
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

33

1

Statistical Models of Network Traffic
Barath Kumar, Oliver Niggemann and Juergen Jasperneite (Senior Member, IEEE)

Abstract—Model-based approaches have been applied successfully
to a wide range of tasks such as specification, simulation, testing, and
diagnosis. But one bottleneck often prevents the introduction of these
ideas: Manual modeling is a non-trivial, time-consuming task.

Automatically deriving models by observing and analyzing run-
ning systems is one possible way to amend this bottleneck. To
derive a model automatically, some a-priori knowledge about the
model structure–i.e. about the system–must exist. Such a model
formalism would be used as follows: (i) By observing the network
traffic, a model of the long-term system behavior could be generated
automatically, (ii) Test vectors can be generated from the model,
(iii) While the system is running, the model could be used to diagnose
non-normal system behavior.

The main contribution of this paper is the introduction of a model
formalism called ‘probabilistic regression automaton’ suitable for the
tasks mentioned above.

Keywords—Model-based approach, Probabilistic regression au-
tomata, Statistical models and Timed automata.

I. INTRODUCTION

In this paper, a model formalism for analyzing long-term
network behavior is given and assessed. Whenever such a new
formalism is introduced, one key question must be answered
first: Is a new modeling formalism really needed or can an
existing formalism be applied? For this reason, this paper is
structured as follows: First, in this section, the cornerstones of
the needed formalism are sketched. E.g. such models must
be able to capture state-based, temporal and probabilistic
behavior.

Because several existing formalism fit these requirements,
section III will give an in-detail overview and comparison of
existing formalisms.

The applications addressed in this paper have some impor-
tant points in common:

• Rather than specifying the system (and software) imple-
mentation in all detail, the focus is the description of the
statistical behavior of a large set of situations.

• The model need not be able to capture the system be-
havior in detail. Instead it must only be able to recognize
some non-normal system behavior and must be able to
serve as a basis for test case generation and quantitative
analysis.

• The systems addressed show mainly a state-based behav-
ior. I.e. (i) at one point in time the system is in one
state, (ii) within one state the system’s values have a
constant (or at least simple) relation to each other and
(iii) the transitions from one state to another state follows
a deterministic, repetitive pattern.

B. Kumar, O. Niggemann and J. Jasperneite are with Institute Industrial
IT (inIT), Ostwestfalen-Lippe University of Applied Sciences, 32657 Lemgo,
Germany.

E-mail: {barath.kumar, oliver.niggemann, juergen.jasperneite}@hs-owl.de

This paper deals with industrial production facilities.
Such facilities show normally a state-based behavior—mainly
caused by the large number of digital signals. But most
facilities also comprise some additional continuous signals.
The requirement of capturing such continuous signals compli-
cates the modeling formalisms significantly: Pure state-based
behavior can be captured using finite state machines, often
extended by formalisms for expressing time and probabilities.
Section III gives an introduction to such formalisms. In order
to incorporate continuous signals, section IV introduces a
formalisms especially suited for the specific tasks described
in this paper.

II. TEMPORAL MODELS OF NETWORK TRAFFIC AND
THEIR APPLICATION

This paper looks for a formalism that is suited for three very
specific algorithmic tasks: Learning a model of network traffic
by analyzing networks traces (section II-A), generating test
cases from network models (section II-B), and the diagnosis
of system failures in section II-C. Learning complex models
or even complex finite state machine formalisms is a difficult
challenge. Generating test cases from too complex models may
lead to a low model coverage. So a simple formalism but still
a formalism that is able to capture all significant behavior is
needed.

A. Analyzing Network Traffic

The key idea is rather simple: a model M of the system
behavior is first learned by observing the running system. M
focuses on those system aspects that should be analyzed (e.g.
signal timing). Then this abstracted model is analyzed.

Measured
Network Signals

System Model

Automatic
Abstraction

System

Measuring

�

�

Fig. 1. Learning of system models.

This can also be seen in figure 1: First the network signals
of the system are measured. These network traces are then
analyzed and a model M is learned.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

34

2

This application defines some requirements to M ’s formal-
ism:

1) As mentioned before, M must be able to capture state-
based behavior with some continuous signals.

2) When models are learned, often erroneous models are
generated. E.g. a model is erroneous if it comprises of
states (or situations) that neither allow the automaton
to stay in them or to leave them. The best model
formalisms do not permit the creation of erroneous
models.

3) The timing of signals must be captured.
4) Network traffic on ISO/OSI layer 2-4 (see ITU-T X.200

recommendations) should be captured. E.g. which net-
work message is sent as a reaction to a specific message,
or in other words: values of signals in the messages are
disregarded in these layers.

5) Network traffic on the application layer should also be
captured, or in other words: values of signals in the
messages must also be learned—this is of course a very
difficult task which can only be solved if some a-priori
information about the system is known.

B. Generation of Test Cases

From a top-down perspective test vector generation is rather
simple: Based on a given model M of a system S, test
cases (i.e. system stimuli) are generated. These test cases, if
applied to S, take S into a large number of significant states
or situations. Often a criterion fc measuring the number of
reached system states–called the coverage criterion–is used to
express the quality of the test vector generation (see also [25],
[20]).

