
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2959

Grid Coordination with Marketmaker Agents
Xin Bai, Kresimir Sivoncik, Damla Turgut and Ladislau Bölöni

Abstract— Market based models are frequently used in the re-
source allocation on the computational grid. However, as the size of
the grid grows, it becomes difficult for the customer to negotiate
directly with all the providers. Middle agents are introduced to
mediate between the providers and customers and facilitate the
resource allocation process. The most frequently deployed middle
agents are the matchmakers and the brokers. The matchmaking agent
finds possible candidate providers who can satisfy the requirements
of the consumers, after which the customer directly negotiates with
the candidates. The broker agents are mediating the negotiation with
the providers in real time.

In this paper we present a new type of middle agent, the market-
maker. Its operation is based on two parallel operations - through
the investment process the marketmaker is acquiring resources and
resource reservations in large quantities, while through the resale pro-
cess it sells them to the customers. The operation of the marketmaker
is based on the fact that through its global view of the grid it can
perform a more efficient resource allocation than the one possible in
one-to-one negotiations between the customers and providers.

We present the operation and algorithms governing the operation
of the marketmaker agent, contrasting it with the matchmaker and
broker agents. Through a series of simulations in the task oriented
domain we compare the operation of the three agents types. We find
that the use of marketmaker agent leads to a better performance in the
allocation of large tasks and a significant reduction of the messaging
overhead.

Keywords— grid computing, autonomous agents, market-based
grid

I. INTRODUCTION

THe purpose of the computational grid is to make the
resources of the providers available to the consumers.

This leads to a complex control and coordination problem,
which is frequently solved with a market model based on
real or virtual currency. To support a market based grid, we
need a collection of middleware services: directories, security
and authentication, accounting and banking and so on. By
dynamic pricing of the resources, negotiation and auction
processes we hope to achieve an efficient and fair distribution
of resources. For a small grid it is possible for a client to
perform negotiations with all the possible providers in order to
select the one which best satisfies its requirements. However,
as the size of the grid grows, it becomes difficult for the
customers to negotiate directly with all the providers. To
make these negotiations more efficient, a new set of web
components need to be introduced, whose goal is to mediate
the interaction between the customers and providers. As these

Manuscript received November 15, 2005
Xin Bai is with the University of Central Florida (email: xbai@cs.ucf.edu).
Kresimir Sivoncik is with the University of Central Florida

(email:sivi@hector.cs.ucf.edu)
Damla Turgut is with the University of Central Florida

(email:turgut@cs.ucf.edu)
Ladislau Bölöni is with the University of Central Florida

(email:lboloni@cs.ucf.edu)

components have considerable autonomy and frequently need
to take initiative, they are best viewed as software agents. In
the light of their role as mediators, we will call them middle-
agents [14].

The most frequently employed middle-agents in market ori-
ented grid architectures are the matchmaker and broker agents.
The matchmaking agent finds possible candidate providers
who can satisfy the requirements of the consumers, after
which the customer directly negotiates with the candidates.
The broker agents are mediating the negotiation with the
providers in real time.

In this paper, we propose a new type of middle agent, the
marketmaker, which decouples the allocation of the resources
from the execution of the tasks, by buying larger chunks of
resources from the providers and reselling them to the con-
sumer agents. Our simulation studies show that the presence
of the marketmakers contributes to a more efficient resource
distribution, and provides efficient levers for the control of the
grid environment.

The remainder of this paper is organized as follows. In
Section II we introduce the marketmaker agents, discuss the
design space of its specific investment and resale strategies,
and present the resource allocation and communication models
considered in this paper. The setup of experimental scenarios
and the results of the experiments are presented in Section III.
In Section IV we review previous work done on market based
grid architectures, emphasizing the different implementations
of middle agents such as brokers and matchmakers. We
conclude in Section V.

II. GRID COORDINATION WITH MARKETMAKER AGENTS

A. The operation and strategies of marketmaker agents

The role of the middle agents in the market grid is to medi-
ate between the clients and the providers. In this section, we
introduce the marketmaker agent and contrast its functionality
with the matchmaker and broker agents.

The matchmaker agent maintains a knowledgebase of the re-
sources. It receives a requirements description from the clients
and returns to the client one or more matches. It is not involved
in the actual resource allocation process. It is paid according
to a scheme which depends on the number and/or quality
of matches. The main role of the matchmaker is to exploit
economies of scale in the querying of available resources,
by acquiring information from the clients and reselling it to
interested parties.

