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Analyzing Transformation of 1D-Functions for
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Abstract—In this paper we illuminate a frequency domain based
classification method for video scenes. Videos from certain topical
areas often contain activities with repeating movements. Sports
videos, home improvement videos, or videos showing mechanical
motion are some example areas. Assessing main and side frequencies
of each repeating movement gives rise to the motion type. We
obtain the frequency domain by transforming spatio-temporal motion
trajectories. Further on we explain how to compute frequency features
for video clips and how to use them for classifying. The focus of
the experimental phase is on transforms utilized for our system.
By comparing various transforms, experiments show the optimal
transform for a motion frequency based approach.

Keywords—action recognition, frequency, transform, motion
recognition, repeating movement, video classification

[. INTRODUCTION

OTION and video analysis for content based retrieval or
M action recognition purposes is an intensely investigated
research area. Further topics connected to this research field
are video surveillance, human-computer interfaces or object
tracking. Research on these fields is encouraged by obvious
demands. Most of today’s digital video cameras for instance
utilize face tracking methods in order to focus on faces
and zoom into important parts of a photo. Moreover video
surveillance is needed to protect company buildings, public
places and private properties. Beyond that video databases
can be found in major corporations or online video portals. So
motion and video analysis has relevance for industry, technique
and practical life.

In this work we present an approach, which uses frequency
features from cyclic motion in video sequences for classifica-
tion. Its basic idea stems from our previous research work
[2]. The main difference between these two papers is the
feature extraction stage. In [2] we used up to six frequency
maxima as features for one video. Now we apply average
amplitudes from the whole frequency spectrum as feature
vector by partitioning the spectrum (see V). Our approach
works for every motion type and is not limited to human
gait recognition as described in [3], [18]. At first our method
detects regions with motion framewise. These regions lead on
to image moments for each frame, where a series of image
moments represents a function. By transforming this function
we obtain its frequency spectrum and are able to extract certain
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features for classification.

In the experimental stage of our research work we inspect
the accuracy and runtime of different transforms in order to
determine the best transform for our system. Results are repre-
sentative for other approaches based on repeating movements,
since this aspect is hardly researched in video analysis.

II. CLASSIFYING VIDEOS BY AAFIs

In this section we offer an overview of the whole classi-
fication process. Fig. 1 illustrates the different steps of this
process.
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Fig. 1: Flow diagram of whole classification process

The flow diagram starts with the video data input. Valid
video data contains repeating movements like hammering,
planing, or filing for instance (home improvement). It is even
possible to extend our approach to other topic areas: Playing
tennis (sports) or accordion (music) are possible activities. Our
approach is not capable for classifying activities with strongly
differing frequency spectra or periodic texture motion.

Nevertheless the aim of the whole classification process is to
classify video sequences with repeating movements properly.
At first regions of movement are detected in every clip frame
by frame. Regions are detected by measuring the color differ-
ence of pixels in two consecutive frames (see section III-A).
With these regions image moments are calculated, where we
use only centroids based on the raw moment type (see section
III-B). A chronological series of these moments is considered
as 1D-function and represents the motion in a video sequence.
The transform of one 1D-function reveals its frequency do-
main. By partitioning the frequency axis into intervals of same
length, average amplitudes for each interval are computed. We
name these averages AAFIs (Average Amplitudes of Frequency
Intervals). AAFIs constitute the final feature vectors for each
clip with respect to its motion. After resolving the feature
vectors a classifier can decide to which class a video fits best.
Next sections explain each of the outlined stages in detail.
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III. IMAGE MOMENTS AND 1D-FUNCTIONS

In order to compute frequency spectra for video scenes the
motion in each frame has to be localized. Once the motion
is detected image moments and resulting 1D-functions can be
figured. Next we define regions of motion and explain how
these regions lead to 1D-functions.

A. Regions of Motion

Fig. 2 shows a person using a paint roller in two frames
following each other. By analyzing these two frames we detect
regions with motion. Color differences between the first and
the second frame are measured for each pixel. If the color
difference of a pixel exceeds a predefined threshold and if there
are enough neighbor pixels with a color difference beyond
the same threshold, this pixel is considered to be a part of
a movement. Thus a region of motion is represented by the
conflation of pixels with motion.