Model

Test Vector
Generation

function CoffeeMachineFunction() runs
on CoffeeMachineComponentType
 {
 const integer Price := 50;
 var integer Amount, Cents;

Amount := 0;
 while (true) {
 InputPort.receive(integer:?) ->
value Cents;

Amount := Amount+Cents;
 while (Amount >= Price) {

OutputPort.send(charstring:"coffee");
Amount := Amount-Price;

 }
 }
 }

function CoffeeMachineFunction() runs
on CoffeeMachineComponentType
 {
 const integer Price := 50;
 var integer Amount, Cents;

Amount := 0;
 while (true) {
 InputPort.receive(integer:?) ->
value Cents;

Amount := Amount+Cents;
 while (Amount >= Price) {

OutputPort.send(charstring:"coffee");
Amount := Amount-Price;

 }
 }
 }

function CoffeeMachineFunction() runs
on CoffeeMachineComponentType
 {
 const integer Price := 50;
 var integer Amount, Cents;

Amount := 0;
 while (true) {
 InputPort.receive(integer:?) ->
value Cents;

Amount := Amount+Cents;
 while (Amount >= Price) {

OutputPort.send(charstring:"coffee");
Amount := Amount-Price;

 }
 }
 }

Test Cases

Fig. 2. Test vector generation from models.

Figure 2 shows a test vector generation process: Test cases
or test vectors are generated from M in a way that maximizes
fc.

A typical application scenario is system migration: parts
of an existing system are replaced or modified. After the
modification, the system should show the same performance
as before. For this, a model M of the previous system behavior
is used to generate test cases that check the modified system’s
performance. As described in section II-A, M might have been
learned from system observations.

This leads to some requirements on M :
1) Often thousands of test cases are generated. But M nor-

mally comprises significantly more states—often even
an infinite number of states. So M should give hints
which test cases are important.

2) A test case takes S into one specific state by sending
a sequence of stimuli events E = (e1, . . . , ep) to S. So
M should allow for an easy generation of E.

3) The timing of the stimuli events often plays a crucial
role: Depending on the arrival time of an event ei ∈ E,
S reaches a different state. So M should also express
the event timing.

C. Diagnosis Network Failure

The detection of system deterioration and of non-normal
system behavior will prove essential for the improvement
of system quality and reliability: Production facilities could
detect failures earlier and inspections can be planed whenever
first sign of deterioration appears.

The key idea is rather simple: Let M be a system model
which captures all fault relevant system aspects. Whenever,
later on M ’s behavior shows a discrepancy to the system’s
current behavior, the user will be alarmed.

Discrepancy
Detection

System Model

System

Fig. 3. Detection of system deterioration.

This can also be seen in figure 3: During the runtime of the
system, the predictions of the model M are constantly com-
pared to the system behavior and discrepancies are detected.

This application defines some requirements to M ’s formal-
ism:

1) M must capture the most important fault-relevant system
aspects for our domain: (i) Signal timing, (ii) Signal
orders, and (iii) Signal values.

2) It must be able to evaluate M in real-time.

III. TIMED AUTOMATA: STATE OF THE ART

Finite automata have gained popularity in the field of
system analysis and engineering. Their formal nature allows
for an unambiguous communication between engineers and
enables computers to use it for e.g. verification, test vector
generation, early simulation, etc. These formal models provide
a good mechanism to model system behavior and the resulting
event sequences. Nevertheless, temporal information cannot be
specified using the original formalism. Such finite automata
are based on the assumption of ‘zero time’, i.e. a transition
from one state to another takes zero time units. However, for
many applications (e.g. real-time embedded systems) timing
information are vital.

Inclusion of timing information to finite automata would
enable developers to model complex requirements like (i) to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

35

3

RTA

FSM

HTA

TA

STA
RTSC

PTA

PRA

M
od

el
in

g
P

ow
er

Expressiveness

PHyA

Fig. 4. Potential of Timed automata formalisms.

model transition durations, (ii) to verify if a specific state will
be reached within a specific period of time, (iii) to model
scenarios where a specific state shall not be reached after a
certain time period, etc.

These requirements lead to timed automata (TA). Timed
automata were initially proposed by Alur and Dill in [3].
A timed automaton accepts input alphabets associated with
occurrence times ((w1, t1), (w2, t2),, (wn, tn)), where wi

is the input alphabet, ti is the time at which it occurs and n
is the number of inputs.

Such a timed automaton can e.g. later be used for test vector
generation and system analysis. This enables engineers to
formally verify the model during the early stages of design and
development. Early verification of the model helps developers
identify design flaws like deadlock or livelock situations,
violation of time constraints, etc.

