
(d′

0, d
′
1, d

′
2, d

′
3) = ( 1

12
,−1, 0, 0).

We obtain the second order boundary formulas as
follows:

(5 − h4g1)u1 − 4u2 + u3 = (2 −
1

12
h4g0)β1

−h2β2 − h4(
1

12
(f0 + r) − (f1 + r))

+
59

360
h6u(6)(x1) + O(h7),

un−3 − 4un−2 + (5 − h4gn−1)un−1

= (2 −
1

12
h4gn)β1 − h2β2 − h4(−(fn−1 + r)

+
1

12
(fn + r)) +

59

360
h6u(6)(xn) + O(h7). (15)

For four-order method we find that:
(b′0, b

′
1, b

′
2, b

′
3, c

′) = (−2, 5,−4, 1, 1),
(d′

0, d
′
1, d

′
2, d

′
3) = −1

360
(28, 245, 56, 1),

and

(5 −
245

360
h4g1)u1 + (−4 −

56

360
h4g2)u2

+(1 −
h4

360
g3)u3 = (2 +

28

360
h4g0)β1 − h2β2

+
h4

360
(28(f0 + r) + 245(f1 + r) + 56(f2 + r)

+(f3 + r) −
241

60480
h8u(8)(ζ1) + O(h9),

(1 −
1

360
h4gn−3)un−3 + (−4 −

56

360
h4gn−2)un−2

+(5 −
245

360
h4gn−1)un−1 = (2 +

28

360
h4gn)β1

−h2β2 +
h4

360
(28(fn + r) + 245(fn−1 + r)

+56(gn−1 + r) + (gn−3 + r))
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−
241

60480
h8u(8)(ζn) + O(h9). (16)

For discretization of boundary conditions for
sixth-order method we define:

(i)
3∑

k=0

b′kuk = c′h2u
′′

0 + h4
5∑

k=0

d′
ku

(4)
k + t1,

(ii)
3∑

k=0

b′kun−k = c′∗h2u
′′

n

+h4
5∑

k=0

d′
5−ku

(4)
n−5+k + tn. (17)

In order to obtain the truncation errors of t1 and t2
we find that:

(b′0, b
′
1, b

′
2, b

′
3, c

′, c′∗) = (−2, 5,−4, 1, 1,−1),

(d′
0, d

′
1, d

′
2, d

′
3, d

′
4, d

′
5)

=
−1

60480
(4233, 43274, 5662, 3432,−1391, 230),

and

(5 − d′
1h

4g1)u1 + (−4 − d′
2h

4g2)u2

+(1 − d′
3h

4g3)u3 − (d′
4h

4g4)u4 − (d′
5h

4g5)u5

= (2 − d′
0h

4g0)β1 − h2β2 + h4(d′
0(f0 + r)

+d′
1(f1 + r) + d′

2(f2 + r) + d′
3(f3 + r)

+d′
4(f4 + r) + d′

5(f5 + r))

−
167

50400
h10u(10)(ζ1) + O(h11),

(5 − d′
1h

4gn−1)un−1 + (−4 − d′
2h

4gn−2)un−2

+(1 − d′
3h

4gn−3)un−3 − (d′
4h

4gn−4)un−4

−(d′
5h

4gn−5)un−5 = (2 − d′
0h

4gn)β1 + h2β2

+h4(d′
0(fn + r) + d′

1(fn−1 + r) + d′
2(fn−2 + r)

+d′
3(fn−3 + r) + d′

4(fn−4 + r) + d′
5(fn−5 + r))

−
167

50400
h10u(10)(ζn) + O(h11). (18)

IV. CONVERGENCE ANALYSIS

Here we prove the convergence of the methods.
Let us write the error equation of the methods as
follows:

AE = T, (19)

where E = (ej), is the (n-1)-dimensional column
vector with ej , the error of discretization defined by
ej = u(xj) − uj . In other words ej is the amount
by which computed solution uj deviates from the

actual solution u(xj) at x = xj and A is nine-band
matrix which can be described as

A = M +BG, G = h4diag(gj), j = 1, 2, . . . , n−1,
(20)

here M = P 2, where P = (pij), is a tridigonal and
monotone matrix defined by:

pij =




2, i = j = 1, 2, ..., N − 1,
−1, |i − j| = 1,
0, otherwise,

(21)

and

B =




d1 d2 d3 d4 d5

β γ β α
α β γ β α

α β γ β α
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
α β γ β α

α β γ β
d5 d4 d3 d2 d1




,

(22)

E = A−1T = [M + BG]−1T,

|E‖ ≤ ‖[I + M−1BG]−1‖‖M−1‖‖T‖. (23)

By using ‖(I + A)−1‖ ≤ (1 − ‖A‖)−1 and
Usmani et. al. [19] we obtain

‖M−1‖ ≤
5(d − c)4 + 4(d − c)2h2

384h4
, (24)

‖E‖ ≤
‖M−1‖‖T‖

1 − ‖M−1‖‖B‖‖G‖
. (25)

Provided that ‖M−1BG‖ < 1.
Also we can obtain

‖B‖ ≤
724

720
, ‖G‖ ≤ h4Mg, Mg = maxc≤x≤d|g(x)|.