Y Compare A

motipn detection pic

Fig. 2: Regions with pixel activity and centroid

A comparison of these two frames results in a binary image
arising from regions with movement. Furthermore the centroid
of regions with motion lies exactly on the right forearm,
because the most active areas are the paint roller, the hand,
the forearm and the upper arm. Hence painting the wall with
a paint roller determines a specific centroid motion path as it
evolves in time.

B. Image Moments

An image moment is the weighted average of pixel inten-
sities of a picture. It can describe the area, the bias, or the
centroid of segmented image parts. We distinguish two types
of image moments: raw moments and central moments. Raw
moments are sensitive to translation, whereas central moments
are translation invariant. Next equation defines a raw moment
M;; for a two dimensional binary image b(z,y) and 4,5 € N

[5]:
M;; = ZZ# -yl bz, y) €))
Ty

The order of M;; is always (i+j). Moo determines the area
of segmented parts. Hence (Z,y) = (Mio/Moo, Mo1/Moo)
defines the centroid of segmented parts. Moreover the compu-
tation of central moments applies centroid coordinates [5].

pi; = Y (x=2)" - (y—9) - blx,y) 2

Here o9 and poo represent the variances of pixels with
regard to x and y coordinates, respectively.

C. Deriving 1D-functions

We define a 1D-function f as a series of one-dimensional
moment values. This series corresponds to the chronological
order of frames in a video, which leads to function f(¢) with
t as time. For (Z4,7:) = (Mo, /Moo,, Mo1,/Moo,) as the
centroid coordinates depending on time ¢ function f.(t) =
(Z¢, J¢) can be decomposed as follows:

fcm (t) =2t A fcy (t) =t (€))

For the experimental stage in section VII we use f.,(t)
and f., (t) instead of f,(t), because the transformation of 1D-
functions results in more decisive frequency spectra than trans-
forming 2D-functions. For any 1D-function f(¢) the direction
of a moment at time ¢ is defined by equation 4.

+1, if f(t)—f(t—1)>0
fay=1q 0, if f(t)—f(t=1)=0 )
-1, if f(t)—ft—1)<0

IV. TRANSFORMATION OF 1D-FUNCTIONS

Transforms explained in this section are used during experi-
mental stage. All introduced equations transform time discrete
and periodic signals to their frequency domain.

A. Fast Fourier Transform

The most important transform in science is the Fourier
transform. Since 1D-functions are finite and periodic, we
utjlize tl}e discrete Fourier transform (DFT) [11]. Let f =
(fo, - fn—1) € O as the discrete Fourier transform of a
complex vector = (xg,...,zx_1) € CV, which is consti-
tuted by the interpolation of measured values. The transform’s

size is set to 2n. Then formula 5 form = 0, ..., 2n—1 results.
2n—1
. Cami,
fo=Y wpe )
k=0

Here fm is also called Fourier coefficient or Fourier com-
ponent. Realizing the algorithm of Cooley and Tukey we
get the fast Fourier transform (FFT) [4]. FFT works with
DFTs of half length and consequently needs the quarter of
complex calculations. This transform implements a divide-and-
conquer method. Depending on the length of the measured
value sequence the method can be applied multiple times,
whereby the runtime amounts to O(n - log(n)).
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B. Fast Cosine Transform

The fast Cosine transform (FCT) is based up on the discrete
Cosine transform (DCT) [1] and works similar to FFT. By
contrast to DFT the DCT calculation takes place only with real
coefficients. A finite data sequence is expressed as a finite sum
of cosine functions. Since data values of discrete transforms
are finite, a sequel before and after this sequence is presumed.
The DCT computation is realized by an even extension.

Even Function A function f with a domain D is called an
even function, if Vz € D f(z) = f(—x).

Extending a sequence by even and odd functions allows
four combinations (see IV-C). Furthermore it is possible to
extend a sequence directly at a value or between two values.
Thus 4 - 4 = 16 combinations are possible. The 8 marginal
conditions with even sequels at the beginning belong to
the cosine transforms. We use DCT-I with even marginals
around zg at the beginning and around z_; at the end. Let
Ty = (2o, ..., 2Nn-1) = X;, = (Xo,...,Xn—1) a real value
mapping and £ =0,..., N — 1, then DCT-I is defined as:

N—2
1 E s
X, = 5(qro +(—)*zn_1) + 321 T, COS {N — 177,143} (6)

By pre- and post-processing steps the DCT can be combined
with FFT and solved with O(N - log(N)) operations.