Several timed automata have evolved after the initial pro-
posal in [3], some of these are ‘Hierarchical timed automata’
(HTA) [8] (section III-B), ‘Real-time statecharts’ (RTSC)
[5], [14] (section III-C), ‘Scenario timed automaton’ (STA)
[13] (section III-D), ‘Real-time automata’ (RTA) [11], [27]
(section III-E), ‘Probabilistic timed Automata’ (PTA) [19]
(section III-F), ‘Probabilistic Hybrid Automata’ (PHyA) [2],
[26] (section III-G), etc.

Here, the automata formalisms are classified based on their
contribution to the categories “modeling power” or “expres-
siveness”. ‘Modeling power’ is the ability of the automaton to
be user friendly, i.e. the higher the modeling power, the easier
it is for a developer to model a scenario—i.e. the closer is
the formalism to the user’s mental model. E.g., hierarchical
automata can be better handled by a user than large, flat
models.

An automaton with high ‘expressiveness’ can model more
complex languages or problems, e.g. including probability
information in an automaton will improve the expressiveness
of the automaton because engineers can model more complex
scenarios such as non-determinism.

Figure 4 shows the expressiveness and modeling power of
the various timed automata formalisms. Note — that the graph
is not on any particular scale, it is solely provided to give
a qualitative impression of the expressiveness and modeling
power of the various timed automata formalisms.

A. Basic Timed automata

A timed automaton (TA) [3], [12] A is a 6 tuple
(S, S0, F, Σ, C, E), where S is a finite set of states, S0 ∈ S is
the initial state, F ⊆ S is a distinguished set of final states/
accepted states, Σ is a finite set of input alphabets, C is a
finite set of clocks and E is a set of transition functions of
A. A transition from state s to s′ over a ∈ Σ is represented
with (s, a, λ, δ, s′), where λ specifies the clocks to be reset
after this transition and δ is the clock constraint over C. It
is interpreted as: the automaton changes from s to s′ reading
the input a, if the current clock value satisfies δ. It should be
noted that as soon as this transition takes place the clocks of
λ are reset to 0, thus starting to count time with respect to the
time of occurrence of this transition.

(t 2 t 5) ?
S2S1

eb

S0
t := 0

ea

Fig. 5. Timed automaton example.

Figure 5 shows a simple automaton which has an event
set Σ = {a, b}. The automaton starts in state S0 and upon
receiving the input letter a the automaton moves from S0 to
S1, and the clock t is reset. While remaining in state S1, on
receiving the input letter b, the automaton makes a transition
from state S1 to S2, if the current value of the clock satisfies
the clock constraint (t ≥ 2) ∧ (t ≤ 5).

Pros: TA as compared to finite automata provide means to
specify temporal information on transitions.

Cons: TA (i) do not allow state invariants and hence
the duration for which the automaton stays within a certain
state cannot be modeled directly, (ii) allow usage of multiple
clocks and thus reduces modeling power (refer section IV-B),
(iii) only support modeling deterministic timed automata, and
(iv) support only modeling flat structures.

B. Hierarchical Timed Automata

Hierarchical timed automata (HTA) are based on hierar-
chical state machines. They were proposed by David and
Möller in [8] based on the preliminary work done in [9].
Hierarchical state machine are state machines that contain sub-
states within states. Modularity and encapsulation are some
concepts of hierarchical structures that scale them well for
industrial automation.

Pros: HTA (i) support complex hierarchical states, and
(ii) are suitable for communication system.

Cons: HTA (i) do not support complex data and operations,
(ii) only support modeling deterministic timed automata, and
(iii) allow multiple clocks.

C. Real-Time State chart

Real-time statecharts (RTSC) [5], [14], [15] are a blend of
statecharts and timed automata. It uses real-time constraints
expressiveness of timed automata to specify time constructs
and restrictions to describe real-time behavior of models.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

36

4

RTSC like usual statecharts are made up of states and transi-
tions where states are extended with annotations like: worst
case execution times for operations to be performed while
entering (entry() operations), while exiting (exit() operations),
while being in the state (do() operations), clock resets bonded
with entry() and exit() operations, the periods associated with
do() operations and time invariants. It supports a well-defined
real-time semantics based on timed automata which helps
overcome the underlying zero-time execution assumption for
side-effects/ actions of usual statecharts which is predomi-
nantly unrealistic and conflicts with the actual implementation
of the high level UML model on the available platform.

Unlike other timed automata, firing a transition in a RTSC
consumes time [6], [7]. Hence, transitions are associated with
worst case execution times and deadline. In addition to that,
priorities can be assigned to transitions, so that mutually
exclusive multiple transitions triggered at the same time can
be handled.

Pros: RTSC (i) support hierarchy and parallelism apart
from temporal behavior, (ii) allow specification of priorities
on transitions, (iii) support specifying temporal information
both as absolute time and relative time, (iv) provide means to
specify operations to be executed while entering/exiting a state
and also while the automaton stays in a state, and (v) contain
necessary information for code generation.

Cons: RTSC (i) allow multiple clocks, and (ii) allow state
invariants which can be a threat to temporal correctness of the
model (refer section IV-A).

