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Abstract—This paper describes vibration analysis using the finite 

element method for a small earphone, especially for the diaphragm 

shape with a low-rigidity. The viscoelastic diaphragm is supported by 

multiple nonlinear concentrated springs with linear hysteresis 

damping. The restoring forces of the nonlinear springs have cubic 

nonlinearity. The finite elements for the nonlinear springs with 

hysteresis are expressed and are connected to the diaphragm that is 

modeled by linear solid finite elements in consideration of a complex 

modulus of elasticity. Further, the discretized equations in physical 

coordinates are transformed into the nonlinear ordinary coupled 

equations using normal coordinates corresponding to the linear natural 

modes. We computed the nonlinear stationary and non-stationary 

responses due to the internal resonance between modes with large 

amplitude in the nonlinear springs and elastic modes in the diaphragm. 

The non-stationary motions are confirmed as the chaos due to the 

maximum Lyapunov exponents with a positive number. From the time 

histories of the deformation distribution in the chaotic vibration, we 

identified nonlinear modal couplings. 

 

Keywords—Nonlinear Vibration, Finite Element Method, 

Chaos ,Small Earphone. 

I. INTRODUCTION 

HE small diaphragm typically used in small earphones 

usually vibrates with complicated deformation of the entire 

diaphragm body. The rigidity of this type of diaphragm can be 

adjusted by changing the dimensional values of the design 

parameters such as the diameter, shape of the center dome, and 

shape of the helical channel of the periphery known as 

corrugation. However, because of the nonlinear 

load-displacement relation of the diaphragm, nonlinear 

vibrations are expected. The rigidity of a part of the diaphragm 

is not uniform because a lead wire, used for conducting 

electricity to the electric conductor, is glued to the back of the 

diaphragm; therefore, the out-plane displacement of the 

diaphragm in the circumferential direction could become 

uneven. Furthermore, although the displacement of the 

diaphragm is usually kept small to suppress the nonlinear 

vibrations owing to an emphasis on the linearity of the vibration 

amplitude and the uniformity of the excitation force, to obtain 

the necessary output from the miniaturized units containing 
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diaphragms, it has recently become necessary to increase the 

vibration amplitude with respect to the diameter of the 

diaphragm. Depending on the vibration modal coupling 

characteristics, both transient and chaotic vibrations are 

expected to occur. Hence, the vibration analysis of small-sized 

earphone diaphragms with nonlinearity has become very 

important. Research on the vibration characteristics of systems 

containing nonlinear concentrated springs has been conducted. 