C. Fast Sine Transform

Fast Sine transform (FST) is based on discrete Sine trans-
form (DST) [8], which is related to DCT. Now DST transforms
a sequence of values by sine functions. Further on DST
extends the beginning of a finite sequence by odd functions.
Here again 8 different extensions are possible.

Odd Function A function f with domain D is called an odd
function, if Vo € D f(—x) = —f(x).

For our experiments we use DST-I among all 8 ex-
tensions. Its marginals around x_; at the beginning and
around xx at the ending are odd. If a real value mapping
Ty = (:L'(), - ,LL’N71) = Xn = (Xo, . ,XNfl) and
k=0,...,N —1is given, then one has

No1 -
Xk:;]znsm[]v_'_l(nJrl)(kJrl)] (7

The FST is computed analog to FCT by combining the
incoming signal with equation (7) and FFT. Here again runtime
amounts to O(N - log(N)).

D. Fast Haar-Wavelet Transform
Now we define the Haar-Wavelet [12]:
1 if 0<a<1/2
PE)=49-1 if 1/2<z<1 (8)

0 else
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Fig. 3: Haar-Wavelet

Fig. 3 illustrates the Haar-Wavelet plot. For j € N,0 < k <
2/ — 1 it is feasible to swage and to shift the Haar wavelet
inside interval [0,1]:

bjk(x) =02 -z —k) €))

Functions v (x) and 9, ;(z) are orthogonal inside interval
[0,1]. These assumptions lead to Haar matrices of different
orders [12]. In (10) for instance a second order Haar transform
matrix H is presented.

H'*l 1 1 10
=5l (10)

Considering fast Haar wavelet transform (FWT) a finite dis-
crete signal is transformed into a sequence of two dimensional
vectors. This process is the so-called polyphase partition.
Hereby data sequence is joined pairwise without changing the
order of its elements.

e (125 ())

Each element of this new sequence is multiplied with
transform matrix H.

(2) =H-fp = <<21><;§>(21>) (12)

Then one has s;, = Jartfors anq dy, = Jar=forsr More-
over the input signal can be partitioned into bigger blocks, if
a corresponding orthogonal Haar matrix with entries 1/1/s in

its first line is generated. The FWT conforms to complexity
class O(N - log(N)).

E. Fast Hadamard Transform

The Hadamard transform is an orthogonal, symmetric,
involutional und linear function, which is realized by 2™
input values [13]. Its calculation takes place with a 2™ x 2™
Hadamard matrix H,,,. This matrix transforms a 2"* sized real
sequence x, into a 2" sized sequence Xj; by multiplying
H,, with z,,. For Hy = 1 and m > 0 the Hadamard matrix is
defined recursively as follows:

H’rnfl >
(13)

Hmfl
H,, =
Hmfl —dIm-—-1

873



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:7, 2012

Hj yields that all entries of H,, must be 1 or -1. Let £ and
n indices with k; and n; as their binary digits:
k = k.m_12m,71 + km—22m/72 4+t k'12 + kO
M= Ne12™ L Ny 02 2 4 241
Hence each entry (k,n) of a Hadamard matrix is computed
by equation (14).

1 .
()i = gy (71> (14)

The Hadamard transform involves O(N?) operations. Fast
Hadamard transform (FHT) requires O(m-log(m)) calculation
steps [14]. It also uses a divide and conquer algorithm in
order to break down Hadamard transforms of size IV into two
smaller Hadamard transforms of size N/2 recursively.

V. AAFIS AS FEATURE VECTORS

In our previous work [2] we used up to 6 frequency maxima
for each video as feature vector. Now the whole frequency
spectrum is described by AAFIs and feature vectors reveal
much more information about the motion type. Each signif-
icant frequency high or low has an influence on concerning
AAFIL

Amplitude

N, -

U adbad | e

N AVFrequency
Fig. 4: Average amplitudes of frequency intervals (AAFIs)
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As already mentioned each 1D-function can be transformed
to its frequency spectrum. Partitioning this spectrum into
intervals of same length, an average amplitude for each interval
can be stated.

