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Abstract—Text categorization techniques are widely used to 

many Information Retrieval (IR) applications. In this paper, we 
proposed a simple but efficient method that can automatically find the 
relationship between any pair of terms and documents, also an 
indexing matrix is established for text categorization. We call this 
method Indexing Matrix Categorization Machine (IMCM). Several 
experiments are conducted to show the efficiency and robust of our 
algorithm. 
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I. INTRODUCTION 
LONG with the rapid development of the INTERNET, 
information lying in the web increases at a progressional 

speed. Facing these vast and complicated resources, how to 
efficiently use these huge resources and find some key 
information from them is an attractive field for researchers to 
explore. Text categorization is one of these fields which can be 
seen as a supervised learning task for assigning text documents 
to predefined categories. Many information retrieval problems 
such as filtering, searching or routing benefit from the text 
categorization.  

Like some other methods, such as Optimal Character 
Recognition (OCR), text categorization essentially is a pattern 
recognition task, and lots of classical algorithms have been 
proposed to deal with this field, among which Support Vector 
Machine (SVM) is a typical algorithm. Many researchers have 
used SVM in their researches to deal with some difficult 
recognition tasks.  

Although some of these algorithms have got beautiful results 
in the field of pattern recognition, they all focus on how to 
separate the data points in the high dimensional space, instead 
of the data points themselves. When the original data points 
have some noises or something that are not profitable to the 
recognition task, some of these algorithms may lose their ideal 
results. 

Contrary to them, here we put our focus on the data points 
and propose a simple but efficient method for text 
categorization task. This method is based on the latent semantic 
space. We first get the term-document matrix and then Singular 
Value Decomposition is used to find the axis of the latent 
semantic space. After this, we project all the documents and the 
terms from the original space to the semantic space, in which 
we find the relationship between any pair of the term and the 
document. An indexing matrix is established by which the text 
categorization task can be executed efficiently. 
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The rest of this paper is organized as follows: in section II, 

Latent Semantic Indexing is reviewed; section III gives the 
detailed description of our method; then in section IV, some 
experiments are conducted to show the efficiency and robust of 
our algorithm; finally, in section V, we give the conclusions. 

II.  REVIEW OF LATENT SEMANTIC INDEXING (LSI) 
As a document, all its words have some semantic 

relationships between each other more or less. A source of 
information about semantic similarity in the given context is 
co-occurrence analysis: if two terms co-occur in documents 
very frequently (in a given corpus) they can be considered as 
semantically related. Incorporating co-occurrence information 
in a learning system for exploiting semantic similarity between 
words would seem to be a very expensive task. However, a 
technique has been developed in the information retrieval 
literature that can extract this information automatically 
[1]-[6].That is Latent Semantic Indexing (LSI). 

LSI projects all documents into a space with “Latent 
Semantic Dimensions”, where co-occurring terms are projected 
in similar directions, while non co-occurring ones are projected 
in very different directions. In such a space two documents can 
have a high similarity even if they do not share the same terms 
(as long as they each use terms frequently co-occurring in the 
corpus) [1].Therefore, the key point is to depict the 
relationships between the terms and the documents. Usually we 
can use document-term matrix [7]. For m documents and n 
terms, let 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mnm1

1n11

CC

CC
C

L

LLL

K

 
where rows are indexed by the documents of the corpus and 
columns by the terms. The (j,i)-th entry of C gives the 
frequency of term ti in document dj. By weighting the terms, we 
can get a more reasonable relationship between terms and 
documents. It is obvious that different weighting methods can 
lead to different impacts [8], [9]. 

We transpose C to get the term-document matrix CT. Then we 
apply Singular value decomposition (SVD) [10] to CT and get 

CT=UQVT                         (1) 

Where UTU=VTV=In and 1( ,..., ), 0n iQ diag σ σ σ= > , for 

1≤ i≤ r (r is the rank of matrix CT), 0jσ = , for j≥ r+1. The 

first r columns of the orthogonal matrixes U and V define the 
orthonormal eigenvectors associated with the first r nonzero 
eigenvalues of CTC and CCT, respectively. Now we need to 
choose a value k (0 ＜ k ≤ r) to approximate CT by 
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Ck
T=UkQkVk

T, and the space spanned by Uk is the semantic 
space we want to get. Notice that CTC is the covariance matrix 
of the corpus, so the first k diagonal elements of matrix Q are 
the variances corresponding to the directions of the principal 
axes that span Uk. So, the larger the dimension k of the 
subspace Uk, the greater percentage of the variance that is 
captured. 

According to this idea, we choose k (0＜k≤ r) that makes 

1k kσ σ +>> , which means that we want to capture the 
variances as many as the original dataset, and we get 

Ck
T=UkQkVk

T                   （2） 

where Uk is made up of the first k columns of U ,and Qk is made 
up of the first k rows and the first k columns of Q, and Vk is 
made up of the first k columns of V. So, Ck

T is the approximate 
representation of CT in the least squares sense. We can project 
all the documents from the original space into the semantic 
space spanned by Uk, and get every document’s representation 
in the semantic space. 

