
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

867

Abstract—Text categorization techniques are widely used to

many Information Retrieval (IR) applications. In this paper, we
proposed a simple but efficient method that can automatically find the
relationship between any pair of terms and documents, also an
indexing matrix is established for text categorization. We call this
method Indexing Matrix Categorization Machine (IMCM). Several
experiments are conducted to show the efficiency and robust of our
algorithm.

Keywords—Text categorization; Sub-space learning; Latent
Semantic Space

I. INTRODUCTION
LONG with the rapid development of the INTERNET,
information lying in the web increases at a progressional

speed. Facing these vast and complicated resources, how to
efficiently use these huge resources and find some key
information from them is an attractive field for researchers to
explore. Text categorization is one of these fields which can be
seen as a supervised learning task for assigning text documents
to predefined categories. Many information retrieval problems
such as filtering, searching or routing benefit from the text
categorization.

Like some other methods, such as Optimal Character
Recognition (OCR), text categorization essentially is a pattern
recognition task, and lots of classical algorithms have been
proposed to deal with this field, among which Support Vector
Machine (SVM) is a typical algorithm. Many researchers have
used SVM in their researches to deal with some difficult
recognition tasks.

Although some of these algorithms have got beautiful results
in the field of pattern recognition, they all focus on how to
separate the data points in the high dimensional space, instead
of the data points themselves. When the original data points
have some noises or something that are not profitable to the
recognition task, some of these algorithms may lose their ideal
results.

Contrary to them, here we put our focus on the data points
and propose a simple but efficient method for text
categorization task. This method is based on the latent semantic
space. We first get the term-document matrix and then Singular
Value Decomposition is used to find the axis of the latent
semantic space. After this, we project all the documents and the
terms from the original space to the semantic space, in which
we find the relationship between any pair of the term and the
document. An indexing matrix is established by which the text
categorization task can be executed efficiently.

Xu Zhao is with Shanda Innovations, Tsing Hua Tongfang Hi-Tech plaza,
No.1 Wangzhuang Road,Haidian District, Beijing China, 100083 (e-mail:
zhaoxu166@ gmail.com).

The rest of this paper is organized as follows: in section II,

Latent Semantic Indexing is reviewed; section III gives the
detailed description of our method; then in section IV, some
experiments are conducted to show the efficiency and robust of
our algorithm; finally, in section V, we give the conclusions.

II. REVIEW OF LATENT SEMANTIC INDEXING (LSI)
As a document, all its words have some semantic

relationships between each other more or less. A source of
information about semantic similarity in the given context is
co-occurrence analysis: if two terms co-occur in documents
very frequently (in a given corpus) they can be considered as
semantically related. Incorporating co-occurrence information
in a learning system for exploiting semantic similarity between
words would seem to be a very expensive task. However, a
technique has been developed in the information retrieval
literature that can extract this information automatically
[1]-[6].That is Latent Semantic Indexing (LSI).

LSI projects all documents into a space with “Latent
Semantic Dimensions”, where co-occurring terms are projected
in similar directions, while non co-occurring ones are projected
in very different directions. In such a space two documents can
have a high similarity even if they do not share the same terms
(as long as they each use terms frequently co-occurring in the
corpus) [1].Therefore, the key point is to depict the
relationships between the terms and the documents. Usually we
can use document-term matrix [7]. For m documents and n
terms, let

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mnm1

1n11

CC

CC
C

L

LLL

K

where rows are indexed by the documents of the corpus and
columns by the terms. The (j,i)-th entry of C gives the
frequency of term ti in document dj. By weighting the terms, we
can get a more reasonable relationship between terms and
documents. It is obvious that different weighting methods can
lead to different impacts [8], [9].

