
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2953

Abstract—This paper describes new computer vision algorithms

that have been developed to track moving objects as part of a
long-term study into the design of (semi-)autonomous vehicles. We
present the results of a study to exploit variable kernels for tracking in
video sequences. The basis of our work is the mean shift
object-tracking algorithm; for a moving target, it is usual to define a
rectangular target window in an initial frame, and then process the data
within that window to separate the tracked object from the background
by the mean shift segmentation algorithm. Rather than use the
standard, Epanechnikov kernel, we have used a kernel weighted by the
Chamfer distance transform to improve the accuracy of target
representation and localization, minimising the distance between the
two distributions in RGB color space using the Bhattacharyya
coefficient. Experimental results show the improved tracking
capability and versatility of the algorithm in comparison with results
using the standard kernel. These algorithms are incorporated as part of
a robot test-bed architecture which has been used to demonstrate their
effectiveness.

Keywords—Hume, functional programming, autonomous vehicle,
pioneer robot, vision.

I. INTRODUCTION
HIS paper compares and contrasts three computer vision
algorithms for tracking moving objects in video sequences.

Detecting and following moving objects against complex
backgrounds is critical in a number of autonomous vehicle
(AV) applications. For example, in a full-scale AV it may
allow us to track and avoid collisions with pedestrians or
moving vehicles, and in a robotic context, it may allow
improved navigation and enhance safety. Good isolation of
individual moving objects will allow us develop applications
that involve following targets of interest. All these applications
require us to process full-color video sequences in real time.

Our work is undertaken in the context of a robotic AV
testbed platform, based on the Pioneer P3-AT all-terrain robot,
as part of a broader UK project that is developing new sensor

B. Gorry, Z. Chen and G. Michaelson are with Department of Computer

Science, Heriot-Watt University, Riccarton, Scotland.
K. Hammond is with School of Computer Science, University of St

Andrews, St Andrews, Scotland.
A. Wallace is with Department of Electrical & Computer Engineering,

Heriot-Watt University, Riccarton, Scotland.

technology for autonomous vehicles, and funded by the
Systems Engineering for Autonomous Systems (SEAS)
Defense Technology Centre (DTC). The SEAS DTC is
operated by a UK industrial consortium and aims to research
innovative technologies relevant to autonomous systems, at
both whole-system and sub-system level and, through the
adoption of Systems Engineering approaches, to facilitate
pull-through of the technology into military capabilities.

This paper makes a number of novel contributions. Firstly,
we describe new algorithms for tracking moving images
against complex, cluttered backgrounds, based on previously
studied mean-shift algorithms. Secondly, we show that our
algorithms are capable of tracking moving targets for full-size
video images in real time. Thirdly, we show how the algorithm
can be deployed in a simple AV testbed, based on a Pioneer
P3-AT all-terrain robot. Finally, our implementation is unusual
in being written using the novel programming language Hume
[1, 2], a language that combines functional programming
concepts with finite-state automata for programming real-time
reactive systems.

II. THE MEAN-SHIFT VISION ALGORITHM

A. Mean Shift Segmentation
We present the results of a study to exploit various kernels

for real-time tracking of moving objects in video sequences.
The kernels are defined by the underlying, simple, robust, and
diverse mean shift, clustering algorithm [3], first applied to
image segmentation by Comaniciu and Meer [4, 5, 6]. For the
autonomous vehicle application, the task is to first define an
object of interest, by segmentation and/or by interactive
selection, then by tracking the object as it moves within the
camera field of view. The mean shift algorithm is designed to
find modes (or the centers of the regions of high concentration)
of data represented as arbitrary-dimensional vectors. The
algorithm proceeds as follows [7].

• Choose the radius of the search window.
• Choose the initial location (center) of the window.
• Repeat

Compute the mean (average) of the data points
over the window and translate the centre of the
window into this point.