D. Scenario Timed Automata

Scenario timed automaton (STA) [13] was introduced to
enable model developers to verify complex real time require-
ment of system models which consists of several software
components or software modules made up of individual timed
automaton which are connected together and synchronized to
constitute the entire system. Scenario timed automaton is used
to formulate query scenarios which consists of the dynamics
of the situation to be verified. It supports the concept of global
clocks which is very important when it comes to verification
of synchronized multiple individual timed automaton. Basic
timed automaton on the other hand lacks the concept of global
clocks, hence, it proves to be insufficient to verify scenarios
that have triggering events and target states located in different
timed automaton.

Pros: STA (i) allow both local and global clocks, and
(ii) help verifying complex timing requirements which in-
volves more than one automaton.

Cons: STA (i) only support modeling flat structures, (ii) al-
low multiple clocks, and (iii) non-deterministic timed automata
cannot be modeled.

E. Real-time Automata

Real-time automaton (RTA) [11], [27] contains time con-
straints expressed as relative time interval with respect to the
previous symbol. It has only one clock that represents the
time delay between two consecutive events in terms of relative
time (unlike other timed automata which have finite number

of clocks and clock guards for each transition – for specifying
timing constraints) and the guard of the transition represents
the constraint on the time delay.

Pros: RTA (i) allow only a single clock, and (ii) all timing
information are specified as relative time.

Cons: RTA (i) have very limited expressiveness; as absolute
timing information cannot be specified, (ii) only support mod-
eling flat structures, and (iii) non-deterministic timed automata
cannot be modeled.

F. Probabilistic Timed Automata

A timed automaton given its next state and input symbol
along with its time of occurrence, is said to be deterministic
iff its next state after transition can be uniquely determined.
Hence, even multiple transitions starting from the same state
with the same label can be deterministic, provided that their
clock constraints are mutually exclusive so that only one of
the clock constraint can be satisfied at a given point in time.

However, when observing real-world systems, it can be seen
that many industrial communication systems [17], [16] have
scenarios which cannot be modeled with a deterministic timed
automaton. Hence, there is a need to address non deterministic
scenarios.

Probabilistic timed automaton (PTA) [19] extends timed
automaton with discrete probabilistic information on transi-
tions. Hence, the transition of the automaton from one state
to another is now governed by a probability distribution. The
inclusion of probabilistic information increases the expressive-
ness of the automaton to a considerable extent, as it allows
engineers to model non deterministic models, where the choice
of the transition path is based on the probability distribution.
Further, it also incorporates invariant conditions to specify
upper bounds on the time within which certain probabilistic
choices have to be made. Such automata can be seen as a
special type of Markov processes (see [21], [22]). Markov
processes have been introduced in 1907 by A. A. Markov
and are an established formalism to describe probabilistic,
dependent stochastic experiments.

Pros: PTA (i) allow modeling non-determinism using prob-
abilistic information, and (ii) have high expressiveness.

Cons: PTA (i) allow defining multiple clocks, (ii) only flat
structures can be modeled, and (iii) have limited modeling
power (as shown in figure 4).

G. Probabilistic Hybrid Automata (PHyA)

Standard automata are used to model (and therefore to pre-
dict) variables with only discrete values, continuous variables
cannot be modeled well. But many real-world applications
comprise both: discrete and continuous variables. To model
such hybrid systems, R. Alur introduced in 1995 hybrid
automata (PHyA, see [2], [26]). These automata extend Alur’s
timed automata (see section III-A) by adding differential
equations to states. I.e. as long as a system remains in a state,
the behavior of variables is described by a set of differential
equation. Usually ordinary differential equations (ODEs) such
as ẋ = f(x, t) (x is a variable, t is the time) are used,
so gradients of variables over time are specified. In many

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

37

5

cases hybrid automata are restricted to linear hybrid systems
which only support constant gradients; this subclass of hybrid
systems still allows for the application of some formal model
verification procedures.

Pros: PHyA (i) allow modeling non-determinism, and
(ii) allow for the modeling of continuous variables.

Cons: PHyA (i) work with multiple clocks, (ii) support only
flat structures, (iii) allow state invariants, and (iv) can not be
verified formally in the general case.

Please note, a detailed survey of the above discussed for-
malisms is provided in [18]. Further, Table I summarizes the
various automata discussed in this paper.

IV. PROBABILISTIC REGRESSION AUTOMATON

Three main points render most of the formalisms from
section III unsuitable for the tasks from section II:

1) The formalisms do not prevent the modeling of erro-
neous situations, i.e. of situations where it is neither
permissible to remain in a state nor to leave it. This poses
a problem for machine learning algorithms. Details are
given in section IV-A.

2) When models are learned automatically from samples,
often periodic processes and events are encountered.
This means that absolute time values are often irrelevant
and relative time information should be used instead.
This point is discussed in section IV-B.

