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Abstract—In-vitro mouse co-culture of E14 embryonic stem cells
(ESCs) and OP9 stromal cells can recapitulate the earliest stages of
haematopoietic development, not accessible in human embryos,
supporting both haemogenic precursors and their primitive
haematopoietic progeny. 1α, 25-Dihydroxy-vitamin D3 (VD3) has
been demonstrated to be a powerful differentiation inducer for a wide
variety of neoplastic cells, and could enhance early differentiation of
ESCs into blood cells in E14/OP9 co-culture. This study aims to
ascertain whether VD3 is key in promoting differentiation and
suppressing proliferation, by separately investigating the effects of
VD3 on the proliferation phase of the E14 cell line and on stromal
OP9 cells.The results showed that VD3 inhibited the proliferation of
the cells in a dose-dependent manner, quantitatively by decreased cell
number, and qualitatively by alkaline-phosphatase staining that
revealed significant differences between VD3-treated and untreated
cells, characterised by decreased enzyme expression (colourless
cells). Propidium-iodide cell-cycle analyses showed no significant
percentage change in VD3-treated E14 and OP9 cells within their G
and S-phases, compared to the untreated controls, despite the
increased percentage of G-phase compared to the S-phase in a dose-
dependent manner. These results with E14 and OP9 cells indicate that
adequate VD3 concentration enhances cellular differentiation and
inhibits proliferation. The results also suggest that if E14 and OP9
cells were co-cultured andVD3-treated, there would be further-
enhanced differentiation of ESCs into blood cells.

Keywords—Differentiation, embryonic stem cells, OP9 stromal
cells, 1α, 25-dihydroxy-vitamin D3

I. INTRODUCTION

MBRYONIC STEM CELLS (ESCs), derived from the
inner cell mass of the blastocyst stage of early mammalian

embryos, have the potential to undergo unlimited self-renewal
by being placed in specific culture conditions, either in vitro or
in vivo [1]. Interestingly, once the cells are released from
these conditions and placed in a differentiation-promoting
environment (in vitro or in vivo), the cells differentiate into
derivatives of all three primary germs: ectoderm, mesoderm
and endoderm, and then into many different cell types in the
body [2]. In the presence of a combination of growth factors,
in-vitro mouse co-culture of E14 ESCs and OP9 stromal cells
can recapitulate early haematopoietic development, supporting
both haemogenic precursors and their primitive
haematopoietic progeny [3]. The active form of VD3 is widely
used to treat metabolic bone diseases such as
rickets/osteomalacia, renal osteodystrophy and osteoporosis
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[4]. The differentiation of ESCs into osteoblasts is enhanced to
60% when exposed to VD3 [5]. As well as maintaining
calcium homeostasis, and exerting a wider range of biological
activities, including the regulation of cellular differentiation
and proliferation [6], VD3 demonstrated to be a powerful
differentiation inducer for a wide variety of neoplastic cells,
including carcinoma cells of various origins, and acute
myeloid leukaemia [7], and been shown to have pro-
differentiation and anti-proliferative effects on keratinocytes
[8] and prostate cancer cells [9]. The vitamin D receptor
(VDR) is a transcription factor that mediates the actions of its
ligand, VD3, which can promote monocyte/macrophage
differentiation, and inhibit proliferation and cytokine
production by activated T lymphocytes [10]. In vivo
granulocyte-monocyte committed stem cells are stimulated
into clonal proliferation by VD3 [11]. In different stages of
differentiation in various types of cells, the effects of VD3
were examined using in-vitro techniques. Hiroshi et al., 2012
investigated the effect VD3 in three phases of C2C12
myoblasts: proliferating, differentiating and differentiated.
They concluded that VD3 supplementation inhibited C2C12-
myoblast proliferation, significantly decreased mRNA
expression of neonatal myosin heavy chain (MHC), and
increased gene expression of MHC isoforms in C2C12-
myoblast differentiation for 8 days [12]. Systemic or locally
produced VD3 may be important in modulating cell
development processes such as haematopoiesis [13].
Physiological levels of VD3 were found to promote
differentiation of CD34 haematopoietic progenitors,
characterised by the induction of all the monomacrophagic
immunophenotypic and morphological markers in a liquid-
culture model [11]. Patients receiving treatment for acute
myeloid leukaemia (AML) or acute lymphoblastic leukaemia
(ALL) may have had limited exposure to sunlight and often
experience gastrointestinal side-effects that may decrease their
ability to maintain an adequate VD3 level [14].