(26)
For second order we obtain

‖T‖ ≤
59h6

360
M6, M6 = maxc≤ζ≤d|u

(6)(ζ)|,

using (24)-(26) we obtain

‖E‖ ≤
118ωh6M6

276480h4 − 724ω‖G‖
≡ O(h2), (27)

for fourth order we get

‖T‖ ≤
241h8

60480
M8, M8 = maxc≤ζ≤d|u

(8)(ζ)|,
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using (24)-(26 we obtain

‖E‖ ≤
17352ωh8M8

1672151040h4 − 4378752ω‖G‖
≡ O(h4),

(28)
and for sixth order we get

‖T‖ ≤
167h10

50400
M10, M10 = maxc≤ζ≤d|u

(10)(ζ)|.

By using (24)-(26,we get

‖E‖ ≤
12024ωh10M10

1393459200h4 − 3648960ω‖G‖
≡ O(h6),

(29)
where ω = 5(d − c)4 + 4(d − c)2h2, ‖G‖ =
max|g(x)|, c ≤ x ≤ d provided

‖G‖ <
69120h4

181ω
.

It follows ‖E‖ → 0 as h → 0. Therefore the
convergence of the methods have been established.

V. NUMERICAL RESULTS

We consider the system of differential equations
[1-4,13-15]

u(4) =

{
1, −1 ≤ x ≤ −1

2
, 1

2
≤ x ≤ 1,

2 − 4u, −1
2

≤ x ≤ 1
2
,

(30)
with the boundary conditions:

u(−1) = u(
−1

2
) = u(

1

2
) = u(1) = 0,

u′′(−1) = u′′(
−1

2
) = u′′(

1

2
)

= u′′(1) = 0, (31)

and the conditions of continuity of u and u′′

atx = −1
2

and 1
2
.

The analytical solution for this boundary value
problem is

u(x) =




Γ1(x), −1 ≤ x ≤ −1
2

,

Γ2(x), −1
2

≤ x ≤ 1
2
,

Γ3(x), 1
2
≤ x ≤ 1,

(32)

where
Γ1(x) = 1

24
x4 + 1

8
x3 + 1

8
x2 + 3

64
x + 1

192
,

Γ2(x) = 0.5− 1
ϕ1

[ϕ2 sin x sinh x+ϕ3 cos x cosh x],

Γ3(x) = 1
24

x4 − 1
8
x3 + 1

8
x2 − 3

64
x + 1

192
,

ϕ1 = cos(1) + cosh(1), ϕ2 = sin(1
2
) sinh(1

2
),

ϕ3 = cos(1
2
) cosh(1

2
).

We solved this example over the whole interval

[-1,1] by using the Quintic non-polynomial spline
methods with step lengths h = 2−m, m = 3, 4, 5.
The maximum absolute errors in solution for our
various methods are listed in tables 1 and also
the maximum absolute errors in the solution at
middle points of interval are tabulated in table
2. To compare our computed results obtained by
second and fourth order methods with the results
obtained by other known methods in [1-4,13,14],
the maximum absolute errors in the solution of
example 1 are listed in tables 3,4 and 5.

Spline approach has the advantage over finite
difference method that it provides continuous
approximations to u(i)(x), i = 1, 2, 3, at every point
of the range of integration beside approximation
to u(x). Following [20] to obtain the necessary
formula for computing values of first, second and
third derivatives of solution of example 1, by using
equation (7), (8) and solving the resulting identity
for mj, j = 1, ..., n we have

mj = (uj+1−2uj+uj−1)

h2 + h2(Sj+1−2Sj cos θ+Sj−1)

3 sin θ

− h2(Sj−Sj−1)

2θ2 − h2[(6+θ2)Sj+1−(12−θ2)Sj+(6−2θ2)Sj−1]

6θ4

− (2Sj−Sj−1−Sj+1)

6θ2 − h2(Sj+1−2Sj cos θ+Sj−1)