3) For all formalism from above (with the exception of
hybrid automata), it holds true that within one state,
system values must not change. For systems with only
discrete values, i.e. boolean signals, this does not pose a
problem. But with such approaches, systems comprising
continuous or analogue signals can only be modeled
using a very large number of states—whereat the states
approximate the analogue signal characteristics. The for-
malism introduced here incorporates ideas from hybrid
automata (see section III-G)) but allows for arbitrary
classification functions within states. This improves the
learnability of the automata and renders the automata to
be better suited for capturing statistical system behav-
ior while Alur’s hybrid automata focus very much on
verification scenarios. Details are given in section IV-C.

To overcome these shortcomings, the so-called Probabilistic
Regression Automata (PRA) is introduced in section IV-D.

A. Temporal Correctness

Timed automata use state invariants to control the timing of
the stimuli, i.e. when the system is in a certain state and waits
for an input alphabet, the state invariants decide how long the
automaton can wait in that particular state.

For e.g., figure 6 shows an automaton with state invariants,
where (t ≥ 2) ∧ (t ≤ 5) and (t = 10) are the clock constraints
of the transitions and (t ≤ 10) is the state invariant. Upon
reaching state S0, the clock t is reset to zero and the system
can either (a) remain in the current state S0—letting time to
elapse, or (b) make a discrete transition to the next state, if
an expected input letter arrives and the clock constraints are
satisfied by the current value of the clock. Alternatively, at

any point in time, if remaining in the current state and letting
time to advance would violate the state invariant (t ≤ 10)
then the system must make a transition to the next state; upon
arrival of the expected input letter (provided that the transition
constraints are met by the current clock value).

Fig. 6. Timed automata with state invariants.

Thus, the concept of state invariant is quiet useful to control
the duration for which the automaton stays in a certain state.
However, state invariants can also be a threat to the temporal
correctness of the automata. For e.g., by changing the state
constraints in figure 6 from (t ≤ 10) to (t ≥ 20)∧(t < 100) an
erroneous situation is created: the automaton is neither allowed
to stay in the state S0 nor can it leave the state. Thus, it can
be seen that even minor flaws in the model or improper usage
of state invariants can lead to temporal inconsistencies.

One of the main targets of the proposed timed automata is
its ”learnability”. Since state invariants can be a threat to the
temporal consistency of the automaton and may complicate
the learning process, it was decided not to introduce state
invariants in the proposed PRA formalism.

B. Annotation of Time

Almost all timed automata discussed in section III use
several independent clocks to specify timing constraints. The
usage of more than one clock1 causes several practical mod-
eling problem: (i) The model developer has to keep track
of the various clocks along with the states in which they
were reset, so that the developer can specify the timing
constraint for the current transition correctly. (ii) The modeling
of periodic scenarios and events is often easier using relative
time annotations.

Figure 7 shows a system made up of 3 individual automaton
(namely automaton ‘A’, ‘B’ and ‘C’). These 3 automata work
in parallel to constitute the behavior of the system, thus the
timing behavior of the entire system is characterized by the
hand in hand operation of the involved clocks; namely, clock
‘z’ of automaton A, clock ‘x’ of automaton B and ‘y’ of
automaton C. Automaton ‘A’ communicates with automaton
‘B’ with event ea and with automaton ‘C’ using the event ec.
Similarly, automata ‘B’ and ‘C’ communicate with each other
using the event eb.

1Please note, that time for those set of clocks of course increases homo-
geneously. But because of the different time offset for the clocks, user often
experience modeling difficulties.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

38

6

S1

ec

ea

(z 15) ? S0

Automaton ‘A’

S2S1

eb

S0
x := 0

ea

(x 18) ?

(x 10) ?

x := 0

Automaton ‘B’

(y 2) ?

S0

S2S1

(y 8) ?

eb

ec

Automaton ‘C’

Fig. 7. A system with automata working in parallel.

These three automata when observed separately, their timing
information does not seem to pose any threat to the working
of the system. However, when they have to be combined
functionally to model the behavior of the entire system, the
system would run into a erroneous situation, as the timing
information of the clocks ‘x’ and ‘y’ do not go hand in
hand (please check the clock constraints / guard condition of
automaton ‘B’ and the state invariant of automaton ‘C’).

To avoid such a scenario, the model developer should
have kept track of the clock ‘x’ and its timing information
before specifying the timing constraints of automaton ‘C’. This
problem of multiple clocks not working hand-in-hand can lead
to time consuming - tedious modeling problems when it comes
to larger systems. Thus, the usage of multiple clocks reduces
the user friendliness or the modeling power of the formalism.

In addition to the above mentioned problem, several re-
search works [1], [3], [10] show that the complexity of the
verification problem of timed automata is exponential on the
number of clocks used in the model. Thus posing an important
obstacle to the development of verification algorithms which
are efficient in practice [10].

Considering the above mentioned factors, it was decided to
introduce a single global clock in the proposed PRA formal-
ism. Further, both time spent in states and timing constraints
are modeled as relative timing only; each timing information
relates to the last event. Please note, that this relative timing
formalism does not allow for the modeling of more complex
scenarios; it only makes modeling easier and less error prone.

C. Support for Continuous Systems
Let’s first review the problem: Figure 8 shows a typical

situation: while most signals in automation systems have
discrete values, some signals show analogue characteristics;
e.g. y depends on x. Please note, that in many cases x will
be time.