• Until the translation distance of the center becomes

Using Mean-Shift Tracking Algorithms for
Real-Time Tracking of Moving Images on an

Autonomous Vehicle Testbed Platform
Benjamin Gorry, Zezhi Chen, Kevin Hammond, Andy Wallace, and Greg Michaelson

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2954

less than a preset threshold.
High-density regions in the feature space correspond to

sufficiently large numbers of pixels in a narrow range of
intensities/colors in the image domain. Therefore, provided the
pixels form connected regions (as is often the case for relatively
smooth images); the algorithm essentially finds relatively large
connected regions that have sufficiently small variations in
intensity/color (and are thus perceived as well defined regions
by humans). In practice, the algorithm proceeds by placing
randomly one search window at a time, finding the
corresponding mode, and removing all the feature vectors in
the final window from the feature space. Thus one would
expect to find larger regions first.

(a) A 240320× colour image.

(b) The corresponding RGB image.

(c) The corresponding Luv colour space.

Fig. 1 Relationship between image, RGB and Luv

In our implementations, before segmenting color images,
pixels, usually represented in the RGB color space, are mapped
into the Luv color space which has a “brightness” component
represented by L and two “chromatic” components represented

by u and v. It has been argued that the latter color space is more
isotropic and thus is better suitable for the mode finding
algorithm. Finally, when defining a variable kernel, this is
constrained within a rectangular window that we also used
when displaying the tracking result.

Fig. 1 illustrates an example of the relationship between
image and feature space. Fig. 2 shows the segmentation results
in RGB and Luv space, respectively. Subjectively at least, this
shows an improvement in using the Luv parameterization for
this particular example. The flowchart of implementation of
RGB to Luv by Hume is shown in Fig. 3. The flowchart of
mean shift segmentation is shown in Fig. 4.

(a) Segmentation results in RGB colour space

(b) Segmentation results in Luv colour space

Fig. 2 Segmentation results

RGB2Luv

i (input) s

left’o stop

outerror outputscreen

left state

s’ state’

Fig. 3 The flowchart of RGB to Luv (Hume)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2955

first2layer

i

o1 o2 o3

maxmin_box

i

o

scale_box

i j k l m

o1 o2 K’ l’ m’

s

s’

colourmap_box

i k s m

o k’ s’ m’

meanshift

i mi st next sicur sumvalue tm itm

mode mi’ st’ next’ si’cur’ sumvalue’ tm’ itm’

msout

L i1 i2 k sLleft ps si tp l1 so state

o1 o2 o3 k‘ sL’left’ ps’ si’ tp’ l1' so’ state’

(Input)

outerror

outerror1
outputscreeen

Fig. 4 The flowchart of mean shift segmentation algorithm (Hume)

B. Mean Shift Object Tracking
A rectangular window is defined about the region of interest

in an initial frame. Then the mean shift algorithm is applied to
separate the tracked object from the background in Luv color
space. As the object moves, an unusual kernel weighted by the
Chamfer distance transform improves the accuracy of target
representation and localization, minimising the distance
between two color distributions using the Bhattacharyya
coefficient. In tracking an object through a color image
sequence, we assume that we can represent it by a discrete
distribution of samples from a region in color space, localised
by a kernel whose centre defines the current position. Hence,
we want to find the maximum in the distribution of a
function, ρ , that measures the similarity between the weighted
color distributions as a function of position (shift) in the
candidate image with respect to a previous model image. If we
have two sets of parameters for the respective densities)(xp
and)(xq , the Bhattacharyya coefficient [8] is an approximate
measurement of the amount of overlap, defined by:

∫= dxxqxp)()(ρ (1)

Since we are dealing with discretely sampled data from color

images, we use discrete densities stored as m-bin histograms in
both the model and candidate image. The discrete density of the
model is defined as:

{ } muqu ,,2,1, ==q ∑
=

=
m

u
uq

1
1 (2)

Similarly, the estimated histogram of a candidate at a given
location y in a subsequent frame is:

(){ } mupu ,,2,1,)(== yyp ∑
=

=
m

u
up

1
1 (3)