A broker agent receives a requirement description from the
client and through a three way negotiation process participates
in the allocation of the resources. The broker might use the
services of other agents such as matchmakers or marketmak-
ers. In the interaction with the client, the broker provides a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2960

series of offers which include resource allocation and price,
which the user might accept or reject. The broker agent is
paid by the client and/or the provider, according to a pricing
rule which depends on the success of the transaction, the size
of the transaction, and the level of satisfaction of the user or
the provider. In general, the interest of the broker agents is to
maximize the number of successful resource allocations.

A marketmaker agent performs similar functionality with
the broker from the point of view of the client. From the
point of providers, however, the marketmaker can perform
advance allocation of the resources either through buying

or optioning of the resources. The marketmaker agent buys
and sells resources, thus acts as a “superprovider” which
aggregates resource reservations. The high-level operation of
the marketmaker is described in the following algorithm.

Algorithm 1 Marketmaker meta-algorithm
When available money > trigger

(1) select providers {Pi1, Pi2 . . . Pin}
(2) negotiate usage chunks {ci1, ci2 . . . cin}
(3) purchase most advantageous chunk ci,best

When request from client C for task T with resource require-
ments R arrives

verify if request is satisfiable
(4) generate a set of choices
(5) negotiate price based on these choices
(6) allocate task T according to allocation policy

The steps numbered (1-6) represent specific strategies which
needs to be decided at the implementation of the marketmaker
agent. The steps (1-3) collectively represent the investment

strategy of the agent, while steps (4-6) are the reselling

strategy. The choices for these strategies provide a very large
design space for the marketmaker agent.

(1) The selection of the negotiation set, the set of providers
with which the marketmaker negotiates simultaneously. In
general, the larger the negotiation set, the more advantageous
deals can be achieved, but a large negotiation set leads to large
negotiation overhead.

(2) The negotiation of the reservation chunks and their
prices is the most complex part of the investment strategy.
The chunks can be suggested both by the marketmaker and
the provider. The marketmaker agent needs to have an in-

vestment target, that is the amount and temporal distribution
of resources it is trying to acquire. The agent might deploy
various external information, historical data and future load
predictions to determine its investment target.

(3) The purchase decision is made by evaluating the offers
according to their prices and their perceived value depending
on the investment target and existing reservations.

(4) This step determines the ways in which the marketmaker
can satisfy the request from its existing reservations. These
choices are not necessarily communicated to the client, but
they are used as the basis of negotiation.

(5) The negotiation of the price between the marketmaker
of the provider can follow one of the well-known negotiation
algorithms, such as the monotonic concession protocol with

the Zeuthen [22] strategy. The parallel negotiations with mul-
tiple clients can modify the perceived value of the resource
for the marketmaker.

(6) Once the marketmaker agent accepted to satisfy the
request it needs to find the most efficient way to satisfy the
request, such that it maximizes its ability to satisfy future
requests. At minimum, this is equivalent with a bin packing
problem, but it can also include a probabilistic evaluation of
the success of the current negotiations as well as predictions
of future requests.

Let us consider how the selfish interest of the marketmaker
can benefit the grid as a whole. The profit of a marketmaker is
the difference between the selling and the buying prices. For
the marketmaker agent, for instance, once it bought a certain
amount of future resources, its best interest is the efficient
allocation of those resources. On the other hand, if certain
resources are not bought up by the marketmakers, it is a signal
that the grid as a whole is overweighted in terms of resources.
This can provide a useful input for the managers of the grid.

The fundamental advantage of a marketmaker over match-
maker and broker agents is that its selfish interests are more
aligned with the interests of the grid community as a whole
than the other agents participating in the grid economy (see
Table I).

Although the marketmaker agent can range from relatively
simple to very complex, as long as it is acting in its selfish
interests, its influence on the behavior of the grid is the
same, with differences only in the degree of success. For the
purpose of this paper, we have adapted a relatively simple,
but complete implementation. The marketmaker agents are
pursuing an investment strategy with the objective of achieving
an investment target of having a uniform amount of resources
for a fixed interval in the future. All the negotiation processes
were single-step, without counteroffers. We have implemented
a best-fit algorithm for the choices of resources to satisfy the
requests.

In the following, we provide a more detailed discussion of
the resource allocation model and communication mechanisms
deployed in our system.

