
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1763

Abstract—This article describes design of the 8-bit asynchronous

microcontroller simulation model in VHDL. The model is created in
ISE Foundation design tool and simulated in Modelsim tool. This
model is a simple application example of asynchronous systems
designed in synchronous design tools. The design process of creating
asynchronous system with 4-phase bundled-data protocol and with
matching delays is described in the article. The model is described in
gate-level abstraction.

The simulation waveform of the functional construction is the
result of this article. Described construction covers only the
simulation model. The next step would be creating synthesizable
model to FPGA.

Keywords—Asynchronous, Microcontroller, VHDL, FPGA.

I. INTRODUCTION
HIS article has arisen at the beginning of research of the
asynchronous systems properties. The goal of the research

is the simulation of asynchronous systems by using ordinary
design tools (VHDL) and ordinary target platforms (FPGA).
At the beginning it started with asynchronous registers and
combinational blocks. Then it leads to more complex
structures like the microcontroller.

At first a simple controller without external ports and
storage RAM for data was designed. Features of the simple
controller will be explored and compared with classic
synchronous microcontrollers by simulating and following
implementation of the asynchronous circuit.

The next, introductory chapter will explain the
asynchronous system theory. The basic use of bundled-data
protocol and his VHDL code is shown in this chapter. The
third chapter contains the microcontroller design itself.
Following chapter refers to results of the simulation. The
article ends with conclusion.

II. ASYNCHRONOUS THEORY
Synchronous logical systems are used in most cases. But

the benefits of asynchronous circuits are left unnoticed.
Among the benefits are the speed, modularity, low
consumption and less electromagnetic emission. No global
control, such as clock in synchronous circuits, is here. Every
module has its own control and it communicates with each
other neighboring module. Only operating modules are active.

M. Kovac is with the Radioelectronics Department, Faculty of Electrical
Engineering and Communication, Brno University of Technology, Brno,
Czech Republic (e-mail: xkovac03@stud.feec.vutbr.cz).

Operation speed depends only on the physical properties of
semiconductor. No worst-case like in synchronous system is
estimated here.

On the other side asynchronous systems have also
disadvantages, namely the design complexity and lack of
automated design tools.

Asynchronous systems don’t have any global control, but
they communicate locally with each other. This
communication is called handshaking. There are two basic
handshaking protocols: bundled-data and dual-rail. In the
bundled-data protocol the data are packed together.
Communication control is performed by request and
acknowledge signals. The signal timing is shown in Fig. 3.
This channel is called push channel, because the sender is
active. When the receiver is active, then the channel is called
pull channel [2].

Two wires per one data bit are used in the dual-rail
protocol. The request signal is encoded with data in these two
wires. Acknowledge signal is left alone.

There are two options in these two protocols: 4-phase or 2-
phase handshaking. In the 4-phase handshaking information is
encoded in signal level. The disadvantage is superfluous
return to zero transitions. In the 2-phase handshaking
information is encoded in signal transition. This manner is
efficient but more complex. The rest of the article will reflect
only the 4-phase bundled-data protocol.

Asynchronous module block with basic communication
ports is shown in Fig. 1.

Fig. 1 Asynchronous module

Fig. 2 shows the VHDL code of this asynchronous module.

This code is the headstone for building blocks of
asynchronous microcontroller.

Asynchronous Microcontroller Simulation
Model in VHDL

M. Kovac

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1764

process begin
loop
wait until req_in='1';
--waiting for request from predecessor
ack_in<='1' after delay;
--received data acknowledge
data_out<=data_in after delay;
--data transform
req_out<='1' after delay;
--sending request for successor
wait until ack_out ='1';
--waiting for acknowledge from successor
ack_in<='0' after delay;
--assert acknowledge low for predecessor (ready
for new data)
req_out<='0' after delay;
--assert request low for sucessor
end loop;
end process;

Fig. 2 VHDL code of handshaking

Fig. 3 shows 4-phase bundled-data communication between
two modules.

Fig. 3 Bundled-data handshaking protocol

The sender issues data and sets request high, the receiver
absorbs the data and sets acknowledge high, the sender
responds by taking request low (at which point data is no
longer guaranteed to be valid) and the receiver acknowledges
this by taking acknowledge low. At this point the sender may
initiate the next communication cycle [1].

III. MICROCONTROLLER DESIGN
The microcontroller consists of a control and a data

processing parts. The control part is composed of program
counter, program memory and instruction decoder. The
Arithmetical-Logic unit (ALU) is the core of data processing
part. Further parts are input multiplexer, Accumulator register
and register file.

Fig. 4 Microcontroller block diagram

The program counter generates addresses for program
memory. The program counter increments 1 after instruction
execution. The program memory is a 256x13b ROM type
memory, which is addressed by 8 bit address from program
counter. Instruction word length is 13 bits. According to
instruction the instruction decoder generates control signals:
ALU mode, register address to register file, choice signal C
and the data to data bus. The instruction is composed of
following bits:

Fig. 5 Instruction word

where C is a control choice signal meaning immediate or
register addressing. The word R determines one from eight
registers in register file. The word A means the ALU
operation [3].

There are four instruction types in figure 5: a.) ALU
instruction with immediate value, b.) register addressing to
ALU, c.) Accumulator value movement to the selected
register in register file, d.) register loading by immediate
value.