III. INDEXING MATRIX CATEGORIZATION MACHINE (IMCM) 
Indexing Matrix Categorization Machine (IMCM) can be 

viewed as a huge text relationship warehouse by which we can 
get the relationship between any pair of term and document. In 
section A and section B we will show how to find this semantic 
relationship automatically and the whole algorithm of how to 
get the indexing matrix is given. In section C Indexing Matrix 
Categorization Machine is illustrated  

As mentioned above, we use LSI as an auxiliary tool to 
establish the huge relationship warehouse since the Latent 
Semantic Space is the basic elements of our algorithm. 

Concretely, we first centralize the term-document matrix to 
locate the origin at the centroid of the corpus. We just the same 
use CT to represent the term-document matrix which has been 
centralized. By applying SVD to CT, we can get the derived k 
ranked approximate matrix Ck

T=UkQkVk
T. So the Latent 

Semantic Space is expanded by Uk. 

A.  Compute the semantic relationship between any pair of 
terms  

Assume that term I and J are represented as 
I=(0,0,…,i,0,…0) and J=(0,0,…,j,0,…0), respectively, when I
≠ J, i and j are at the different dimension. The only non-zero 
dimension indicates the weight of the term to this “document”. 
In this way, we have the representation of term I and J in the 
semantic space: 
 

Isemantic =I* Uk ,                   (3) 
Jsemantic =J* Uk .                   (4) 

 
where Isemantic and Jsemantic are all k ranked row vectors. Let H = 
Uk*Uk

T, the inner product of Isemantic and Jsemantic can be 
computed as: (Isemantic, Jsemantic) = I*Uk * Uk

T * JT = I*H*JT = 
i*j*Hij. Consequently, the similarity between I and J in the 
semantic space can be computed as follows: 
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We obtain the matrix T whose elements are the similarity 
between terms in the semantic space. 

B. Compute the semantic relationship between any pair of 
terms and documents 

In order to get the semantic relationship between any pair of 
terms and documents we must devise a structure by which we 
can terms and documents interact with each other.  

Here, we get help from section A. We first get matrix T 
whose elements are the similarity between terms in the 
semantic space, and we use a different form to represent a term 
in the semantic space, namely, every row of T can be regarded 
as a vector which represents a term, and every entry of the 
vector is the similarity between this term and the other terms in 
the semantic space. 

What should be done next is to represent every document by 
its similarity with every term. Notice that not all terms belong 
to a document are positive to this document, some terms may be 
noise. 

Here, in view of the computation efficiency we deem one 
term which appears more than twice in a document is the term 
that has a topically indicative effect, and name it “topic term”. 
(Of course a term that appears more than 3 times or more times 
in a document also can be a criterion for selecting “topic term”, 
but it will take a bit of time). Meanwhile, we view the terms 
which appear only one time in a document as noise. In this way, 
we can represent a document as the centroid of its topic terms.  

Assume that document d contains h topic terms t1, t2, …, th 
which appear f(ti) times in d, respectively. Then d can be 
represented as 

h h

i i i
i 1 i 1

doc (f (t )* (t )) / f(t )T
= =

= ∑ ∑           (6) 

where T(ti) corresponds to the row vector of term ti in the 
matrix T. Vector doc is the centroid of all d’s topic terms. By 
this representation, every entry of doc is a similarity between 
document d and a term. Obviously, the entries corresponding to 
d’s topic terms will be larger than the noise terms. 

According to this way, we compute all m document vectors, 
and compose m*n matrix B. Every row of B represents a 
document, and the (i,j)-th entry of B gives similarity between 
the i-th document and the j-th term. Let 
A=BT .                        (7) 

Obviously, the (i,j)-th entry of A gives the similarity between 
i-th term and the j-th document, and the i-th row of A gives the 
similarity between the i-th term and all the documents in the 
corpus. By sorting every row of A, respectively, we can get the 
order of every term with all the documents. 
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The whole algorithm procedure of getting Indexing Matrix is 
given below: 
1. Pretreat the corpus, and get the term-document matrix CT; 
2.Centralize CT, and apply SVD to get the k ranked 
approximated matrix Ck

T=UkQkVk
T; 

3.Use equality (5) to obtain matrix T; 
4.Compute every document’s centroid vector of all its topic 
terms, and store the result in the matrix B; 
5.Let A=BT, and sort every row of A to get the indexing matrix. 