B. Resource allocation model

The components of the resource allocation model are the
units of resource allocation, the allocation states and the ac-
tions through which the allocation states can be changed. The
provider P has a set of available resources R = {r1, r2 . . . rn}
where ri is the available quantity of the resource class i.
The main resource allocation unit in our model is the usage

chunk, which is a triplet of C =< tstart, tend, Rc > where
Rc = {r1c, r2c, . . . rnc} is a set of resource allocations. Usage
chunks need to conform to a series of restrictions ∀rci ∈ Ai

where Ai = {ai1, ai2, . . . aip} is the set of allocatable units of
resource i. This covers the fact that hardware constraints limit
the allocation of resources: for instance, on most Unix systems,
memory can be allocated in chunks of 4KB. In addition to hard
constraints, policy requirements may set the minimum limits
on the size of allocatable resource chunks. At any given time,
the sum of allocated resources can not exceed the available
ones.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2961

TABLE I
THE INTERESTS OF THE AGENTS PARTICIPATING IN THE RESOURCE ALLOCATION

Type Complexity Way to profit Interest
Client Low - Acquire resources at an acceptible

price
Provider Low Being paid for resources Maximize the income from allo-

cated resources
Matchmaker Low Being paid for the matches Increase the number of successful

matches
Broker Medium Being paid for successful transac-

tions
Increase the number of successful
resource allocations

Marketmaker High Reselling resources for higher
prices

Perform a better allocation of the
resources.

The usage chunks can be in one of the five states:

Free the resources are not used and available
for allocation

Reserved the resources are reserved for future allo-
cation for the time of the negotiation. This
state is strictly tied to a conversation and
the user. The role of this state is to prevent
multiple allocations of the same resources.

Committed the resource is allocated to the user for
future use, but they are not in current use.

In_Use the resources are currently in use by a task

Expired the usage chunk occurs in the past (tend ≤
t). These allocation units might be kept
around for accounting purposes, but they
will be eventually garbage collected.

The provider maintains a database of available usage
chunks. New usage chunks are created during the resource
allocation process, on behalf of an external agent. The state
machine describing the evolution of the states is described in
Figure 1.

C. Communication mechanisms

Now, we turn towards the communication mechanisms
which describe the operation of the virtual economy. In
our descriptions, we will use the concept of a subprotocol

[3] originally introduced in the Bond agent system [4]. A
subprotocol is a set of messages exchanged between a set of
participants, acting in well-defined roles to achieve a goal. The
subprotocol is closed (messages in a subprotocol are answered
with messages in the same subprotocol) and undividable (if
a participants implements a role of the subprotocol, it needs
to implement the role completely). A set of messages in a
given subprotocol, exchanged between agents acting in the
same roles is called a conversation. The same agent can
participate in multiple conversations simultaneously, and it can

Free
Reserved

Commited

In-Use

Negotiation
success

Expiration

Negotiation
timeout

Commitment
expiration

Execution
start

Execution
termination

Negotiation
start

Expired

Negotiation
failure

Expiration

Fig. 1. The state machine describing the transitions between the various
states of a usage chunk.

have different roles in different conversations. For instance, a
marketmaker can act as a buyer in some conversations and a
seller in others.

1) Resource allocation subprotocol: The resource allo-
cation subprotocol takes place between the two agents, in
the roles of Seller and Buyer. The buyer has a set of
resource requirements which he wants to satisfy. The resource
requirements are specified as a collection of ranges which
contain acceptable values. If the seller can satisfy the resource
requirements, it will send one or more offers to the buyer. The
offer contains the exact specification of the resource and its
price. The buyer can accept the offer, cancel the negotiation
process or send a counteroffer. After an accepted offer, a sale
happens, the currency is transferred from the buyer to the seller
and the customer receives a reservation id which it can use to
access the resources.

2) Task execution subprotocol: The task execution sub-
protocol takes place between two agents in the roles of
Client and Executor. The client submits a task for
execution together with a reservation id for a set of resources.
The reservation id was obtained as a result of the resource
reservation subprotocol, although not necessarily between the
same two agents. The Executor agent either executes the
application itself or delegates the execution to further agents.
The successful start of the execution is confirmed to the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2962

Subprotocol id: Allocation
Roles Buyer (B)

Seller (S)
Messages PriceQuery (B → S)

PriceOffer (B ← S)
NoOffer (B ← S)
SaleAccept (B → S)
CounterOffer (B → S)
TerminateNegotiation (B →
S)
SaleConfirm (B ← S)

Contracts SaleAccept MUST be followed by
SaleConfirm
offers MUST be monotonic

TABLE II
A SUMMARY OF THE RESOURCE ALLOCATION SUBPROTOCOL

Buyer Seller

PriceRequest

PriceOffer

CounterOffer

...
SaleAccept

PriceOffer

SaleConfirm

Resource
state

Free

Reserved

Commited

Fig. 2. A typical message sequence of the resource allocation subprotocol

Client. The only acceptable reason for not starting the
execution is if the resource id does not identify a valid
reservation of resources.