6θ2 sin θ
,

with m0 = mn+1 = β2 being known from
the boundary conditions. Having computed
uj, mj, Sj, j = 0, ..., n + 1, it is possible to
evaluate the coefficient of the spline function (4)
as given by (6). Since y′

j = p′j(xj), j = 0, ..., n and
y′

n+1 = p′n(xn+1), it follows that

y′
j ≈

{
ajk + ej, j = 0, ..., n,
Ψn + 3cnh2 + 2dnh + en, j = n + 1,

(33)
where Ψn = ank cos θ − bnk sin θ. Similarly, from
y′′′

j = p′′′j (xj), j = 0, ..., n and y′′′
n+1 = p′′′n (xn+1), we

can obtain

y′′′
j ≈

{
−ajk

3 + 6cj, j = 0, ..., n,
−ank3 cos θ + bnk3 sin θ + 6cn, j = n + 1.

(34)
The values of u(i)(x), i = 1, 2, 3 have been com-

puted by our second order method (i). To compare
with the method in [1] the maximum absolute errors
are listed in tables 6.
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Example 2: We consider the system of differential
equation solved by Al-Said and Noor [1].

u(4) =

{
0, −1 ≤ x ≤ −1

2
, 1

2
≤ x ≤ 1,

1 − 4u, −1
2

≤ x ≤ 1
2
,

(35)
with the boundary conditions:

u(−1) = u(
−1

2
) = u(

1

2
) = u(1) = 0,

u′′(−1) = −u′′(
−1

2
) = u′′(

1

2
)

= −u′′(1) = ǫ, (36)

where ǫ → 0. The analytical solution for this
boundary value problem is

u(x) =




Λ1(x), for − 1 ≤ x ≤ −1
2

,

Λ2(x), for −1
2

≤ x ≤ 1
2
,

Λ3(x) =, for 1
2
≤ x ≤ 1,

(37)

where
Λ1(x) = (−2

3
x3 − 3

2
x2 − 13

12
x − 1

4
)ǫ,

Λ2(x) = 0.25− 1
2ϕ1

[ϕ2 sin x sinh x+ϕ3 cos x cosh x],

Λ3(x) = (−2
3

x3 + 3
2
x2 − 13

12
x + 1

4
)ǫ,

ϕ1 = cos(1) + cosh(1), ϕ2 = sin(1
2
) sinh(1

2
),

ϕ3 = cos(1
2
) cosh(1

2
).

We solved this example over the whole interval
[-1,1] by using our second order methods (i),(ii),
with step lengths h = 2−m, m = 3, 4, 5. The
maximum absolute error in solution are listed in
table 7 and 8, our results compared with the results
obtained in [1,2,11]. The results shows superiority
of our second orders methods.

TABLE I
MAXIMUM ABSOLUTE ERRORS IN SOLUTION OF EXAMPLE 1

m O(h2)(i) O(h2)(ii) O(h4) O(h6)

3 8.19×10−6 9.04×10−7 1.69×10−8 7.65×10−11

4 2.73×10−6 2.26×10−7 4.08×10−10 3.31×10−13

5 7.44×10−7 7.19×10−8 1.30×10−11 6.41×10−15

TABLE II
MAXIMUM ABSOLUTE ERRORS IN SOLUTION OF EXAMPLE 1 IN

MIDDLE POINTS

m O(h2)(i) O(h2)(ii) O(h4) O(h6)

3 1.25×10−6 2.26×10−7 4.40×10−10 5.95×10−13

4 1.56×10−7 7.19×10−8 1.30×10−11 5.49×10−15

5 1.95×10−8 1.84×10−8 4.06×10−13 –

TABLE III
MAXIMUM ABSOLUTE ERRORS IN SOLUTION OF EXAMPLE 1

m Our fourth-order Fourth-order[4] Finite difference[14]

3 1.7×10−8 2.4×10−8 1.3×10−6

4 4.1×10−10 1.5×10−9 8.7×10−8

5 1.3×10−11 9.5×10−11 6.8×10−9

TABLE IV
MAXIMUM ABSOLUTE ERRORS IN SOLUTION OF EXAMPLE 1

h Second-order(i) Second-order(ii) Second-order[1]

1/12 4.5×10−6 1.2×10−7 1.2×10−5

1/24 1.2×10−6 2.3×10−7 2.8×10−6

1/48 3.3×10−7 3.2×10−8 6.9×10−7

VI. CONCLUSION

We have developed a new non-polynomial quin-
tic spline for solving a system of fourth-order
boundary-value problems. This approach has the
advantages over finite difference methods that it
provides continuous approximations to not only for
u(x) but also for u(i)(x), i = 1, 2, 3, at every point
of the range of integration. Our numerical results are
better than those produced by collocation and finite
difference methods for solution of equation(1).
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