According to the most significant instruction bit the
instruction decoder sends token either to ALU or to register
file. For an example if ALU receives token, then the C control
signal set the addressing mode. If addressing mode is register,
then ALU sends request to register file. Register file sends
data from specified register to data bus. After acknowledge
from register the ALU must feed data into second data input.
Then ALU speaks to Accumulator (send request). It returns
the data value on A input port with acknowledgement. When
the both data input ports of ALU are filled with data, ALU
will execute a specified operation and result will be on output
q. ALU then sends request to write to the Accumulator.
Accumulator stores the result and returns acknowledgement.
ALU sends back the acknowledgement to program counter
after successful execution of the instruction. Then the program
counter increments. In case of instruction, which sends token
to register file, there are two options: either the value from
dedicated register is written to gate B of ALU or the
accumulator value is written to the dedicated register in
register file. The Disadvantages of the asynchronous
implementation are more complex design and handshake
interconnections.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1765

TABLE I
INSTRUCTION SET

ADD A, IMM 00111 IIIIIIII
ADD A, R 01111 XXXXXRRR

SUB A, IMM 00101 IIIIIIII
SUB A, R 01101 XXXXXRRR

AND A, IMM 00000 IIIIIIII
AND A, R 01000 XXXXXRRR
OR A, IMM 00001 IIIIIIII
OR A, R 01001 XXXXXRRR

XOR A, IMM 00010 IIIIIIII
XOR A, R 01010 XXXXXRRR

MOV A, IMM 00011 IIIIIIII
MOV R, A 11RRR XXXXXXXX

MOV R, IMM 10RRR IIIIIIII

The construction is designed by the top-bottom method.
Firstly the basic blocks are defined as entities with data ports
only. Then the logical structure of token transfer is created.
Necessary handshaking ports (req, ack) are projected on the
basis of this token transfer structure, as it is shown in the
example in the previous chapter. After the detailed entity
definition and considering token transfer the architecture body
(block function) in each block will be completed. The simple
example is a sample design in second chapter [4].

The under mentioned VHDL code is an example of the
Accumulator architecture body. There are two concurrent
processes, because signals req_r and req_w may occur
independently from each other.

process begin
loop
wait until req_r='1';
dout<=reg after delay;
ack_r<='1' after delay;
wait until req_r='0';
ack_r<='0' after delay;
dout<=(others=>'Z') after delay;
end loop;
end process;
process begin
loop
wait until req_w='1';
reg <= din after delay;
ack_w<='1' after delay;
wait until req_w='0';
ack_w<='0' after delay;
end loop;
end process;

Fig. 6 Accumulator VHDL code of the architecture body

IV. SIMULATION RESULTS
The designed microcontroller parts in VHDL were

composed to one ensemble in top-level schematic tool showed
in Fig. 7.

Fig. 7 Microcontroller design in ISE Foundation top- level schematic

tool

The OR gates join the two mutually-exclusive output

signals to one input. The 1 ns transport delay was added to all
assignments in behavioral simulation to show the relationships
between handshaking signals.

The following simulation in Fig. 8 shows instruction
execution in memory address 01h: OR Acc, 08h. The
Instruction decoder sends request to ALU. Simultaneously the
immediate data are reached the port B with signal ALU mode.
Then ALU sends request req_r in order that the Accumulator
sends data to port A. Data was sent from Accumulator output
with acknowledge ack_r to ALU. Operation OR is performed.
The operation result is at port q and the signal req_w is
asserted to write this result to the Accumulator. Accumulator
sends the acknowledgement ack_w after storage the result in
reg. The acknowledgement ack_in_idec is asserted after
instruction finalization and sent to Instruction decoder.

Fig. 8 Instruction process simulation waveforms in Modelsim

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1766

V. CONCLUSION
The simple asynchronous circuit application in the VHDL

simulation model form was introduced in this article. The
design process of simulation model construction was
explained. The result construction was simulated by functional
simulation and the results were shown in simulation diagram.

Even if the construction seems to be complex, it has global
benefits of asynchronous circuits. The others implementations
as Null Convention Logic will be more efficient in future.

The next task is to design functional microcontroller for
synthesis and following implementation to FPGA. The
parameters between synchronous and asynchronous
constructions will be compared on this physical platform.

ACKNOWLEDGEMENT
Research described in the paper was financially supported

by the Czech Grant Agency under grant No. GA102/08/H027
"Advanced Methods, Structures and Components of
Electronic Wireless Communication", and Research
Programme of Brno University of Technology
MSM0021630513 "Electronic Communication Systems and
New Generation Technology (ELKOM)".

REFERENCES
[1] Sparso, J. Furber, S. Principles of Asynchronous Circuit Design - A

System Perspective. Boston: Kluwer Academic Publishers, 2001.
[2] Hauck, S. Asynchronous Design Methodologies: An Overview. In

Proceedings of the IEEE, Vol. 83, No. 1, pp. 69-93, January, 1995.
[3] Hwang, O. E. Digital Logic and Microprocessor Design with VHDL.

Riverside: La Sierra University, 2004. ISBN: 0-534-46593-5.
[4] Perry, L. D. VHDL: Programming by Example: Fourth Edition.

McGraw-Hill, 2002.