During the execution process, Client can periodically ask
for the status of execution. The successful or unsuccessful
termination of the execution is reported by messages taken on
the Executor’s initiative.

III. EXPERIMENTAL RESULTS

A. Experimental framework and scenarios

In the following, we describe a series of experiments
comparing the behavior of a market grid environment in three
different scenarios involving matchmaker, broker, and market-
maker agents. We have simulated the grid market environment
using the agent module of the YAES simulation framework [5].
Our goal was to simulate the functioning of the agent grid
in as much detail as possible, including the cost associated
with the agent communication. The agent communication
was implemented using a FIPA ACL conforming message
format, while the message delivery was performed with a
local directory with a simulated latency. We had chosen not
to implement the details regarding security, authentication and

Subprotocol id: Execution
Roles Client (C)

Executor (E)
Messages ExecutionRequest (C → E)

ExecutionAccept (C ← E)
ExecutionReject (C ← E)
ExecutionFinished (C ← E)
ExecutionQuery (C → E)
ExecutionStatus (C ← E)

Contracts Execution MUST be started immedi-
ately if resource id is valid
Execution finished MUST be reported
immediately

TABLE III
A SUMMARY OF THE TASK EXECUTION SUBPROTOCOL

Client Executor

ExecutionRequest

ExecutionAccept

ExecutionFinished

Resource
state

In-Use

Free

Commited

Commited
Resource

commitment
expiration time

ExecutionQuery

ExecutionStatus

Fig. 3. A typical message sequence in the task execution subprotocol

accounting. While these are important components of a grid
environment, they add a constant overhead to communication
costs, and thus does not affect our results significantly.

The experiments were grouped in three main scenarios
discussed below.

1) Scenario CMP: Customers + Matchmaker + Providers:

In the first series of experiments we had a configuration of
customers, providers, and a matchmaker. A variable number of
clients are having an infinite supply of tasks of various length
and resource requirements, which they execute sequentially.
First, the clients contact the matchmaker agent using the
Query subprotocol for a collection of providers which are
a good match for the task. The clients then start negotiations
with all the returned matches using the Allocation sub-
protocol. From all the returned offers, the client selects the
one which provides the highest satisfaction (considering its
utility and price), and pays for the allocation of resources.
The other negotiations are terminated. After allocation, the
client immediately sends the task for execution using the
Execution subprotocol. If no offers were returned, the client
immediately restarts the process of searching for providers
from the matchmaker. After the termination of a task, the client

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2963

immediately moves to the next task.
We should note that in the CMP scenario, the clients

have extensive responsibilities, including directly contacting
and negotiating with the providers. The general setup of the
scenario is described in figure 4.

Client
1

Match-
maker

Provider
1

Provider
2

Provider
10

B

C

S

S
C

E

(1:1) SP:Query

(2:2) SP:Allocation

(3:3) SP:Execution

Client
n

...

...

B
S(2:2) SP:Allocation

Fig. 4. The experimental setup for the Customers + Matchmaker + Providers
scenario. The lines represent conversations performed according to a given
subprotocol, with the arrow indicating the direction of the first message. The
circles at the end of the lines mark the role played by the agent in the given
conversation. The (i:j) numbers on the lines show that the conversation was
the i-th conversation started and the j-th conversation finished.

2) Scenario CBMP: Customers + Broker + Matchmaker

+ Providers: In the second series of experiments, we had a
configuration of customers, providers, a broker, and a match-
maker. In this scenario, the clients contact a broker agent,
using the Allocation subprotocol. The broker contacts the
matchmaker agent for matches, and starts a set of negotiations
with the returned providers using the same Allocation
subprotocol. The resulting offers are first pre-processed by
the broker, by discarding the dominated offers (with the same
or lower resource offering and the same or higher price)
and randomly selecting one from the equivalent offers. The
resulting set of offers are forwarded to the client, while
the negotiations with the discarded providers are terminated
without further contacting the client. The client selects the
best offer according to its satisfaction function. The resources
are allocated at the request of the broker, the provider and
the broker are paid, and the reservation id is forwarded to the
client. At this point, the role of the broker ends. The clients
are directly contacting the providers using the Execution
subprotocol for the execution of the tasks. The general setup
of the experiment is described in Figure 5.