Fig. 4 depicts this idea by partitioning a frequency spectrum
with a length of m = 256 units to n = 8 intervals. Using the
fast Fourier transform for instance variables m and n have
to be a power of 2, where m > n. Further the horizontal,
orange lines mark the average amplitude of each interval.
Hence with regard to fig. 4 one 1D-function leads to 8 average
amplitudes respectively to one 8-dimensional feature vector.
Due to the fact, that videos produce two 1D-functions, each
video is described by two 8-dimensional feature vectors in this
example. Thus a partitioning of the frequency spectrum into
n intervals results in a (2 - n)-dimensional feature vector for
each video.

VI. RADIUS BASED CLASSIFIER

Now we explain our Radius Based Classifier RBC [2]. This
classifier turned out as very effective for distance computations
between objects and object classes with frequency domain
based features. The RBC uses the radius € around a given
object o and counts all objects of a class C; around o with
a distance smaller than ¢. The normalized sum of all objects

leads to a distance dist(o,C;) = 1— W between tested

object and class. After computing distances to all existing
classes, the RBC assigns o to the class with the smallest

distance.
. Oa a . .
: @ . :

Fig. 5: Classifying with RBC

Fig. 5 illustrates how the RBC works: An object o, of an
unspecified class has to be classified. Therefore it is assigned
to each existing class in order to calculate the class with
the minimal distance. Three different example classes C,, C
and C, are given and each class has its own typical object
distribution. Assigning o, to class C, reveals that there are
many objects within radius €. In class C, only 2 objects are
present inside the given metric. Objects of class C. are far
away from o,, so there is no object of this class within radius
E.

According to these three classes, o, fits best into class C,
because it is part the typical object distribution. At the same
time this fact leads to a minimal distance.

VII. EXPERIMENTS

In this section we evaluate accuracy and runtime perfor-
mance of our system concerning different transforms. Test
series are performed by own and by external video data. Own
videos are recorded especially for the evaluation phase and
external video data is taken from the online video database
youtube.com [20]. In addition experiments with own video data
are computed by m-fold cross validation. For classification
process we use 10 classes, where each class consists of 20
videos (total 200 videos). External videos are analyzed by
assigning them to especially recorded video classes, because
cross validation was not possible due to classes with just few
clips (total 102 videos). Each video shows one of the next
10 home improvement activities: filing, hammering, planing,
sawing, screwing, using a paint roller, a paste brush, a putty
knife, sandpaper and a wrench.

A. Motion Transformation

150 ¥ 1 D-function|
| ) , \ A _
0 . /
| |
. . . . = . Timels) * |
5 o 15 2 2 ) 3% 0 s 0

Fig. 6: 1D-function of a person using a paint roller

Next in fig. 6 an example 1D-function is illustrated. It
regards to the y-axis coordinate of centroids and captures the
mean motion inside an external video clip. The motion in this
clip arises from a person using a paint roller. Furthermore the
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1D-function corresponds to the movement of the person, since
the centroid moves from bottom to top and vice versa. Plots
in fig. 7 present frequency spectra of 1D-function from fig. 6.
Each spectrum results from one of five transforms explained
in section IV.

At first glance it becomes apparent, that all transforms
except FHT have a high amplitude around a frequency of
12. This frequency corresponds to the main movement of the
paint roller in fig. 6. FCT presents frequencies more detailed
and partially with higher amplitudes, but roughly frequencies
are identical with FFT. Now FST shifts FFT and FCT highs
to the left, whereas FWT has high amplitudes at different
frequencies. There is even a peak at a frequency of 165.

TABLE I: Test results for own videos

[ Class ACC ][ FFT [ FCT | FST | FWT | FHT |
File 0.85 0.85 | 0.70 0.35 0.25
Hammer 0.84 | 0.83 | 0.79 1.00 0.25
Paint Roller 1.00 1.00 | 0.80 0.55 0.45
Paste Brush 090 | 0.85 | 0.85 1.00 0.40
Plane 0.55 0.75 | 0.65 0.70 0.11
Putty Knife 0.95 0.95 1.00 0.80 0.40
Sandpaper 0.88 | 0.56 | 0.53 0.75 0.05
Saw 0.75 0.65 | 0.80 0.90 0.20
Screwdriver 0.95 1.00 1.00 0.70 0.75
Wrench 1.00 1.00 | 0.85 0.95 0.05