C. Indexing Matrix Categorization Machine (IMCM) 
After getting the Indexing Matrix A (section B), we can find 

the semantic relationship between any pair of term and 
document. Then, we use vote to category a document. We give 
every categorization a counter to note the votes it has. When a 
document is coming, we should cut it and for every term the 
document contains if the term appears in the matrix A of our 
algorithm we will get the first K documents’ labels with which 
the term has the largest semantic relationship and add 
corresponding votes to the counter of the categorization. After 
the same process to all the terms the document contains has 
been finished, the final decision can be done by return the label 
that has the most votes. The pseudocode is like this: (here for 
simplicity, we assume that there are only two classes, namely, 
C1 and C2) 

Set counter[2] = {0} 
For(every term in the text) 
  If(indexing matrix A contains this term) 
    Find the corresponding row r of the term  
 For(i=1…K) 
   If(A[r][i] belongs to class C1) 
     Counter[1]++; 
   Else 
  Counter[2]++; 
Return Counter; 

In this case, we return a vector that contains the votes of all 
the classes, which can be used in the multi-class case easily. 

IV. EXPERIMENTS AND DISCUSSION 
In this section, we will conduct some experiments to 

demonstrate the efficiency and robust of our proposed 
algorithm. 

A. Comparison experiment results 
The experiments are conducted on a set of 7500 web 

documents randomly download from the internet. There are 5 
different categorizations, namely, 电影(Film), 乒乓球(Ping 

Pang), 美食 (Eating), 财经 (Finance) and 军事 (Military 
Affairs). Every categorization has 1500 documents and we use 
1000 documents to train, the left are used for test. 

Here, we compare our method with the famous algorithm 
Support Vector Machine (SVM), since SVM has been deemed 
as the most efficient and robust algorithm for categorization 
works. Also here we make K in our algorithm equal 20, and the 
comparison results of changing parameter K will be given in 
the next section. 

The experiments results are shown in table I and table II: 
 

 
TABLE II 

THE ACCURACY RATIO AND RECALL RATION OF SVM. 

Categorization Accuracy Ratio Recall Ratio 

电影(Film) 0.995833 0.478000 

乒乓球(Ping Pang) 0.995444 0.874000 

美食(Eating) 0.899420 0.930000 

财经(Finance) 0.474738 0.996000 

军事(Military Affairs) 1.000000 0.510000 

 
From the results, we can see that the average performance of 

IMCM is better than SVM for a lot. Through the accuracy ratio 
of SVM may surpass IMCM for some special categorizations, 
for instance, “电影(Film)” and 军事(Military Affairs). But the 
recall ratios of these two categorizations gotten by SVM are 
very low. On the contrary, the recall ratios gotten by IMCM are 
almost two times than that in SVM, which indicates that IMCM 
is more robust than SVM. 

B.  Discussion about parameter K used in IMCM 
In this section, we will test the stability of IMCM with 

changing of parameter K. We change the parameter K by 
interval 5 and report the Accuracy Ratio and the Recall Ratio of 
the algorithm. The results are shown below: 
 

TABLE I 
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 5.. 

Categorization Accuracy Ratio Recall Ratio 

电影(Film) 0.912477 0.980000 

乒乓球(Ping Pang) 0.997763 0.892000 

美食(Eating) 0.980198 0.990000 

财经(Finance) 0.844948 0.970000 

军事(Military Affairs) 0.963387 0.842000 

 
 

TABLE I 
THE ACCURACY RATIO AND RECALL RATION OF IMCM. 

Categorization Accuracy Ratio Recall Ratio 

电影(Film) 0.912477 0.980000 

乒乓球(Ping Pang) 0.995475 0.880000 

美食(Eating) 0.915285 0.994000 

财经(Finance) 0.944773 0.958000 

军事(Military Affairs) 0.940552 0.886000 
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TABLE II 
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 10. 

Categorization Accuracy Ratio Recall Ratio 

电影(Film) 0.910615 0.978000 

乒乓球(Ping Pang) 0.995516 0.888000 

美食(Eating) 0.927239 0.994000 

财经(Finance) 0.919694 0.962000 

军事(Military Affairs) 0.958515 0.878000 

TABLE III 
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 15. 

Categorization Accuracy Ratio Recall Ratio 

电影(Film) 0.913858 0.976000 

乒乓球(Ping Pang) 0.995506 0.886000 

美食(Eating) 0.915285 0.994000 

财经(Finance) 0.941176 0.960000 

军事(Military Affairs) 0.942308 0.882000 

TABLE IV 
THE ACCURACY RATIO AND RECALL RATION OF IMCM WITH K EQUALS 20. 

Categorization Accuracy Ratio Recall Ratio 

电影(Film) 0.912477 0.980000 

乒乓球(Ping Pang) 0.995475 0.880000 

美食(Eating) 0.915285 0.994000 

财经(Finance) 0.944773 0.958000 

军事(Military Affairs) 0.940552 0.886000 

 
From these results we can see that there is no big disturbance 

during the changing of K, which demonstrates the robust of 
IMCM.  

V. CONCLUSIONS 

In this paper, we propose a simple but efficient method 
called Indexing Matrix Categorization Machine (IMCM) for 
text categorization task, which is based on the latent semantic 
space. By using the relationship between any pair of 
term and document, some counters are set to vote 
and return the class that has the most votes. Several 
experiments are conducted to show the efficiency 
and robust of our algorithm. 
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