3) Scenario CKMP: Customers + MarKetmaker + Match-

maker + Providers: In the third series of experiments we
had a configuration of customers, providers, a marketmaker
and a matchmaker. In this scenario, the clients are contact-
ing the marketmaker agent for the execution of tasks. The
marketmaker has a separate ongoing thread of execution, in
which it autonomously searches for investment opportunities,
negotiating and allocating resources on the providers. These
negotiations are conducted using the Allocation subpro-
tocol and their results are stored in the allocated resource
database in the marketmaker. The marketmaker prefers to
acquire large resource chunks (in terms of time and available
resource). One such allocation normally corresponds to several

Client
1 Broker

Match-
maker

Provider
1

Provider
2

Provider
10

B
B

S
(3:3) SP:Allocation

S

S

(3:3) SP: Allocation

(3:3) SP:Allocation

C

S

C

S

(2
:2

)
SP:Q

ue
ry

B

B

E

 (5:5) SP:Execution

(1:4)
SP:Allocation

Client
n

...

...

Fig. 5. The experimental setup for the Customers + Broker + Matchmaker
Providers scenario. The lines represent conversations performed according to a
given subprotocol, with the arrow indicating the direction of the first message.
The circles at the end of the lines mark the role played by the agent in the
given conversation. The (i:j) numbers on the lines show that the conversation
was the i-th conversation started and the j-th conversation finished.

tasks being executed.
When the client consults the marketmaker using the

Allocation subprotocol, the marketmaker checks if it can
satisfy the request, and generates an offer for the resource
allocation. While the broker only passes a filtered set of offers
to the client, the marketmaker’s offer is decoupled from the
price at which the marketmaker acquired the resource. More-
over, the marketmaker at any given time has several requests
outstanding and it applies an allocation policy for fitting them
with the allocated resource database. In our experiments, we
set this policy such that the marketmaker attempts to fit the
larger tasks first and uses a best-fit choice for each individual
task.

Once the offer is accepted by the client, it receives a special
reservation id, which is locally generated by the marketmaker.
Then the client sends the task for execution to the marketmaker
using the Execution subprotocol and this reservation id.
The marketmaker forwards the tasks to a provider using a
subset of one of its own previous allocations. We note that in
this scenario the client is never directly communicating with
the providers. The general setup of the experiment is described
in Figure 6.

Client
1

Market-
maker

Match-
maker

Provider
1

Provider
2

Provider
10

B
B S(2:2) SP:Allocation

S

S

(2:2) SP: Allocation

(2:2) SP:Allocation

C

S

C

S

C E

(1
:1

)
SP:Q

ue
ry

B

B

E

(5:4) SP:Execution

(3:3)
SP:Allocation

(4:5)
SP:Execution

Client
n

...

...

Fig. 6. The experimental setup for the Customers + Marketmaker + Match-
maker + Providers scenario. The lines represent conversations performed
according to a given subprotocol, with the arrow indicating the direction of
the first message. The circles at the end of the lines mark the role played by
the agent in the given conversation. The (i:j) numbers on the lines show that
the conversation was the i-th conversation started and the j-th conversation
finished.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2964

B. Simulation parameters

We run an extensive series of simulations with the above
scenarios. The number of providers were fixed at 10, while
the number of customers was varied from 2 to 60. We used
two types of tasks: small tasks with an average resource
requirement of 80 resource equivalent units (REU’s) and large
tasks with an average resource requirement of 180 REUs. The
number of large tasks was 30% of the total requests. The
resource requirements of the tasks were normally distributed
around their mean. The task execution time was also normally
distributed with a mean of 100 seconds. There were two types
of providers, 7 providers with the total capacity of 100 and 3
providers with 200 REUs each. A 1 second messaging latency
was assumed for all communications.

All agents were provided with a sufficient amount of money
for the execution of their tasks, thus the lack of money was
not a factor in limiting the performance of the system. This
choice of course did not affect the strategies of the agents,
which were set such that to maximize the profit (for providers
and marketmakers) or maximize satisfaction (for the clients).
For each scenario (CMP, CBMP and CKMP) we run 30
simulation rounds spanning a simulation timeframe of 5000
seconds each. For every measurement, we computed the mean
values, variance, and 95% confidence intervals.

