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Abstract—This paper describes new computer vision algorithms 

that have been developed to track moving objects as part of a 
long-term study into the design of (semi-)autonomous vehicles.  We 
present the results of a study to exploit variable kernels for tracking in 
video sequences. The basis of our work is the mean shift 
object-tracking algorithm; for a moving target, it is usual to define a 
rectangular target window in an initial frame, and then process the data 
within that window to separate the tracked object from the background 
by the mean shift segmentation algorithm. Rather than use the 
standard, Epanechnikov kernel, we have used a kernel weighted by the 
Chamfer distance transform to improve the accuracy of target 
representation and localization, minimising the distance between the 
two distributions in RGB color space using the Bhattacharyya 
coefficient. Experimental results show the improved tracking 
capability and versatility of the algorithm in comparison with results 
using the standard kernel.  These algorithms are incorporated as part of 
a robot test-bed architecture which has been used to demonstrate their 
effectiveness. 
 

Keywords—Hume, functional programming, autonomous vehicle, 
pioneer robot, vision.  

I. INTRODUCTION 
HIS paper compares and contrasts three computer vision 
algorithms for tracking moving objects in video sequences.  

Detecting and following moving objects against complex 
backgrounds is critical in a number of autonomous vehicle 
(AV) applications.  For example, in a full-scale AV it may 
allow us to track and avoid collisions with pedestrians or 
moving vehicles, and in a robotic context, it may allow 
improved navigation and enhance safety.  Good isolation of 
individual moving objects will allow us develop applications 
that involve following targets of interest.  All these applications 
require us to process full-color video sequences in real time. 

Our work is undertaken in the context of a robotic AV 
testbed platform, based on the Pioneer P3-AT all-terrain robot, 
as part of a broader UK project that is developing new sensor 
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technology for autonomous vehicles, and funded by the 
Systems Engineering for Autonomous Systems (SEAS) 
Defense Technology Centre (DTC). The SEAS DTC is 
operated by a UK industrial consortium and aims to research 
innovative technologies relevant to autonomous systems, at 
both whole-system and sub-system level and, through the 
adoption of Systems Engineering approaches, to facilitate 
pull-through of the technology into military capabilities. 

This paper makes a number of novel contributions.  Firstly, 
we describe new algorithms for tracking moving images 
against complex, cluttered backgrounds, based on previously 
studied mean-shift algorithms.  Secondly, we show that our 
algorithms are capable of tracking moving targets for full-size 
video images in real time.  Thirdly, we show how the algorithm 
can be deployed in a simple AV testbed, based on a Pioneer 
P3-AT all-terrain robot. Finally, our implementation is unusual 
in being written using the novel programming language Hume 
[1, 2], a language that combines functional programming 
concepts with finite-state automata for programming real-time 
reactive systems. 

II. THE MEAN-SHIFT VISION ALGORITHM 

A. Mean Shift Segmentation 
We present the results of a study to exploit various kernels 

for real-time tracking of moving objects in video sequences. 
The kernels are defined by the underlying, simple, robust, and 
diverse mean shift, clustering algorithm [3], first applied to 
image segmentation by Comaniciu and Meer [4, 5, 6]. For the 
autonomous vehicle application, the task is to first define an 
object of interest, by segmentation and/or by interactive 
selection, then by tracking the object as it moves within the 
camera field of view.  The mean shift algorithm is designed to 
find modes (or the centers of the regions of high concentration) 
of data represented as arbitrary-dimensional vectors. The 
algorithm proceeds as follows [7]. 

• Choose the radius of the search window. 
• Choose the initial location (center) of the window. 
• Repeat  

Compute the mean (average) of the data points 
over the window and translate the centre of the 
window into this point. 

• Until the translation distance of the center becomes 
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less than a preset threshold. 
High-density regions in the feature space correspond to 

sufficiently large numbers of pixels in a narrow range of 
intensities/colors in the image domain. Therefore, provided the 
pixels form connected regions (as is often the case for relatively 
smooth images); the algorithm essentially finds relatively large 
connected regions that have sufficiently small variations in 
intensity/color (and are thus perceived as well defined regions 
by humans). In practice, the algorithm proceeds by placing 
randomly one search window at a time, finding the 
corresponding mode, and removing all the feature vectors in 
the final window from the feature space. Thus one would 
expect to find larger regions first. 