We transpose C to get the term-document matrix CT. Then we
apply Singular value decomposition (SVD) [10] to CT and get

CT=UQVT (1)

Where UTU=VTV=In and 1(,...,), 0n iQ diag σ σ σ= > , for

1≤ i≤ r (r is the rank of matrix CT), 0jσ = , for j≥ r+1. The

first r columns of the orthogonal matrixes U and V define the
orthonormal eigenvectors associated with the first r nonzero
eigenvalues of CTC and CCT, respectively. Now we need to
choose a value k (0 ＜ k ≤ r) to approximate CT by

Xu Zhao

An Semantic Algorithm for Text Categoritation

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

868

Ck
T=UkQkVk

T, and the space spanned by Uk is the semantic
space we want to get. Notice that CTC is the covariance matrix
of the corpus, so the first k diagonal elements of matrix Q are
the variances corresponding to the directions of the principal
axes that span Uk. So, the larger the dimension k of the
subspace Uk, the greater percentage of the variance that is
captured.

According to this idea, we choose k (0＜k≤ r) that makes

1k kσ σ +>> , which means that we want to capture the
variances as many as the original dataset, and we get

Ck
T=UkQkVk

T （2）

where Uk is made up of the first k columns of U ,and Qk is made
up of the first k rows and the first k columns of Q, and Vk is
made up of the first k columns of V. So, Ck

T is the approximate
representation of CT in the least squares sense. We can project
all the documents from the original space into the semantic
space spanned by Uk, and get every document’s representation
in the semantic space.

III. INDEXING MATRIX CATEGORIZATION MACHINE (IMCM)
Indexing Matrix Categorization Machine (IMCM) can be

viewed as a huge text relationship warehouse by which we can
get the relationship between any pair of term and document. In
section A and section B we will show how to find this semantic
relationship automatically and the whole algorithm of how to
get the indexing matrix is given. In section C Indexing Matrix
Categorization Machine is illustrated

As mentioned above, we use LSI as an auxiliary tool to
establish the huge relationship warehouse since the Latent
Semantic Space is the basic elements of our algorithm.

Concretely, we first centralize the term-document matrix to
locate the origin at the centroid of the corpus. We just the same
use CT to represent the term-document matrix which has been
centralized. By applying SVD to CT, we can get the derived k
ranked approximate matrix Ck

T=UkQkVk
T. So the Latent

Semantic Space is expanded by Uk.

A. Compute the semantic relationship between any pair of
terms

Assume that term I and J are represented as
I=(0,0,…,i,0,…0) and J=(0,0,…,j,0,…0), respectively, when I
≠ J, i and j are at the different dimension. The only non-zero
dimension indicates the weight of the term to this “document”.
In this way, we have the representation of term I and J in the
semantic space:

Isemantic =I* Uk , (3)
Jsemantic =J* Uk . (4)

where Isemantic and Jsemantic are all k ranked row vectors. Let H =
Uk*Uk

T, the inner product of Isemantic and Jsemantic can be
computed as: (Isemantic, Jsemantic) = I*Uk * Uk

T * JT = I*H*JT =
i*j*Hij. Consequently, the similarity between I and J in the
semantic space can be computed as follows:

cos(,)

(,) / (,)(,)

* * / * * * * *

/ *

semantic semantic

semantic semantic semantic semantic semantic semantic

ij ii jj

ij ii jj

I J

I J I I J J

i j H i i H j j H

H H H

=

=

=
Let

/ *ij ij ii jjT H H H= (5)

We obtain the matrix T whose elements are the similarity
between terms in the semantic space.

B. Compute the semantic relationship between any pair of
terms and documents

In order to get the semantic relationship between any pair of
terms and documents we must devise a structure by which we
can terms and documents interact with each other.

Here, we get help from section A. We first get matrix T
whose elements are the similarity between terms in the
semantic space, and we use a different form to represent a term
in the semantic space, namely, every row of T can be regarded
as a vector which represents a term, and every entry of the
vector is the similarity between this term and the other terms in
the semantic space.

What should be done next is to represent every document by
its similarity with every term. Notice that not all terms belong
to a document are positive to this document, some terms may be
noise.

Here, in view of the computation efficiency we deem one
term which appears more than twice in a document is the term
that has a topically indicative effect, and name it “topic term”.
(Of course a term that appears more than 3 times or more times
in a document also can be a criterion for selecting “topic term”,
but it will take a bit of time). Meanwhile, we view the terms
which appear only one time in a document as noise. In this way,
we can represent a document as the centroid of its topic terms.