C. Results

1) Tasks executed: We have separately counted the total
number of tasks and the total number of large tasks executed
during the simulation. The total number of tasks (Figure
7a) shows a similar evolution for the three scenarios. For a
partially loaded system, the results are roughly identical, with
the results of the broker approach being somewhat lower,
mainly due to the overhead associated with the mediated
strategy. At high loads however, the marketmaker approach
delivers an approximately 20% lower number of total tasks.

The reason for this behavior becomes clear if we check
the graph for the large tasks in Figure 7b. By employing a
best-fit approach over a group of requests, the marketmaker
approach manages to maintain the number of executed large
tasks at approximately the proportion of these tasks in the flow
of requests. For the CMP and CBMP approaches, where each
request is handled individually, such a fitting process is not
possible, and the number of executed large tasks is declining
with increasing load. The reason for this is that the larger
number of small tasks are starving the larger tasks by partially
occupying resources. This is a clearly undesireable behavior,
which cannot be solved in the CMP and CBMP scenarios,
given the interests of the participants.

In the CMP scenario, the interest of the matchmaker is to
return as many scenarios as possible, while the interest of
the clients is to have their tasks executed. One can envision
matchmaking strategies which would not return matches which
are “too large” for the request, such that these would be
reserved for possible large tasks. But this behavior is not in the
interest of the matchmaker or the provider, and thus we cannot
expect it to happen in a real market environment. Similarly,
for the CBMP case, the broker is interested in optimizing the

current transaction for its client, because its economic well-
being depends on the success of the transaction.

We need to note that the problem is not with the relatively
simple algorithms employed by the middle agents in the
simulation. More sophisticated algorithms would simply make
the agents more successful in pursuing their interests. Thus,
if the problem can be traced to the agents’ interest not
being aligned with the interest of the grid as a whole, more
sophisticated algorithms would exacerbate the problem.

In the case of the marketmaker agent, the interest of the
agent is to efficiently allocate the resources it previously
purchased. The “best-fit/largest-first” algorithm we employed
is a relatively crude solution, but it is in-line with the interests
of the grid as a whole.

2) Resource utilization: Figure 8 shows the average used
resources on the providers for the three scenarios. At high
loads, this utilization is limited to about 80%. This value is
limited by the mix of tasks and the problem of fitting them to
the resources of the providers. The CKMP model provides the
best performance because it is the only one providing a fitting
algorithm. The CBMP scenario has the lowest performance
due to the broker’s messaging overhead.

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Clients

F
ra

ct
io

n
of

 r
es

ou
rc

es
 in

 u
se

CMP
CBP
CKP

Fig. 8. The resources currently in use by tasks in function of the number of
clients. The bars indicate the 95% confidence intervals.

3) Number of messages passed and scalability: The total
number of messages passed on the simulation is shown in
Figure 9. Essentially, for heavily loaded networks, the mar-
ketmaker scenario has an order of magnitude smaller number
of messages than the broker and the matchmaker model. This
is the consequence of two facts: (1) the marketmaker buys
resources in larger chunks, thus eliminating a large number
of messages and (2) the offer generation for a marketmaker
happens internally, without the need to contact the providers.

We note that the increase in the number of messages for the
CMP and CBMP models is due to retries after unsuccessful
allocations. Of course, it is easy to limit the number of
messages per time unit, for instance by imposing a mandatory
wait behavior. This behavior however is not in the interest of
the client, matchmaker, or broker and it needs to be imposed
externally. The best interest of these agents is an immediate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2965

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

Clients

E
xe

cu
te

d
ta

sk
s

CMP
CBP
CKP

(a)

0 10 20 30 40 50 60
20

40

60

80

100

120

140

160

180

200

Clients

E
xe

cu
te

d
ta

sk
s

CMP
CBP
CKP

(b)

Fig. 7. (a) The total number of tasks executed and (b) the number of large tasks executed. The bars indicate the 95% confidence intervals.

retry. For the marketmaker however, there is no incentive in a
retry for any of the parties.

As opposed to the superficially resembling problem of
Carrier Sense Multiple Access Collision Detect (CSMA-CD)
systems, frequent retries do not lead to collisions and do not
diminish the throughput of the system. Therefore there is no
incentive to delay the retry, neither at the individual, nor at
the group level. Such incentives need to be built into the
“rules of encounter” of the market, for instance by making
the clients pay even for unsuccessful negotiations. The study
of such systems, however, are outside the scope of this paper.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18
x 10

4

Clients

N
o.

 o
f m

es
sa

ge
s

CMP
CBP
CKP

Fig. 9. The total number of messages passed during the simulation, in
function of the number of clients. The bars indicate the 95% confidence
intervals.