For example, Kondo proposed a high-speed stability criterion 

method concerning the forced vibration of a structure 

connected with nonlinear supporting beams [1]. Shaw 

conducted a nonlinear analysis of a system involving a beam 

with simple supports at two ends supported by a nonlinear 

concentrated spring in the middle [2]. On the other hand, 

Yamaguchi analyzed the coupled vibration of a system 

involving a block-shaped structure supported by a nonlinear 

concentrated spring, by using linear finite elements to model 

the elastic body [3], [4]. Yamaguchi proposed a high-speed 

computation method for a response that introduces a normal 

coordinate corresponding to a linear vibration mode, and 

expanded this method to formulate a viscoelastic block 

connected to a nonlinear concentrated spring with linear 

hysteresis damping in the restoring force [5]. Moreover, a 

considerable amount of research has been conducted on the 

nonlinear vibration characteristics of systems consisting of an 

elastic structure and nonlinear concentrated springs and the 

chaotic vibration phenomena of plates and shells due to internal 

resonance [6]–[8]. However, nonlinear response analyses of the 

transient and chaotic vibrations of small earphone diaphragms 

have not yet been carried out. In the present study, the 

characteristics of nonlinear springs were identified by an actual 

measurement of the load-displacement relationship of the 

diaphragm, and the soft portion at the periphery of the 

diaphragm was modeled by using several nonlinear 

concentrated springs with hysteresis. The resonance response 

of the center section of the diaphragm supported with these 

nonlinear concentrated springs was analyzed. Because the 

out-plane displacement of the diaphragm is dominated by the 

effect of the deformation of the nonlinear springs, the 

geometric nonlinearity of the center section of the diaphragm 

was not considered. The precision of the numerical 

computation in comparison to that of the actual examination 

model was verified in a previous study. The steady-state and 

transient vibration responses were analyzed by applying cyclic 

external excitation forces to the system. Furthermore, from the 

time history of the response, the largest Lyapunov exponent 

was calculated, and it was verified that the transient response 

was a chaotic vibration [9]. 

Chaotic Oscillations of Diaphragm Supported by 

Nonlinear Springs with Hysteresis 
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II.  SIMULATION MODEL 

Fig. 1 shows the model used in the simulation. The shape of 

the section near the central portion of the diaphragm and the 

electric conductor vibrating in conjunction with the diaphragm 

are modeled by using finite elements. 

 

 
Fig. 1 Simulation model 

 

 
Fig. 2 Restoring force of nonlinear concentrated springs 

(●: Experiment —: Approximation) 

 

The center section has a diaphragm thickness of 10 µm, a 

diameter of 7.0 mm, and a height of 1.0 mm. The densities of 

the diaphragm and electric conductor are 6.12 × 10
2
 kg/m

3
 and 

8.78 × 10
3
 kg/m

3
, respectively. To consider the compliance of 

the back air chamber, an equivalent elastic element is 

introduced at the back of the diaphragm. The origin of the 

model is set at the center of the bottom surface of the x-y plane 

of the diaphragm, and the excitation direction is along the z 

direction. Response points are set around the periphery of the 

central part of the center section. The center section and the 

electric conductor are modeled by the isoparametric solid 

elements of eight nodes [10]. Concentrated springs are used for 

modeling the very soft portion around the outer edge of the 

electric conductor of the diaphragm, and three concentrated 

springs are placed at each node at the circumference of the 

diaphragm center section in the x, y, and z directions. The 

concentrated spring in the z direction is a nonlinear 

concentrated spring. Fig. 2 shows the static load-displacement 

curve of the nonlinear concentrated spring. The dynamic 

analysis considers hysteresis with a complex spring having a 

hardening spring characteristic of the restoring force. The 

Young’s modulus of the diaphragm center section is 3.07 GPa, 

and the Poisson’s ratio is 0.29. The electric conductor has an 

equivalent Young’s modulus of 33.0 GPa , considering the 

resin adhesive layer. The spring constants of the nonlinear 

springs are as follows: mmNmz /1054.4 3

1

−×=γ , 

22

2 /1053.1 mmNmz

−×=γ , and 32

3 /1082.1 mmNmz

−×=γ . 

Further, the material loss factor ηs is 0.01. The spring constants 

in the x and y directions are mmNmymx /1054.4 3−×== γγ . A 

material loss factor ηs of the same value as that of the nonlinear 

spring in the z direction was given. 

III. ANALYSIS METHOD 

As shown in Fig. 1, a case in which the center section of the 

diaphragm is supported with multiple nonlinear concentrated 

springs is considered. The discretization equation of the finite 

elements of this system is calculated. 

A. Discretization Equations of Nonlinear Concentrated 

Springs 

The force at the node of the nonlinear concentrated spring is 

expressed as 
mzmzmz UR 1γ= 2

2 mzmzUγ+
3

3 mzmz Uγ+ , 

(m = 1, 2, 3, …). mzU  is the z direction displacement of the 

node corresponding to the installation point of the nonlinear 

concentrated spring to the diaphragm center section. The 

relationship between 
mzR  and 

mzU  is described using a 

matrix, and the following formula is obtained: 

 

}{}]{[}{ 1 msmm dUR += γ                                              (1) 

where 
T

mzmymxmR },,{}{ γγγ= , 

T

mzmymxs UUUU },,{}{ = , 

T

mzmzmzmzm UUd },0,0{}{
3

3

2

2 γγ += . 