Assume that document d contains h topic terms t1, t2, …, th
which appear f(ti) times in d, respectively. Then d can be
represented as

h h

i i i
i 1 i 1

doc (f (t)* (t)) / f(t)T
= =

= ∑ ∑ (6)

where T(ti) corresponds to the row vector of term ti in the
matrix T. Vector doc is the centroid of all d’s topic terms. By
this representation, every entry of doc is a similarity between
document d and a term. Obviously, the entries corresponding to
d’s topic terms will be larger than the noise terms.

According to this way, we compute all m document vectors,
and compose m*n matrix B. Every row of B represents a
document, and the (i,j)-th entry of B gives similarity between
the i-th document and the j-th term. Let
A=BT . (7)

Obviously, the (i,j)-th entry of A gives the similarity between
i-th term and the j-th document, and the i-th row of A gives the
similarity between the i-th term and all the documents in the
corpus. By sorting every row of A, respectively, we can get the
order of every term with all the documents.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

869

The whole algorithm procedure of getting Indexing Matrix is
given below:
1. Pretreat the corpus, and get the term-document matrix CT;
2.Centralize CT, and apply SVD to get the k ranked
approximated matrix Ck

T=UkQkVk
T;

3.Use equality (5) to obtain matrix T;
4.Compute every document’s centroid vector of all its topic
terms, and store the result in the matrix B;
5.Let A=BT, and sort every row of A to get the indexing matrix.

C. Indexing Matrix Categorization Machine (IMCM)
After getting the Indexing Matrix A (section B), we can find

the semantic relationship between any pair of term and
document. Then, we use vote to category a document. We give
every categorization a counter to note the votes it has. When a
document is coming, we should cut it and for every term the
document contains if the term appears in the matrix A of our
algorithm we will get the first K documents’ labels with which
the term has the largest semantic relationship and add
corresponding votes to the counter of the categorization. After
the same process to all the terms the document contains has
been finished, the final decision can be done by return the label
that has the most votes. The pseudocode is like this: (here for
simplicity, we assume that there are only two classes, namely,
C1 and C2)

Set counter[2] = {0}
For(every term in the text)
 If(indexing matrix A contains this term)
 Find the corresponding row r of the term
 For(i=1…K)
 If(A[r][i] belongs to class C1)
 Counter[1]++;
 Else
 Counter[2]++;
Return Counter;

In this case, we return a vector that contains the votes of all
the classes, which can be used in the multi-class case easily.

IV. EXPERIMENTS AND DISCUSSION
In this section, we will conduct some experiments to

demonstrate the efficiency and robust of our proposed
algorithm.

A. Comparison experiment results
The experiments are conducted on a set of 7500 web

documents randomly download from the internet. There are 5
different categorizations, namely, 电影(Film), 乒乓球(Ping

Pang), 美食 (Eating), 财经 (Finance) and 军事 (Military
Affairs). Every categorization has 1500 documents and we use
1000 documents to train, the left are used for test.

Here, we compare our method with the famous algorithm
Support Vector Machine (SVM), since SVM has been deemed
as the most efficient and robust algorithm for categorization
works. Also here we make K in our algorithm equal 20, and the
comparison results of changing parameter K will be given in
the next section.

The experiments results are shown in table I and table II:

TABLE II

THE ACCURACY RATIO AND RECALL RATION OF SVM.

Categorization Accuracy Ratio Recall Ratio

电影(Film) 0.995833 0.478000

乒乓球(Ping Pang) 0.995444 0.874000

美食(Eating) 0.899420 0.930000

财经(Finance) 0.474738 0.996000

军事(Military Affairs) 1.000000 0.510000

From the results, we can see that the average performance of

IMCM is better than SVM for a lot. Through the accuracy ratio
of SVM may surpass IMCM for some special categorizations,
for instance, “电影(Film)” and 军事(Military Affairs). But the
recall ratios of these two categorizations gotten by SVM are
very low. On the contrary, the recall ratios gotten by IMCM are
almost two times than that in SVM, which indicates that IMCM
is more robust than SVM.