IV. PREVIOUS WORK

Economic models are frequently considered paradigm in
the resource management of distributed systems. The types of
resources considered by economic models cover: CPU cycles,
main memory, storage, network activity, signals received,

software, and libraries accessed [7]. The economic models
appear in a number of variants.

In the commodity market model, resource providers ad-
vertise their resource prices and charge users based on the
amount of resource used. The pricing policy could be based
on a flat fee, the resource usage duration, the subscription,
and the demand-and-supply [11]. In the posted price variant,
the model allows providers to advertise special offers to
attract users. An approach based on bargaining, that is direct
negotiation between costumers and providers is used when
there is no clear demand-and-supply relationship and globally
established price. A special case of the bargaining model
is the tendering/contract-net approach. The auction models
allow customers to bid for resources according to one of
the well known auction models: 1) English auction; 2) first-
price sealed-bid auction; 3) Vickrey auction (second-price
sealed-bid); and 4) Dutch auction. Examples of auction based
systems include Spawn [19] and Popcorn [12]. In Bid-based

Proportional Resource Sharing the percentage of resources
allocated to the user is proportional to his bid in comparison
to other users’ bids. In the Community/Coalition/Bartering

model, a community of resource owners share each other’s
resources. Those resource owners contribute to the community
get credits by sharing their resources. The credit of a resource
owner decides how much resources he can get from others.
Case systems include Condor [23], SETI@home [24], and
Mojo Nation [21].

The nature of economic models which imply self-interested
participants with some level of autonomy in the decisions,
makes an agent based approach a natural fit. In general,
approaches based on direct negotiation between customers and
providers are suitable only for small numbers of agents. As
the size of the agent society grows, it becomes necessary
to introduce middle agents, which facilitate the interaction
between large sets of providers and customers. The most
important type of middle agents discussed in the literature of
economic models in distributed systems are the matchmaker

and broker agents [9], [20].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2966

The problem of matchmaking has been extensively studied
in the field of multi-agent systems. The notable results in
this area are ACLs (Agent Communication Languages) and
matchmaking algorithms based on these languages, such as
ABSI [16], COIN [10], InfoSleuth [2], LARKS (Language
for Advertisement and Request for Knowledge Sharing) [18],
ITL (Information Terminological Language) [17]. Research
for service discovery in the Internet involves ontology-based
matchmaking. In [13], a semantic matchmaking framework
based on DAML-S was proposed for semantic matchmaking
of web services capabilities. The matchmaking framework
of Condor [15] system uses a semi-structured data model
called classified advertisements (“classads”) to describe the
resources and requests for matchmaking. An ontology-based
grid resource matchmaking framework is introduced in [1].

In contrast, relatively little work was done on the broker
agents. A resource broker in Nimrod/G uses a scheduling
mechanism driven by a user specified application deadline
and a resource access budget; an infrastructure called GRACE
(GRid Architecture for Computational Economy) was pro-
posed to provide dynamic resource trading services [6]. Three
adaptive scheduling algorithms for Nimrod/G application level
resource broker are discussed in [8]: a time minimization
algorithm that attempts to complete the execution as early
as possible with the budget constraint, a cost minimization
algorithm that attempts to complete the execution as econom-
ically as possible before the deadline, and a none minimization
algorithm that attempts to complete the execution before
the deadline with the budget constraint without minimizing
execution time and money paid.

V. CONCLUSIONS

In this paper, we considered a market based grid architecture
and introduced a new type of middle agent, the market-
maker. We presented its architecture, goals and strategies and
contrasted it with two well known middle agent types, the
matchmaker and broker agents. In a series of simulations,
we find that the use of marketmaker agent leads to a better
performance in the allocation of large tasks and a significant
reduction of the messaging overhead. The main conclusion
of our research is that while the quality of the deployed
algorithms of the agents can make important quantitative
differences, the general behavior of the system is determined
by the selfish interest of the coordinating agents. The market-
maker agent profits by improving the efficiency of resource
allocation, and thus can represent an important component in
future grid systems.