 

Furthermore, 0== mymx γγ . }{ mR  is the restoring 

force vector of the m nonlinear concentrated spring, }{ sU  is 

the node displacement vector, ][ 1mγ  is the linear complex 

stiffness matrix, and }{ md  is the nonlinear restoring force 

vector. Linear hysteresis damping is introduced into the 

concentrated spring by setting )1(11 smzmz jηγγ += . Here, 

mz1γ  is the real number part of 
mz1γ , 

sη  is the material loss 

factor corresponding to the linear restoring force of the 

concentrated spring, and j  is an imaginary unit. 

B. Discretization Equations of Center Section of Viscoelastic 

Diaphragm 

The center section of the diaphragm is partitioned into 

three-dimensional finite elements. Assuming that the 

deformation of the finite elements is small, we use ordinary 

linear three-dimensional elements. The displacement vector in 

each element is { } { }T

zyxd UUUU ,,= , which can be 

approximated with node displacement vector { }eU  and shape 
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function [ ]T
N  according to the following equation: 

{ } [ ] { }e

T

d UNU =                                                                  (2) 

 

The relation between the stress vector 

{ } { }T

zxyzxyzyx τττσσσσ =  and the strain vector 

{ } { }T

zxyzxyzyx γγγεεεε =  is converted into the 

following relation: 

 

{ } [ ]{ }εσ D=                                                                           (3) 

 

[ ]D  is a matrix consisting of the modulus of elasticity eE  a

nd Poisson’s ratio eν . The relation between the displacement 

vector { }dU  and the strain vector { }ε  can then be expressed as 

follows: 

 

{ } [ ]{ } [ ][ ] { } [ ]{ }ee

T

d UBUNAUA ===ε                          (4) 

 

From (2) and (4), by calculating the work based on the strain 

energy, kinetic energy, and external force of the element and by 

solving the discretization equation of the section center of the 

diaphragm excluding the spring elements on the basis of the 

virtual work principle, we can express the mass matrix of the 

center section of the diaphragm ][ fM , the complex stiffness 

matrix ][ fK , the node displacement vector }{ fU , and the 

nodal force vector }{ fF  as the following relation. • indicates 

time differentiation. 

 

}{}]{[}]{[ fffff FUKUM +−=ɺɺ                               (5) 

C. Discretization Equations of System Connecting 

Viscoelastic Diaphragm Center Section and Nonlinear Spring 

The nodal force due to the nonlinear concentrated spring in 

the z direction }{ mR  is added to the nodal force of the node 

that connects the diaphragm center section. From this, we 

obtained the discretization equation of the entire system. 

 

}{}ˆ{}]{[}]{[ FdUKUM +−−=ɺɺ                              (6) 

{ } { }∑=
m

mdd ˆˆ

 

 

][M , ][K , }{U , and }{F  are the mass matrix, complex 

stiffness matrix, nodal displacement vector, and nodal force 

vector, respectively. }ˆ{ md  corrects the size }{ md  of the 

vector of the nonlinear restoring force in (1) as the size of the 

entire system. 

D. Approximate Computation of Modal Damping 

In (6), the terms of the external force and the nonlinear 

restoring force are {0}. Assuming 
tjeU ωφ}{}{ =  (t: time), we 

obtain the following eigenvalue problem equation: 

 

∑
=

+
max

1

)1(]([
e

e

eeR jK η                                                                   (7) 

}0{}){])[1()( )()(2)( =+− i

e

i

tot

i Mj φηω
 

 

where )(i  denotes the mode number of the vibration; 2)( )( iω , 

the real part of the complex eigenvalue; }{ )(iφ , the complex 

normal mode; and ηtot

(i)
, the modal loss factor. A normalized 

factor, the material damping coefficient 
eη ),...3,2,1( maxee =  

with respect to the maximal in all the elements maxη , 
eβ  is 

defined as follows: 