II.MATERIALS AND METHODS

A. Inducing Proliferation of E14 Cells

In the present study, mouse ESCs (E14 cell line passages 1-
36) were obtained from Dr. Qiuyu Wang. Cells were induced
to proliferate and expanded by thawing  cell-stock vials at
room temperature and then added to gelatinised T 75 flasks, at
a density of 2x10^6 per flask. They were in an
undifferentiated state in a fully humidified atmosphere of 5%
CO2 in air at 37ºC in growth medium (GM) composed of
450ml Dulbecco’s Modified Eagle’s Medium (DMEM) with
10% Knockout Serum replacement, 5ml non-essential amino
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acid solution, 5ml L-glutamine (200mM final), 5ml penicillin-
streptomycin solution (10.000 units/ml penicillin and
10.000µg/ml streptomycin), 50µl leukaemia inhibitory factor
(LIF), and 500 µl 2-Mercaptoethanol (50mM final) until 90%
confluence was attained. The medium was changed every 2-3
days.

B. Inducing Proliferation of OP9 Cells

OP9 cells (ATTC, LGC standards, UK) were induced to
proliferate and expanded by thawed cell stock vials at room
temperature and added to a gelatinised T75 flask, at a density
of 2x10^6 per flask, in an undifferentiated state in a fully
humidified atmosphere of 5% CO2 in air at 37ºC in growth
medium (GM), composed of 385ml alpha modification
Minimum Essential Medium (No nucleosides) medium
(αMEM) plus 2.2 g/L sodium bicarbonate at PH 7.2, Foetal
Bovine Serum (HyClone), Heat-inactivated , 5ml non-
essential amino acid solution (NEAA), 5ml L-glutamine
(200mM final), 5ml penicillin-streptomycin solution(10.000
units/ml penicillin and 10.000µg/ml streptomycin) , and 500
µl 2-Mercaptoethanol (50mM). The medium was changed
every 2-3 days. OP9 cultures are never grown beyond 90%
confluency as this would result in their differentiation into
adipocytes.

C.Cell Counting

If you modify to assess the effects exerted by VD3 on cell
proliferation of pluripotent OP9 stromal cells and pluripotent
ESCs, after formation of confluent culture of T75 of OP9 cells
flasks and T75 of ESC flasks, 6-well plates were pre-coated
with 2ml of 0.1% gelatine (those containing OP9 cells were
incubated overnight at 37ºC, and those with ESCs were
incubated for 45 minutes at room temperature). Excess
gelatine was then aspirated. For cell plating, adherent cells on
the T75 flasks were collected following trypsinisation, and
were counted using a haemocytometer in the presence of
trypan blue dye. Cells were then seeded at 8 × 10^4 cells in
2ml GM per well of 6-well plates, with or without VD3, and
incubated for up to 72 hours for cell counting. VD3 was added
to the medium at concentrations of 1nM, 10nM, and 100nM
respectively. The 6-well plates were incubated at 37ºC in a
fully humidified atmosphere of 5% CO2 in air for up to 72
hours. Cell counting was performed by aspirating culture
mediums of confluent 6-well plates, washing cells with PBS to
remove any remaining serum, trypsinising with 0.25%
trypsin/ethylenediaminetetraacetic acid (EDTA) for 3-5
minutes at 37ºC to detach cells adhered to the substrate, and
re-suspending the cells in pre-warmed GM (in at least 1:1 ratio
of trypsin:GM) to deactivate the action of the trypsin. ESCs
were centrifuged at 750rpm for 5-min at RT. OP9 stromal
cells were centrifuged at 850rpm for 7 minutes at RT. The
supernatant was discarded, and cells were re-suspended in
fresh GM in a known volume. For cell counting, cell
suspension was prepared in a 1:1 dilution in trypan blue stain,
and cells were counted with a haemocytometer. Viable cells
exclude the trypan blue dye. However, dead cells absorb the
dye, their membrane integrity being disrupted, and are

positively stained. The same steps above were performed on
6-well plates of E14 and OP9 cells, which were incubated for
up to 72 hours to evaluate cell proliferation.