Overall ACC || 0.87 | 0.85 | 0.80 | 0.77 | 0.29

TABLE 1II: Test results for external videos

1t At s Abrins dabedtpatomich - ity
F-1 40 60 B0 100 120 140 160 180 200 220 240

|m.'Am|:I|ude FWT
i |
so ]
LT X | | Frequency
PR V0 W] P r— ; M s L i)
) 40 60 &0 100 120 140 160 180 200 220 240
¢ Amplitude
100 FHT
|
50

Frequency
AT, L PYLY T RYTT Y ) LT, | WP Y N 1T
80 W00 120 140 160 180 200 20 240

Fig. 7: Transforms of paint roller 1D-function

B. Accuracy of transforms

Next tables I and II show accuracies for own and external
videos, respectively. Overall accuracies are not the average of
class accuracies, but the ratio of correct classifications to the
total number of classifications. Now own videos are assigned
to classes by direction information, whereas external videos
are assigned using location information of image moments
(see section III-C). External video data contains more irregular
motion, so for this case direction information is less reliable.
Tables show overall and single class accuracies. In table I
the transform with the maximum accuracy 0.87 is FFT. The
transforms FCT, FST and FWT also achieve high accuracies.
As shown in fig. 7 here again FHT differs clearly from the
other transforms. Its accuracy marks the minimum with 0.29.
Considering the class accuracies for each transform we find
high accuracies for home improvement activities with clear
motion and an unique frequency feature.

For external videos FCT leads to a maximum accuracy of
0.41. Here again FHT has the lowest accuracy with 0.14.

100t Ampltuda — [ Class ACC ][ FFT [ FCT | FST | FWT | FHT |
File 0.00 | 0.00 | 0.00 | 0.75 0.00
50 Hammer 0.00 | 0.00 | 0.22 0.00 0.11
Frequency Paint Roller 0.69 | 092 | 050 | 0.79 0.15
B T T e Paste Brush (| 000 | 025 | 000 | 025 | 025
ane . . . X .
tog? Ampice FCT Putty Knife 057 | 055 | 0.52 | 043 | 0.04
| Sandpaper 0.36 0.18 0.18 0.45 0.18
5°| | Saw 033 | 022 | 0.22 0.00 0.10
YT LY ) R . Frequency Screwdriver 0.57 | 057 | 0.14 0.00 0.43
2 40 60 80 10 120 M0 160 10 200 20 240 Wrench 0.50 | 0.63 | 0.13 0.38 0.38
100t Amplituda [ Overall ACC [[ 040 [ 041 [ 027 | 032 [ 0.14 |
|
50
", ||‘\.-'| ) ) ) Frequency

If we compare results for own and external video scenes
as shown in fig. 8, it becomes apparent that own videos are
assigned twice as accurate as external videos. Moreover it can
be stated, that FFT and FCT work best for our purpose. FST
and FWT result in moderate accuracies and FHT is the weakest
approach.

B ACC own videos B ACC ext | vid
1‘0 external videos 1’0

08 08

06 06

04 04

02 L 02

00 : 00
FFT FCT FST FWT FHT

Fig. 8: Overall accuracies for own and external clips

Fast Fourier transform and fast Cosine transform plot similar
frequency spectra. Fast Sine transform is also similar to fast
Fourier transform and fast Cosine transform, but there are
accuracy decreasing differences. Due to the fact that fast Sine
transform uses odd extensions at the beginning and at the end
of a data sequence, we detect more high amplitudes for low
frequencies. Furthermore comparing fast Sine transform to fast
Fourier transform amplitudes are shifted to the low frequency
range a bit. On the whole the low frequency range is not as
reliable as the low frequency range of fast Fourier transform
or fast Cosine transform. Fast Wavelet transform works not
as accurate as fast Fourier transform, because wavelets are

875



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:7, 2012

localized in both time and frequency whereas the standard
Fourier transform is only localized in frequency. This means
fast Wavelet transform is capable to represent discontinuities
and sharp peaks of a 1D-function. Our repeating motion based
approach is impaired by representing stationary movements
inside the frequency spectrum. Fast Hadamard transform is
extremely sensitive to time shift and not invariant under
circular time shift of the input data [17]. Even a minimal
difference of the starting point of the dataset changes the
frequency domain drastically. Hence fast Hadamard transform
is not useful for repeating motion based video classification.