Conventional automata as described in section III (except
hybrid automata) offer only one way to model such continuous
signals: the signal value range is split into several intervals–
often automatically–and several corresponding states are cre-
ated; this is depicted in the upper right corner of figure 8. Such
a solution creates many rather “dummy” states and increases
the model size dramatically.

y

x

Conventional
Automaton

y

x

Probabilistic
Regression
Automaton

y

x

System
Measurements

Fig. 8. An example for the application of a probabilistic regression
automation to the modeling of non-discrete systems.

The PRA introduced in this paper solves this problem
differently: areas with “harmless” signal characteristics are
identified, e.g. in figure 8, linear pieces of the function y(x).
For each “harmless” area one state is created; within each state
the function y(x) is specified. Initially y(x) is learned from
the measurements, e.g. the linear functions in figure 8 can
be learned using linear regression. This solution is shown in
the lower right corner of figure 8: only two states are needed
anymore.

Please note, that this approach works also for discrete
systems: In that case a function y(x) = c, c ∈ R is learned.

D. Probabilistic Regression Automata
The motivation behind PRA is to develop a statistical

automaton with temporal information which can be (i) learned
automatically and (ii) can be used for test vector generation
(see also section II). PRA should enable engineers to formally
verify their models apart from formal description. The factors
discussed in section II establish certain key features for the
proposed PRA formalism. They are as follows:

• PRA allows only one clock and this clock is a global
clock.

• By (i) annotating delay time interval at the transitions, by
(ii) using only relative timing information for durations,
and by (iii) not using state invariants, only temporal
correct scenarios can be modeled.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

39

7

• Probabilistic information is supported so that non-
deterministic automata can be modeled.

• By adding functions for computing signal values to states,
continuous variables are supported.

Definition: Probabilistic Regression Automaton (PRA)
A PRA is a tuple A = (S, S0, F, Σ, E), where
• S is a finite set of states,
• S0 ∈ S is the initial state,
• F ⊆ S is a distinguished set of final states/ accepted

states,
• Σ is the alphabet. Elements from Σ trigger transition.

The alphabet is constructed as follows: Σ = {vρc} with
ρ = {<,≤,=,≥, >}, c ∈ N and v ∈ V . V denotes the
set of network signals.

• E ⊆ S × Σ × S gives the set of transitions.
• Delay interval δ : E → N×N models the time spent in a

state before the transition takes place. δ always refers to
the time spent since the last event occurred. It is expressed
as [δlow, δup]; which expresses that the execution of the
transition has to be finished at least by δup and at the
earliest by δlow.

• Probabilities p : E → R assigns a probability to edges.
For each state s1 ∈ S

∑
(e=(s1,s2)∈E) p(e) = 1 holds.

• Functions fs∈S : V ∪ {t′} → V . I.e. fs is the function
computing values for all networks signals in V . For this
computation, all other networks signal values and t′ can
be used. Because f is normally learned from the initial
network measurements, linear functions or decisions trees
are often used to define f . t′ denotes the time spent since
entering the state.

Fig. 9. Automaton based on PRA formalism.

A transition e ∈ E in this automaton is given by the tuple
〈s, a, s′〉, where s, s′ ∈ S are the source and destination states,
a ∈ Σ is the trigger event. Additional information about the
transitions are provided by the functions p (probability of

the transition) and δ (time delay interval). Thus a transition
〈s, a, s′〉 is interpreted as follows: whenever the automaton is
in state s, upon reading the input event a ∈ Σ, it will move
to state s′. p is then the probability that a transition is taken,
i.e. it denotes the percentage of cases (providing a sufficiently
number of cases) in which a transition is used.

For e.g. figure 9 shows an automaton modeled using PRA
formalism. The graph shown in the upper half of the figure
shows the system under consideration. It can be noticed that
the time spent in state S0 before reaching state S1 ranges
between 2 and 5 time units. This information is depicted in the
automaton as delay interval [2, 5] on the transition between S0

and S1. Similarly, the graph also shows that the time required
by the automaton to move from state S0 to S2 on receiving
the input letter, is 10 time units. This duration is shown in
the automaton as [10, 10] as δlow and δup are equal. Further,
the percentage values 0.95 and 0.05 on each edge gives the
probability of the respective transitions.

Figure 9 also shows how the duration for which the system
stays in a certain state can be controlled even without using
state invariants and in turn avoid potential threat to the tempo-
ral correctness of the automaton. Since all timing information
are specified as relative time t′ w.r.t their time of arrival at
a certain state; it eliminates chances of modeling erroneous
automata with temporal errors.

As mentioned earlier, Table I summarizes the characteristics
of the various automata discussed in this paper.

V. EMPIRICAL RESULTS

As a first step, this new formalism was applied to the
analysis and learning of the network behavior of one specific
industrial production research facility. Some first and prelimi-
nary results will be described shortly in the rest of this section.

Fig. 10. Pick and Place Robot research facility.