REFERENCES

[1] X. Bai, H. Yu, Y. Ji, and D. C. Marinescu. Resource matching and a
matchmaking service for an intelligent grid. International Journal of
Computational Intelligence, 1(3):197–205, 2004.

[2] R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid,
M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk.
InfoSleuth: Agent-based semantic integration of information in open
and dynamic environments. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, volume 26,2, pages
195–206, New York, 13–15 1997. ACM Press.

[3] L. Bölöni, R. Hao, K. Jun, and D. C. Marinescu. An object-oriented
approach for semantic understanding of messages in a distributed object
system. In Proceedings of the International Conference on Software En-
gineering Applied to Networking and Parallel/ Distributed Computing,
Rheims, France, May 2000.

[4] L. Bölöni and D. C. Marinescu. An object-oriented framework for
building collaborative network agents. In H. Teodorescu, D. Mlynek,
A. Kandel, and H.-J. Zimmerman, editors, Intelligent Systems and
Interfaces, International Series in Intelligent Technologies, chapter 3,
pages 31–64. Kluwer Publising House, 2000.

[5] L. Bölöni and D. Turgut. YAES - a modular simulator for mobile net-
works. In Proceedings of the 8-th ACM/IEEE International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems
MSWIM 2005, pages 169–173, October 2005.

[6] R. Buyya, D. Abramson, and J. Giddy. Economy driven resource
management architecture for computational power grids. In Proceedings
of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA2000), 2000.

[7] R. Buyya, D. Abramson, and J. Giddy. A case for economy grid
architecture for service-oriented grid computing. In Proceedings of
the 10th IEEE International Heterogeneous Computing Workshop (HCW
2001), page 83, April 2001.

[8] R. Buyya, J. Giddy, and D. Abramson. An evaluation of economy-
based resource trading and scheduling on computational power grids
for parameter sweep applications. In Proceedings of the 2 nd Interna-
tional Workshop on Active Middleware Services (AMS 2000). Kluwer
Academic Press, August 2000.

[9] M. Klusch and K. P. Sycara. Brokering and matchmaking for coordi-
nation of agent societies: A survey. In Coordination of Internet Agents:
Models, Technologies, and Applications, pages 197–224. Springer, 2001.

[10] D. Kuokka and L. Harada. Matchmaking for information agents. In
IJCAI (1), pages 672–678, 1995.

[11] L. W. McKnight and J. Boroumand. Pricing internet services: Ap-
proaches and challenges. IEEE Computer, 33(2):128–129, 2000.

[12] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed
computation over the internet - the POPCORN project. In ICDCS ’98:
Proceedings of the The 18th International Conference on Distributed
Computing Systems, page 592, Washington, DC, USA, 1998. IEEE
Computer Society.

[13] M. Paolucci, N. Srinivasan, K. P. Sycara, and T. Nishimura. Towards
a semantic choreography of web services: From WSDL to DAML-S.
In Proceedings of the First International Conference on Web Services
(ICWS’03), pages 22–26, 2003.

[14] T. Payne, R. Singh, and K. Sycara. Facilitating message exchange
through middle agents. In The First International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2002.

[15] R. Raman, M. Livny, and M. H. Solomon. Matchmaking: Distributed
resource management for high throughput computing. In Proceedings
of the Seventh IEEE International Symposium on High Performance
Distributed Computing, pages 140–146, 1998.

[16] N. Singh. A common Lisp API and facilitator for ABSI: version
2.0.3. Technical Report Logic-93-4, Logic Group, Computer Science
Department, Stanford University, 1993.

[17] K. Sycara, J. Lu, and M. Klusch. Interoperability among heterogeneous
software agents on the internet. Technical Report CMU-RI-TR-98-22,
Carnegie Mellon University, PA (USA), 1998.

[18] K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic
matchmaking among heterogeneous software agents in cyberspace.
Autonomous Agents and Multi-Agent Systems, 5(2):173–203, 2002.

[19] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
W. S. Stornetta. Spawn: A distributed computational economy. Software
Engineering, 18(2):103–117, 1992.

[20] H. C. Wong and K. P. Sycara. A taxonomy of middle-agents for the
internet. In ICMAS, pages 465–466, 2000.

[21] Mojo Nation. URL http://www.mojonation.net/.
[22] F. Zeuthen. Problems of Monopoly and Economic Warfare. Routledge

and Sons, 1930.
[23] CONDOR. URL http://www.cs.wisc.edu/condor/.
[24] SETI@home. URL http://setiathome.ssl.berkeley.edu/.