 

 
 

(a) A 240320× colour image. 
 

 
 

(b) The corresponding RGB image. 
 

 
 

(c) The corresponding Luv colour space. 
 

Fig. 1 Relationship between image, RGB and Luv 
 

In our implementations, before segmenting color images, 
pixels, usually represented in the RGB color space, are mapped 
into the Luv color space which has a “brightness” component 
represented by L and two “chromatic” components represented 

by u and v. It has been argued that the latter color space is more 
isotropic and thus is better suitable for the mode finding 
algorithm. Finally, when defining a variable kernel, this is 
constrained within a rectangular window that we also used 
when displaying the tracking result. 

Fig. 1 illustrates an example of the relationship between 
image and feature space. Fig. 2 shows the segmentation results 
in RGB and Luv space, respectively. Subjectively at least, this 
shows an improvement in using the Luv parameterization for 
this particular example. The flowchart of implementation of 
RGB to Luv by Hume is shown in Fig. 3. The flowchart of 
mean shift segmentation is shown in Fig. 4. 
 

 
 

(a) Segmentation results in RGB colour space 
 

 
 

(b) Segmentation results in Luv colour space 
 

Fig. 2 Segmentation results 
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Fig. 3 The flowchart of RGB to Luv (Hume) 
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Fig. 4 The flowchart of mean shift segmentation algorithm (Hume) 

 

B. Mean Shift Object Tracking 
A rectangular window is defined about the region of interest 

in an initial frame. Then the mean shift algorithm is applied to 
separate the tracked object from the background in Luv color 
space. As the object moves, an unusual kernel weighted by the 
Chamfer distance transform improves the accuracy of target 
representation and localization, minimising the distance 
between two color distributions using the Bhattacharyya 
coefficient. In tracking an object through a color image 
sequence, we assume that we can represent it by a discrete 
distribution of samples from a region in color space, localised 
by a kernel whose centre defines the current position. Hence, 
we want to find the maximum in the distribution of a 
function, ρ , that measures the similarity between the weighted 
color distributions as a function of position (shift) in the 
candidate image with respect to a previous model image. If we 
have two sets of parameters for the respective densities )(xp  
and )(xq , the Bhattacharyya coefficient [8] is an approximate 
measurement of the amount of overlap, defined by: 

 

∫= dxxqxp )()(ρ                                     (1) 

 
Since we are dealing with discretely sampled data from color 

images, we use discrete densities stored as m-bin histograms in 
both the model and candidate image. The discrete density of the 
model is defined as: 
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Similarly, the estimated histogram of a candidate at a given 
location y in a subsequent frame is: 
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According to the definition of Equation (1), the sample 

estimate of the Bhattacharyya coefficient is given by: 
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Let { }nxxx ,,, 21  be an independent random sample drawn 
from ( )xf , the color density function. If K is the normalized 
kernel function, then the kernel density estimate is given by:   
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Fig. 5 The flowchart of the mean shift object tracking algorithm 
(Hume) 

 
Estimating the color density in this way, the mean shift 
algorithm is used to iteratively shift location y in the target 
frame, to find a mode in the distribution of the Bhattacharyya 
coefficient (Equation 4). Using Taylor expansion around the 
values, ( )0yup , the Bhattacharyya coefficient is approximated 
by [8]: 
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To maximize Equation (4), the second term in Equation (6) is 
maximized as the first term is independent of y.  In the mean 
shift algorithm, the kernel is recursively moved from the 
current location 

0y  to a new location 1y  according to the 
relation: 

∑∑
==

−−=
n

i
ii

n

i
iii xyGwxyGw

1
0

1
01 )()(xy                   (8) 

 
where G is the gradient function computed on K. This is 
equivalent to a steepest ascent over the gradient of the 
kernel-filtered similarity function based on the color 
histograms.  The flowchart of mean shift object tracking is 
shown in Fig. 5. 