C. Runtime Analysis

This subsection concerns runtime of our approach with re-
gard to different transforms. The bar chart in fig. 9 shows run-
times for fast Fourier-, fast Cosine-, fast Sine-, fast Hadamard-
and fast Wavelet transform.

When classifying 100 videos with FHT the system runs 114
seconds. This means with FHT the system works faster than
with any other transform. As we have explained in section IV
FHT belongs to complexity class O(m - log(m)), where 2m
is the size of data elements. Other transforms belong to the
same complexity class, but the number of data elements is m.
FFT follows with 117 seconds at position two. Although FFT,
FCT, FST and FWT belong to the same complexity class,
FFT works fastest. Since FCT and FST modify a sequence
resulting from FFT their runtime is the sum of FFT’s runtime
and additional operations. Thus FCT and FST run up to 120
seconds. With 123 seconds FWT is located at the last position.
Here the polyphase partition and following transform-matrix
multiplication with data elements are more expensive than the
divide and conquer approach of Cooley and Tukey.

123

114

120 Runtime in seconds

g 3 % %

120

17

} ﬂ L

108 10 112 114 116 118 120 122 124

Fig. 9: System’s runtime with different transforms

VIII. RELATED WORK

Videos reveal a huge amount of information. Hence video
annotation and classification is realized in various manners.
Main techniques base on key-frames [6], texts in frames [7],
audio signals [9] and motions.

Cheng et al. analyze sports videos in [10]. Series of hori-
zontal and vertical pixel motion vectors are transformed by a

modified FFT and result in two main frequencies for each clip.
Here authors state accuracies up to 1.0 for five analyzed sports
activities, but the average class size is three and therefore not
convincing. Davis and Cutler provide a method, which is able
to capture all significant frequency peaks [16]. They obtain
frequency domain by transforming measured self-similarity of
motion via Fourier transform. Experimental results depict an
accuracy of 1.0 for each of three tested classes. Moreover
in [3] and [18] repeating motion of human body parts is
analyzed by tracking Moving Light Displays (MLD). In [3] the
frequency peaks of transformed MLD curves are considered
as features of cyclic motion. Here again transformation takes
places via Fourier coefficients. The classification of different
motion types results in high accuracies from 0.84 to 0.96.
Unfortunately authors miss to give rise about the size of
tested dataset. In paper [18] optimal MLD curve patterns
are determined by FFT. We tested this idea, but results have
shown that repeating motion patterns are a weak solution, since
patterns of the same motion type can vary drastically.

Direct comparison of transforms is provided by image
processing research: Authors of [19] compare discrete cosine,
Walsh Hadamard, Haar-Wavelet and Kekre’s transform for an
image retrieval system. Here images are transformed before the
feature extraction stage. Discrete cosine, Walsh-Hadamard and
Haar-Wavelet transforms have a maximum accuracy at 0.41
and Kekre’s transform at 0.42. In [15] HWT, WHT, DTT and
DCT are compared and analyzes show that HWT works best
for image compression using orthogonal basis functions. WHT
is positioned at the fourth place with a marginal difference to
the other transforms.

Summarizing it can be stated, that FFT and DCT are the
most commonly used transforms in image and video retrieval
context. For our frequency domain based classification method
we could not identify related research in computer vision,
which directly compares each of the above transforms.

IX. CONCLUSION

In this paper we have shown a video classification method,
which is based on the frequency of repeating movements. Fre-
quency spectra are computed by transforming spatio-temporal
image moment trajectories (1D-functions). We explained how
frequency spectra can be utilized for feature extraction and
video classification. Thereto we introduced AAFIs, which are
a strong approach for classifying videos.

Here the experimental stage discussed the transform process
of 1D-functions extensively in order to determine the best
transform for our approach. Results expose that FFT and FCT
lead on to best accuracies, where FFT has a marginal runtime
advantage. FHT is the fastest transform, but at the same time
it brings about the lowest accuracy values.

Beyond that it remains an open issue to adapt and analyze
the presented approach for real time action recognition. In
future work we intend to extend the presented approach, so as
to recognize different activities inside a single video.
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