According to the definition of Equation (1), the sample

estimate of the Bhattacharyya coefficient is given by:

() ()[] ()∑
=

==
m

u
uu qp

1
, yqypy ρρ (4)

Let { }nxxx ,,, 21 be an independent random sample drawn
from ()xf , the color density function. If K is the normalized
kernel function, then the kernel density estimate is given by:

() ()[]ubKq i

n

i
iu −=∑

=

xx δ
1

 (5)

Fig. 5 The flowchart of the mean shift object tracking algorithm
(Hume)

Estimating the color density in this way, the mean shift
algorithm is used to iteratively shift location y in the target
frame, to find a mode in the distribution of the Bhattacharyya
coefficient (Equation 4). Using Taylor expansion around the
values, ()0yup , the Bhattacharyya coefficient is approximated
by [8]:

()[]

() ()i

n

i
i

m

u
uu Kwqp xy

qyp

∑∑
==

+

≈

11
0 2

1
2
1

,ρ
 (6)

where

()[] ()01 y
x

u

u
m

u
ii p

qubw ∑
=

−= δ

 (7)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2956

To maximize Equation (4), the second term in Equation (6) is
maximized as the first term is independent of y. In the mean
shift algorithm, the kernel is recursively moved from the
current location

0y to a new location 1y according to the
relation:

∑∑
==

−−=
n

i
ii

n

i
iii xyGwxyGw

1
0

1
01)()(xy (8)

where G is the gradient function computed on K. This is
equivalent to a steepest ascent over the gradient of the
kernel-filtered similarity function based on the color
histograms. The flowchart of mean shift object tracking is
shown in Fig. 5.

III. DEPLOYING THE TRACKING ALGORITHMS ON AN
AUTONOMOUS VEHICLE TESTBED PLATFORM

Our hardware testbed consists of a Pioneer P3-AT all-terrain
robot [9], SEBO (SEas roBOt, Fig. 6). We have configured
SEBO with a front array of sonar discs, radio Ethernet, front
and back safety bumpers, and a surface-mounted camera that is
used to collect data for the mean-shift vision algorithms. Our
Hume implementation interfaces to standard software supplied
with the Pioneer robot: ARIA (Advanced Robotics Interface
for applications), an open-source development environment
which interfaces to the robot’s microcontroller, and provides
access to basic motor and camera functions; and VisLib, an
open-source C-based vision-processing library that provides
basic image processing capabilities.

Fig. 6 SEBO - the Heriot-Watt/St Andrews Pioneer P3-AT

A. Software Architecture
The software architecture for our testbed implementation is

shown in Fig. 7. Solid arrows represent local socket
communication on the robot while broken arrows represent
wireless socket communication. All source code is located on
the robot apart from the Java GUI, which runs on a laptop
computer. Real-time images are captured from the robot
camera, passed through an image-processing program located

on the robot and written in Hume, and then sent wirelessly to a
laptop computer which displays the images in real-time. For
each image a Red, Blue, and Green component is captured. The
image size which is captured is 240 x 320, thus requiring a
storage structure of size 3 x 240 x 320.

Fig. 7 Robot Test-bed Architecture

Fig. 8 Screenshot of Interface

We have implemented a simple command interface on the

laptop. When the user decides to move the robot, a signal is sent
wirelessly from the laptop computer to a Hume program
located on the robot. The Hume program then communicates
with a C++ ARIA program which sends the basic motor
commands to the robot. The camera is controlled in a similar
way to the movements of the robot. Fig. 7 shows that as the
user selects to control the camera a signal is sent wirelessly
from the laptop computer to a Hume program located on the
robot. The Hume program then communicates with a C++
ARIA program which sends commands to the camera. The
camera panel, displayed on the top left part of Fig. 8, is used to
control the pan, tilt, and zoom features of the camera. Two sets
of camera controls are provided. The first set allows minimal
movement or focus values for the camera while the second set
allows maximal movement or focus values.