The system under study consists of a pick and place robot,
a conveyor belt and different workpieces to be sorted as
shown in figure 10. The whole communication is based on the
real-time Ethernet standard PROFINET [23], [24]. The robot
system consists of 34 sensors, 28 actuators, 4 Input/Output
devices, 1 programmable logic units and deals with 72 network

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

40

8

TABLE I
TIMED AUTOMATA COMPARISON

Timed automata

Supported Features

Flat Hierarchical No. of Absolute Relative State Time Non-determinism Value changes
structures structures Clocks time time Invariants Model within a state

Basic Timed Automata � — multiple � — — dense — —

Hierarchical Timed Automata � � multiple � — � dense — —

Real-Time State chart � � multiple � � � dense � —

Scenario Timed Automata � — multiple � — � dense — —

Real-time Automata � — single — � — dense — —

Probabilistic Timed Automata � — multiple � — � dense � —

Probabilistic Hybrid Automata � — multiple � partially supported � dense � �
Probabilistic Regression Automata � — single — � — dense � �

signals. The workpieces are transported by the conveyor belt
to their end position; where they are picked up by the robot-
arm and placed at the beginning of the belt. Furthermore, the
pieces are equipped with an RFID Tag containing their sort ID
and a counting variable. The variable is incremented whenever
the work piece passes the RFID reader and will be sorted out
if the variable is equal to its sort ID.

The learning algorithm itself is not the main subject of this
paper but generally speaking an extension of algorithms such
as described in [4], [28] is used. The general idea is shown
in figure 11: First the network traffic, i.e. all messages, of
the robot is captured and stored as a “pcap” file. A small
utility reads this file and extracts the hardware topology and
communication matrix, i.e. the information which bus device is
sending which signals. So the general system structure is gen-
erated automatically. This is possible because the PROFINET
protocol comprises all necessary information.

Then the values for these signals are extracted and stored
as signal values over time. This information is the input for
the PRA learning algorithm—this algorithm is implemented
using the “R” tool.

For the learning process, a network trace containing 2

Fig. 11. The general procedure for learning PRA automata.

million messages has been used. The behavior of discrete
variables has been learned with an error (on the training set)
of < 5%. The average error for continuous signals is (on
the learning set) < 9%. The time difference between two
subsequent signal has been learned with an error of < 13%.
All in all the learned PRA contains 124 states whereat each
state is accessed on an average of 14 times. I.e. each state
could describe more than 1000 messages.

Especially the learning of the signal timing has proven to
be much easier using the formalism introduced here then with
traditional formalisms. Furthermore, continuous signals can be
introduced in the learning process—which is a big advantage
of our model over traditional formalisms. Of course, these are
only first and early results—but results indicating a significant
potential of the Probabilistic Regression Automaton.

The learned model has then been used to analyze the
network behavior:

• Worst-case timing has been checked for signal transmis-
sions. For this, the “sending” state and the “receiving”
states are identified (manually) and the longest path in the
automata (according to the execution time) is computed.

• Since the PRA are a special type of Markov chains, the
probability for reaching error states can be computed.
Again, error states have been identified manually.

• By using the probabilities and the execution times for all
paths between two states, average transmission times have
been computed. Compared to usual worst-case analysis,
these results have proven to be very informative.

Using the techniques from above, a thorough analysis of
the timing behavior of the robot facility has been done.
This analysis can e.g. be used as a basis for future system
modifications.

VI. SUMMARY AND OUTLOOK

Timed automata are a powerful means for modeling and
verifying real-time system behavior. However, when it comes
to, (i) learning models and (ii) test vector generation the
existing formalisms seem to lack simplicity. They often pose

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:1, 2010

41

9

difficult challenges due to their complexity. Some of these
challenges were discussed in sections II and IV. To address
these challenges, this paper has presented the so-called prob-
abilistic regression automata which has a simpler formalism
but a formalism powerful enough to solve the above mentioned
problems. PRA formalism enables developers to use a simple
formalism (which supports only a single clock, relative timing
information and does not allow state invariants) for learning
models of network traffic and to describe statistical behavior
of a large set of scenarios (statistical models) which can later
be used for test vector generation and quantitative analysis.
Further, the automata also includes regression functions which
allow modeling value changes within a state–so reducing the
number of necessary states.

Future work includes the algorithmic objectives of learning
network traces for constructing statistical models and test case
generation from statistical network models. Furthermore, the
quality of the test vector generation has to be verified using
a coverage criterion (e.g. all transition-based, all transition-
pair-based, all state-based, all data-flow-based, etc.). Since
each criterion has its own advantages and disadvantages, an
appropriate criterion which suits this domain has to be chosen.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-
time. Information and Computation, 104:2–34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3–34,
1995.

[3] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, vol. 126:183–235, 1994.

[4] M. M. F. Bugalho and A. L. Oliveira. Inference of regular languages
using state merging algorithms with search. Pattern Recognition,
38(9):1457–1467, 2005.

[5] S. Burmester. Generierung von java real-time code für zeitbehaftete
uml modelle. Master’s thesis, University of Paderborn, Department of
Computer Science, Paderborn, Germany, September 2002.