 

III. DEPLOYING THE TRACKING ALGORITHMS ON AN 
AUTONOMOUS VEHICLE TESTBED PLATFORM 

Our hardware testbed consists of a Pioneer P3-AT all-terrain 
robot [9], SEBO (SEas roBOt, Fig. 6).  We have configured 
SEBO with a front array of sonar discs, radio Ethernet, front 
and back safety bumpers, and a surface-mounted camera that is 
used to collect data for the mean-shift vision algorithms.  Our 
Hume implementation interfaces to standard software supplied 
with the Pioneer robot: ARIA (Advanced Robotics Interface 
for applications), an open-source development environment 
which interfaces to the robot’s microcontroller, and provides 
access to basic motor and camera functions; and VisLib, an 
open-source C-based vision-processing library that provides 
basic image processing capabilities. 

 

 
Fig. 6 SEBO - the Heriot-Watt/St Andrews Pioneer P3-AT 

 

A. Software Architecture 
The software architecture for our testbed implementation is 

shown in Fig. 7. Solid arrows represent local socket 
communication on the robot while broken arrows represent 
wireless socket communication.  All source code is located on 
the robot apart from the Java GUI, which runs on a laptop 
computer.   Real-time images are captured from the robot 
camera, passed through an image-processing program located 

on the robot and written in Hume, and then sent wirelessly to a 
laptop computer which displays the images in real-time.  For 
each image a Red, Blue, and Green component is captured.  The 
image size which is captured is 240 x 320, thus requiring a 
storage structure of size 3 x 240 x 320. 
 

 
Fig. 7 Robot Test-bed Architecture 

 

 
Fig. 8 Screenshot of Interface 

 
We have implemented a simple command interface on the 

laptop. When the user decides to move the robot, a signal is sent 
wirelessly from the laptop computer to a Hume program 
located on the robot.  The Hume program then communicates 
with a C++ ARIA program which sends the basic motor 
commands to the robot.  The camera is controlled in a similar 
way to the movements of the robot.  Fig. 7 shows that as the 
user selects to control the camera a signal is sent wirelessly 
from the laptop computer to a Hume program located on the 
robot.  The Hume program then communicates with a C++ 
ARIA program which sends commands to the camera.  The 
camera panel, displayed on the top left part of Fig. 8, is used to 
control the pan, tilt, and zoom features of the camera. Two sets 
of camera controls are provided.  The first set allows minimal 
movement or focus values for the camera while the second set 
allows maximal movement or focus values. 

B. Incorporating the Vision Algorithms 
The Hume pass-through box marked with an asterisk in Fig. 

7 has been successively replaced with: 

1 the LUV conversion algorithm; 
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2 the mean-shift segmentation algorithm; 

3 the mean-shift object-tracking algorithm. 
 
These algorithms produce different image results.  From the 

initial experiments, each of these algorithms can be 
incorporated as part of the test-bed architecture by simply 
replacing the Hume box which passes the images from the 
camera to the Java interface.  Work has begun on identifying 
dependencies between each algorithm and establishing 
efficient link points where required. 

For the LUV conversion algorithms, images are presented in 
the LUV color space.  For the mean-shift segmentation 
algorithm, experiments have included using a variety of image 
types and sizes.  Normally, images of size 240 x 320 are 
processed by the algorithm.  Initial work with the mean-shift 
object-tracking algorithm shows encouraging results.  For an 
object placed in central view of the camera, the robot or camera 
is moved at a steady rate, the object is tracked on the screen.  

Current work includes introducing an option where the user 
can highlight an object on the interface screen by 
rubber-banding the object of interest.  The co-ordinates of this 
object, relative to its position on the screen, are then passed to 
the mean-shift object tracking algorithm.  From this, if the 
object moves, the robot moves; or the camera on the robot 
moves, then the object is tracked using the algorithm discussed 
in section 2.2.  This is visible on the interface screen. 

C. Implementation and Experimental Evaluation 
Fig. 9 shows the first frame and the foreground image of the 

tracked object. In this case a simple regional homogeneity 
criterion has been applied as the target had relatively uniform 
intensity.  Partial results of tracking a male pedestrian using the 
NCDT kernel are shown in Fig. 10. 