B. Incorporating the Vision Algorithms
The Hume pass-through box marked with an asterisk in Fig.

7 has been successively replaced with:

1 the LUV conversion algorithm;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2957

2 the mean-shift segmentation algorithm;

3 the mean-shift object-tracking algorithm.

These algorithms produce different image results. From the

initial experiments, each of these algorithms can be
incorporated as part of the test-bed architecture by simply
replacing the Hume box which passes the images from the
camera to the Java interface. Work has begun on identifying
dependencies between each algorithm and establishing
efficient link points where required.

For the LUV conversion algorithms, images are presented in
the LUV color space. For the mean-shift segmentation
algorithm, experiments have included using a variety of image
types and sizes. Normally, images of size 240 x 320 are
processed by the algorithm. Initial work with the mean-shift
object-tracking algorithm shows encouraging results. For an
object placed in central view of the camera, the robot or camera
is moved at a steady rate, the object is tracked on the screen.

Current work includes introducing an option where the user
can highlight an object on the interface screen by
rubber-banding the object of interest. The co-ordinates of this
object, relative to its position on the screen, are then passed to
the mean-shift object tracking algorithm. From this, if the
object moves, the robot moves; or the camera on the robot
moves, then the object is tracked using the algorithm discussed
in section 2.2. This is visible on the interface screen.

C. Implementation and Experimental Evaluation
Fig. 9 shows the first frame and the foreground image of the

tracked object. In this case a simple regional homogeneity
criterion has been applied as the target had relatively uniform
intensity. Partial results of tracking a male pedestrian using the
NCDT kernel are shown in Fig. 10.

Fig. 9 Rectangular window and segmentation

Fig. 10 Partial results of tracking a male pedestrian by NCDT
kernel

D. The Robot Platform
Currently, the robot platform illustrated in Fig. 7 is being

used to as a deployment architecture for the vision algorithms
that have been developed in Hume. The use of these algorithms
is proof of concept that the Hume implementations work, and
also that Hume can be used in conjunction with other
industry-standard languages such as C, C++, and Java. Each of
the three algorithms discussed in Section 2 process images in
real-time as they are captured from the camera mounted on the
surface of the robot.

Possible extensions to the robot platform may involve
de-localizing the sections of Hume code which link with the
robot API. By doing this we could cost these individual
programs to gain a measure of performance analysis.
Alternatively, the three Hume programs indicated in Fig. 7
could be combined. This one program could then be analysed
for its performance and we could also assess the reactivity rates
when a robot or camera movement request is sent from the Java
interface. For the mean-shift tracking algorithm a number of
experiments are underway. These involve tracking objects of
different sizes, colors, objects against similar and dissimilar
background colors, and objects of different shapes.

IV. RELATED WORK
Work on real-time tracking algorithms has taken place in a

number of application areas. By capturing images in real-time
and then performing image segmentation we can partition an
image into several different regions. We can then use this
information to track highlighted objects. In the area of
processing these algorithms work has been carried out using
FPGAs (Field Programmable Gate Arrays) instead of
microprocessors [10]. This aims to take advantage of the low
cost and parallelism associated with FPGAs. However, the
algorithm discussed in [10] requires the use of clearly
distinguishable fluourescent markers – the mean shift object

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2958

tracking algorithm discussed in this paper requires no such
markers. Our initial experiments have shown that two similar
objects, which differ in color in some small way, can be
identified independently of each other.

In embedded real-time applications the importance of
obtaining accurate bounds of time and space usage is extremely
valuable [11, 12]. If we can predict how our system should
behave we can place an upper bound on the expected execution
time of one program cycle. Using Hume, this can be done. The
key to the design of Hume is its ability to be costed. To provide
structure to these costs, Hume has been developed as a series of
language subsets which overlap [13]. Each superset of this
overlapping series of subsets adds expressibility to the
language. By choosing the appropriate level of language, the
programmer can obtain the balance they require between
language expressiveness and the required degree of costability.
Therefore, we can identify the time and space bounds which are
required – this allows us to identify exact quantities of
hardware resources we require. What would be interesting is to
deploy the Hume algorithms discussed in this paper on FPGAs.
We could then use the Hume approach to cost the algorithms
and compare the results against those obtained from costing the
algorithms on a microprocessor.