[6] S. Burmester and H. Giese. The fujaba real-time statechart plugin. In
H. Giese and A. Zündorf, editors, Proc. of the first International Fujaba
Days 2003, Kassel, Germany, pages 1–8. University of Paderborn,
October 2003.

[7] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and M. Tichy. The
fujaba real-time tool suite: Model-driven development of safety-critical,
real-time systems. In Proc. of the 27th International Conference on
Software Engineering (ICSE), St. Louis, Missouri, USA, pages 670–671.
ACM Press, May 2005.

[8] A. David and M. O. Möller. From huppaal to uppaal: A translation from
hierarchical timed automata toflat timed automata. Technical report,
BRICS, BRICS Report Series RS-01-11, March 2001.

[9] A. David and W. Yi. Hierarchical timed automata. Contacts:
adavid@DoCS.uu.se, yi@DoCS.uu.se, 2000.

[10] C. Daws and S. Yovine. Reducing the number of clock variables of
timed automata. In RTSS ’96: Proceedings of the 17th IEEE Real-Time
Systems Symposium, pages 73–81, Washington, DC, USA, 1996. IEEE
Computer Society.

[11] C. Dima. Real-time automata. Journal of Automata, Languages and
Combinatorics, Vol. 6, Issue 1:3 – 23, January 2001.

[12] J. S. Dong, P. Hao, and et.al. Timed automata patterns. IEEE
Transactions on Software Engineering, Vol 34(No. 6), December 2008.

[13] M. Gehrke, P. Nawratil, O. Niggemann, and W. S. M. Hirsch.
Scenario-based verification of automotive software systems. In
H. Giese, B. Rumpe, and B. Schätz, editors, Proc. of the Dagstuhl-
Workshop: Model-Based Development of Embedded Systems(MBEES),
9.-13.1.2005, Schloss Dagstuhl, Germany, pages 35–42, 2006.

[14] H. Giese and S. Burmester. Real-time statechart semantics. Technical
Report tr-ri-03-239, Lehrstuhl für Softwaretechnik, Universität Pader-
born, Paderborn, Germany, June 2003.

[15] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake. Towards
the compositional verification of real-time uml designs. In Proc. of the
9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software
engineering (ESEC/FSE-11), pages 38–47. ACM Press, September 2003.

[16] B. Kumar, J. Imtiaz, and J. Jasperneite. Applicability of uml marte’s
schedulability sub-package for engineering industrial real-time proto-
cols. In 2nd Junior Researcher Workshop on Real-Time Computing
(JRWRTC 2008) (in conjunction with the 16th International Conference
on Real-Time and Network Systems (RTNS 2008)), Rennes, France, Oct
2008.

[17] B. Kumar and J. Jasperneite. Industrial communication protocol en-
gineering using uml 2.0: a case study. In 7th International Workshop
on Factory Communication Systems (WFCS 2008), Dresden, Germany,
May 2008.

[18] B. Kumar, O. Niggemann, and J. Jasperneite. Timed automata for mod-
eling network traffic. In Machine Learning in Real-Time Applications
(MLRTA 09) (in conjunction with 32nd Annual Conference on Artificial
Intelligence (KI 2009)), Paderborn, Germany, September 2009.

[19] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions.
Theoretical Computer Science, 282:101–150, 2002.

[20] P. Mosterman, J. Ghidella, and E. O’Brien. Model coverage as a
quality measure and teaching tool for embedded control system design.
In Frontiers in education conference - global engineering: knowledge
without borders, opportunities without passports, 2007. FIE ’07. 37th
annual, pages T3J–1–T3J–6, Oct. 2007.

[21] J. R. Norris. Markov Chains. Cambridge University Press, 1997.
[22] P. Bremaud. Markov Chains - Gibbs Fields, Monte Carlo Simulation,

and Queues. Springer Verlag, 1999.
[23] PNO. Profinet specification iec 61158-5-10 (v2.1), 2007.
[24] PNO. Profinet specification iec 61158-6-10 (v2.1), 2007.
[25] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,

B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based
testing and its automation. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 392–401, New
York, NY, USA, 2005. ACM.

[26] J. Sproston. Decidable model checking of probabilistic hybrid automata.
In FTRTFT, pages 31–45, 2000.

[27] S. Verwer, M. de Weerdt, and C. Witteveen. An algorithm for learning
real-time automata. In M. van Someren, S. Katrenko, and P. Adriaans,
editors, Proc. of the Sixteenth Annual Machine Learning Conference of
Belgium andthe Netherlands (Benelearn), pages 128–135, 2007.

[28] S. E. Verwer, M. M. de Weerdt, and C. Witteveen. Efficiently learning
simple timed automata. In W. Bridewell, T. Calders, A. K. de Medeiros,
S. Kramer, M. Pechenizkiy, and L. Todorovski, editors, Induction of
Process Models, pages 61–68. University of Antwerp, 2008. Workshop
at ECML PKDD.