B. Discussion about parameter K used in IMCM
In this section, we will test the stability of IMCM with

changing of parameter K. We change the parameter K by
interval 5 and report the Accuracy Ratio and the Recall Ratio of
the algorithm. The results are shown below:

TABLE I
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 5..

Categorization Accuracy Ratio Recall Ratio

电影(Film) 0.912477 0.980000

乒乓球(Ping Pang) 0.997763 0.892000

美食(Eating) 0.980198 0.990000

财经(Finance) 0.844948 0.970000

军事(Military Affairs) 0.963387 0.842000

TABLE I
THE ACCURACY RATIO AND RECALL RATION OF IMCM.

Categorization Accuracy Ratio Recall Ratio

电影(Film) 0.912477 0.980000

乒乓球(Ping Pang) 0.995475 0.880000

美食(Eating) 0.915285 0.994000

财经(Finance) 0.944773 0.958000

军事(Military Affairs) 0.940552 0.886000

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

870

TABLE II
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 10.

Categorization Accuracy Ratio Recall Ratio

电影(Film) 0.910615 0.978000

乒乓球(Ping Pang) 0.995516 0.888000

美食(Eating) 0.927239 0.994000

财经(Finance) 0.919694 0.962000

军事(Military Affairs) 0.958515 0.878000

TABLE III
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 15.

Categorization Accuracy Ratio Recall Ratio

电影(Film) 0.913858 0.976000

乒乓球(Ping Pang) 0.995506 0.886000

美食(Eating) 0.915285 0.994000

财经(Finance) 0.941176 0.960000

军事(Military Affairs) 0.942308 0.882000

TABLE IV
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 20.

Categorization Accuracy Ratio Recall Ratio

电影(Film) 0.912477 0.980000

乒乓球(Ping Pang) 0.995475 0.880000

美食(Eating) 0.915285 0.994000

财经(Finance) 0.944773 0.958000

军事(Military Affairs) 0.940552 0.886000

From these results we can see that there is no big disturbance

during the changing of K, which demonstrates the robust of
IMCM.

V. CONCLUSIONS

In this paper, we propose a simple but efficient method
called Indexing Matrix Categorization Machine (IMCM) for
text categorization task, which is based on the latent semantic
space. By using the relationship between any pair of
term and document, some counters are set to vote
and return the class that has the most votes. Several
experiments are conducted to show the efficiency
and robust of our algorithm.

REFERENCES
[1] Cristianini, N., Lodhi, H., Shawe-Taylor, J.: Latent Semantic Kernels for

Feature Selection. NeuroCOLT Working Group (2000),
http://www.neurocolt.org

[2] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., &
Harshman, R.(1990). Indexing By Latent Semantic Analysis. Journal of
the American Society For Information Science, 41, 391-407.

[3] Landauer, T. K., Foltz, P. W., & Laham, D. (this issue). An introduction
to Latent Semantic Analysis. Discourse Processes .

[4] Foltz, P. W. (1996). Latent Semantic Analysis for text-based research.
Behavior Research Methods, Instruments and Computers, 28(2),
197-202.

[5] Letsche, T.A. & Berry, M.W. (1997). Large-scale information retrieval
with Latent Semantic Indexing. Information Sciences – Applications,
100, 105-137.

[6] Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato's problem:
The Latent Semantic Analysis heory of acquisition, induction and
representation of knowledge. Psychological Review, 104, 211-240.

[7] Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis.
Cambridge University, Press, Cambridge (2004)

[8] Dumais, S.T.: Improving the Retrieval of Information from External
Sources. Behav. Res. Meth. Instr. Comput. 23, 229–236 (1991)

[9] Debole, F., Sebastiani, F.: Supervised Term Weighting for Automated T
ext Categorization. In: SAC 2003, pp. 784–788. ACM Press, New York
(2004)

[10] Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using Linear Algebra for
Intelligent Information Eetrieval. SIAM: Review 37, 573–595 (1995)