V. CONCLUSION AND FURTHER WORK
In this paper we have explored the use of variable kernels to

enhance mean-shift segmentation. Experimental results show
the improved tracking capability and versatility of our
implementation of mean-shift object tracking algorithms when
compared with results using the standard kernel. These
algorithms are incorporated as part of a robot test-bed
architecture which has been used to demonstrate their
effectiveness. Each algorithm has been developed using Hume.
By processing real-time images and communicating wirelessly
with our robot, we can track moving images against complex,
cluttered backgrounds.

Work is currently underway to extend out testbed platform
by:

1. developing new image processing algorithms for AV
deployment, and

2. complementing our motion-tracking algorithms by
adding a line following algorithm.

This will involve extending the interface used to control the
physical motion of the robot and camera. These extensions
should further demonstrate:

1. how Hume can be used to develop algorithms which
perform real-time processing,

2. the flexibility of our testbed platform, and
3. the accuracy of our tracking algorithms.

ACKNOWLEDGMENT
The work reported in this paper was funded by the Systems

Engineering for Autonomous Systems (SEAS) Defence
Technology Centre established by the UK Ministry of Defence.
We would like to thank our collaborators in the EU FP6
EmBounded project, in particular Christian Ferdinand,
Reinhold Heckmann, Hans-Wolfgang Loidl, Robert Pointon
and Steffen Jost.

REFERENCES
[1] K. Hammond and G. Michaelson, “The Hume Report, Version 0.3”, 2006

[2] K. Hammond and G. Michaelson, “Hume: a Domain-Specific Language
for Real-Time Embedded Systems”, Proc. of Int. Conf. on Generative
Programming and Component Engineering, Erfurt, Germany, Sept. 2003,
Springer-Verlag Lecture Notes in Comp. Sci., pp. 37-56.

[3] Y. Z. Cheng, “Mean shift, model seeking, and clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17(8): 790
-799, 1995.

[4] D. Comaniciu, P. Meer, “Robust analysis of feature space: Color image
segmentation,” In IEEE Conf. Computer vision and Pattern Recognition,
750 – 755, 1997.

[5] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5), 603-619, 2002.

[6] D. Comaniciu, V. Ramesh, P. Meer, “Kernel-based object tracking,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5),
pp564-575, 2003.

[7] Y. Keselman and E. Micheli-Tzanakou, “Extraction and characterization
of regions of interest in biomedical images,” In Proceeding of IEEE
International conference on Information Technology Application in
Biomedicine (ITAB 98), 87-90, 1998.

[8] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bulletin of the
Calcutta Mathematics Society, 35, pp99-110, 1943.

[9] MobileRobots Inc., “Pioneer 3 Operations Manual with MobileRobots
Exclusive Advanced Control & Operations Software”, MobileRobots
Inc., January 2006.

[10] C. T. Johnston, K. T. Gribbon and D. G. Bailey. “FPGA based Remote
Object Tracking for Real-time Control”, 1st International Conference on
Sensing Technology, Palmerston North, New Zealand, 2005.

[11] G. Hager and J. Peterson, “FROB: A Transformational Approach to the
Design of Robot Software”, Proc. of the ninth International Symposium
of Robotics Research, Utah, USA, 1999.

[12] D. Fijma and R. Udink, “A Case Sudy in Functional Real-Time
Programming”, Technical Report, Dept. of Computer Science, Univ. of
Twente, The Netherlands, 1991

[13] K. Hammond, “Exploiting Purely Functional Programming to Obtain
Bounded Resource Behaviour: the Hume Approach,” First Central
European Summer School, CEFP 2005, Budapest, Hungary, July 4-15,
2005, Lecture Notes in Computer Science 4164, Springer-Verlag, 2006,
pp. 100-134.