 

 
Fig. 9 Rectangular window and segmentation 

 

 
 

 
 

 
 

Fig. 10 Partial results of tracking a male pedestrian by NCDT 
kernel 

 

D. The Robot Platform 
Currently, the robot platform illustrated in Fig. 7 is being 

used to as a deployment architecture for the vision algorithms 
that have been developed in Hume.  The use of these algorithms 
is proof of concept that the Hume implementations work, and 
also that Hume can be used in conjunction with other 
industry-standard languages such as C, C++, and Java.  Each of 
the three algorithms discussed in Section 2 process images in 
real-time as they are captured from the camera mounted on the 
surface of the robot.  

Possible extensions to the robot platform may involve 
de-localizing the sections of Hume code which link with the 
robot API.  By doing this we could cost these individual 
programs to gain a measure of performance analysis.  
Alternatively, the three Hume programs indicated in Fig. 7 
could be combined.  This one program could then be analysed 
for its performance and we could also assess the reactivity rates 
when a robot or camera movement request is sent from the Java 
interface.  For the mean-shift tracking algorithm a number of 
experiments are underway.  These involve tracking objects of 
different sizes, colors, objects against similar and dissimilar 
background colors, and objects of different shapes. 

IV. RELATED WORK 
Work on real-time tracking algorithms has taken place in a 

number of application areas.  By capturing images in real-time 
and then performing image segmentation we can partition an 
image into several different regions.  We can then use this 
information to track highlighted objects.  In the area of 
processing these algorithms work has been carried out using 
FPGAs (Field Programmable Gate Arrays) instead of 
microprocessors [10].  This aims to take advantage of the low 
cost and parallelism associated with FPGAs.  However, the 
algorithm discussed in [10] requires the use of clearly 
distinguishable fluourescent markers – the mean shift object 
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tracking algorithm discussed in this paper requires no such 
markers.  Our initial experiments have shown that two similar 
objects, which differ in color in some small way, can be 
identified independently of each other.   

In embedded real-time applications the importance of 
obtaining accurate bounds of time and space usage is extremely 
valuable [11, 12].  If we can predict how our system should 
behave we can place an upper bound on the expected execution 
time of one program cycle.  Using Hume, this can be done.  The 
key to the design of Hume is its ability to be costed.  To provide 
structure to these costs, Hume has been developed as a series of 
language subsets which overlap [13].  Each superset of this 
overlapping series of subsets adds expressibility to the 
language.  By choosing the appropriate level of language, the 
programmer can obtain the balance they require between 
language expressiveness and the required degree of costability.  
Therefore, we can identify the time and space bounds which are 
required – this allows us to identify exact quantities of 
hardware resources we require.  What would be interesting is to 
deploy the Hume algorithms discussed in this paper on FPGAs.  
We could then use the Hume approach to cost the algorithms 
and compare the results against those obtained from costing the 
algorithms on a microprocessor. 

V. CONCLUSION AND FURTHER WORK 
In this paper we have explored the use of variable kernels to 

enhance mean-shift segmentation. Experimental results show 
the improved tracking capability and versatility of our 
implementation of mean-shift object tracking algorithms when 
compared with results using the standard kernel.  These 
algorithms are incorporated as part of a robot test-bed 
architecture which has been used to demonstrate their 
effectiveness.  Each algorithm has been developed using Hume.  
By processing real-time images and communicating wirelessly 
with our robot, we can track moving images against complex, 
cluttered backgrounds. 

Work is currently underway to extend out testbed platform 
by: 

1.  developing new image processing algorithms for AV 
deployment, and  

2.  complementing our motion-tracking algorithms by 
adding a line following algorithm. 

This will involve extending the interface used to control the 
physical motion of the robot and camera.  These extensions 
should further demonstrate: 

1.  how Hume can be used to develop algorithms which 
perform real-time processing,  

2.  the flexibility of our testbed platform, and  
3.  the accuracy of our tracking algorithms.   
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