D.Visual Analysis by Alkaline-Phosphatase Staining

Alkaline phosphatase (AP) is a hydrolase enzyme
responsible for dephosphorylating molecules such as proteins,
nucleotides, and alkaloids under alkaline PH condition. In
general, alkaline is located at the cell surface, and is linked to
the cell membrane, thus is widely used as a stem cell
membrane marker. Elevated expression of this enzyme is
associated with undifferentiated pluripotent cells and stem
cells [15]. To assess the effect of VD3 on cell proliferation of
OP9 stromal cells and ESCs (E14), alkaline- phosphatase
staining was used. The above procedure to prepare cells for
counting was also carried out in preparation for alkaline-
phosphatase staining. Then, after 48 hours of incubation, the
medium was aspirated and the cells were washed twice with
PBS and fixed with methanol for 10 minutes. Excess methanol
was then aspirated. For cell staining, 0.0012g of Napthol
(Sigma, Steinheim, Germany) was added into 30 ml of Tris
(pH 9.2), followed by the addition of 1200 µl of
dimethylformamide (Sigma,UK) to dissolve the Napthol, and
then 0.0012 g of Fast Red Salt (Sigma,UK)was added to the
solution immediately before use at RT. Sufficient staining
solution was added to cover the plates (2-2.5ml) for 30
minutes. The stain was aspirated, and the plates were washed
with distilled water. After drying, alkaline phosphatase
colonies were counted. Undifferentiated cells appeared red or
purple, whereas differentiated cells appeared colourless. The
same steps above were performed on 6-well plates of E14 and
OP9 cells, which were incubated for up to 72 hours to evaluate
cell proliferation. The results were evaluated in the presence
of a control. Optimum staining was obtained by developing
the substrate in the dark.

E. Visual Cell-Cycle Analysis by Using Flow Cytometry

To analyse the effect of VD3 on the cell cycle distribution
of OP9 stromal cells and ESCs (E14) in the proliferation
phases, flow cytometry was used. The above procedure to
prepare cells for counting and for alkaline-phosphatase
staining was also carried out in preparation for cell-cycle
analysis by using flow cytometry.  For cell-cycle analysis,
after 48 hours and trypsinsation and neutralisation, cells were
harvested in 15ml-centrifuge tubes, then pelleted by
centrifugation for 7 minutes at 850rpm for OP9 cells and for 5
minutes at 750rpm for E14 cells. The supernatant was
discarded, and cells were washed with PBS and centrifuged.
After centrifugation, the PBS supernatant was discarded and
cells were fixed with 3ml of 75% ethanol, which was added in
a drop-wise manner to the cell pellet while in vortex (ethanol
allows PI to intercalate into double-standard DNA). Samples
were stored at -20ºC overnight before centrifugation and
discarding of the ethanol supernatant. Cells were washed twice
with PBS, and 1ml of PBS was retained with the cell pellet to
enable re-suspension. Cells were mixed and transferred to 3
ml BD Falcon flow cytometry tubes (BD Biosciences, San
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Jose, CA, USA). 50μl of ribonuclease A (RN
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4ºC for flow cytometric analysis. The same s
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significant.
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and its derivatives operate by means of the vitamin D receptor
(VDR) regulating proliferation, apoptosis [22] and
angiogenesis [23]. It was found that VD3-induced cell-cycle
arrest by means of VDR in the proliferating C2C12 cells is
indicated by the VD3 dose-dependent increase of VDR
mRNA level [12]. Cell cycle progression is regulated by
cyclins, and their association with cyclin-dependent kinases
(CDKs) and CDK inhibitors (CKIs). In particular, p21 [24]
and p27 [25] have been found to be inhibitors of G1 cyclin-
dependent kinase. VD3 treatment inducing a G0/G1 phase
arrest in squamous cell carcinoma cell lines [26] and also
breast cancer MCF-7 cells [27] reportedly increased
expressions of p21 and p27. The gene expressions of p21 and
p27 were up-regulated by VD3 treatment in the C2C12
myoblast cell line [12]. VD3 inhibits the phosphorylation of
retinoblastoma (pRb) and blocks progression of the cell cycle
from G1 to S phase. Significant decreases in the amount of
pRb and significant increased expression of P21 and P27 were
also observed in monocytes leukaemia, which preceded the
appearance of dephosphorylated pRb [28]. The findings from
the cited studies above, suggest that VD3 treatment in the OP9
stromal cells and in E14 cells lines up-regulates the gene
expressions of P21 and P27. Similar to in other cell lines,
cyclin-dependent kinase inhibitor protein (CDKs-CDIs)
through p21 and p27 might influence cell-phase arrest by VD3
in proliferating E14 and OP9 cells.

VI. CONCLUSION

These results with E14 and OP9 cells indicate that adequate
VD3 concentration enhances cellular differentiation and
inhibits proliferation. The results also suggest that if E14 and
OP9 cells were co-cultured and VD3-treated, there would be
further-enhanced differentiation of ESCs into blood cells.
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