 

1,/ max ≤= eee βηηβ                                                             (8) 

 

Here, assuming 1max <<η , introducing a small quantity 

maxηµ j= , and expanding the solution of (7) asymptotically 

lead to the following equations: 

 
( ) ( ) ( ) 2 ( )

0 1 2{ } { } { } { } ,...i i i iφ φ µ φ µ φ= + + +                         (9) 

,...)()()()( 2)(

4

42)(

2

22)(

0

2)( +++= iiii ωµωµωω           (10) 

,...)(

7

7)(

5

5)(

3

3)(

1

)( ++++= iiiii

totj ηµηµηµµηη             (11) 

 

Because β e ≤ 1  and ,  is also a small 

quantity, the same as µ . Further, {φ(i)}0 , 1

)( }{ iφ ,… with 

(ω0

(i))2
, 2)(

2 )( iω ,…, and η1

(i)
, 

)(

3

iη ,… are real numbers. 

Substituting (9)–(11) and (7) and rearranging the terms of  

and µ1 yields the following equation: 

 

( ) ( )( )∑
=

=
max

1

e

e

i

ee

i

tot Sηη ,                                                                      (12) 

( ) ( )∑
=

=
max

1

0

)(

0

)(

0

)(

0

)( }{][}{/}{][}{
e

e

i

eR

Tii

eR

Tii

e KKS φφφφ          

          
)(i

eS  is the share of the strain energy (strain energy of 

element e /strain energy of all systems) of each element under 

the condition of the deformation of the i-degree vibration mode. 

{φ ( i)}0
 denotes the real normal mode. From (12), we can 

calculate the approximate modal loss factor η tot

( i ) using the sum 

of the product of the material loss factor 
eη  and the share of the 

strain energy )(i

eS  of all elements. )(i

eeSη  is equivalent to the 

share of each element’s dissipation energy. 

E. Conversion to Normal Coordinates of Nonlinear 

Discretization Equations 

The equation of motion described with physical coordinates 

in (6) has large degrees of freedom, and hence, the calculation 

ηmaxβe <<1 µβe

µ0
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time increases substantially. Therefore, normal coordinates 

corresponding to the linear normal vibration mode are 

introduced into (6) to reduce the degrees of freedom [3]–[5]. 

Here, the linear normal vibration mode }{ )(iφ  closely 

resembles 
0

)()( }{}{ ii φφ ≅  by {φ ( i)}0
 of Section 3.D. By 

introducing the normal coordinate 
ib

~
 corresponding to this 

{φ ( i )} 0
, we can express displacement }{U  as the following 

equation: 

 

=}{U ∑
=1

)/1(
i

in 0

)( }
~

{
~ i

ib φ                                                   (13) 

 

Here, {φ(i)}0 ={˜ φ (i)}0 /ni
, mi = {φ ( i)}0

T
[M ]{φ ( i)}0

, 

n i = (m i)
−(1/ 2)

, { ˜ φ ( i)}0

T
[M]{ ˜ φ ( i)}0 =1 . By substitution of 

(13) into (6) and applying the normal coordinates, we can 

obtain the nonlinear simultaneous third-order ordinary 

differential equation. 

 

i

i

i

ii

totii bbbbM
~

)(
~~

)
~

( 2)(

0

)(

0

)(
ωωη ++≡

ɺɺɺ
                           (14) 

 
lkjijkl

j k l

kjijk

j k

bbbEbbD
~~~~~~~

∑∑∑∑∑ ++  

,...)3,2,1,,,( =lkji  

where }{}
~

{
~

0

)( FnP
Ti

ii φ= ， 

mzk

m

mzjmzikjimzijk nnnD ααα φφφγ
~~~

))/((
~

1

2∑
=

= , 

mzlmzkmzj

m

mzilkjimzijkl nnnnE αααα φφφφγ
~~~~

))/((
~

1

3∑
=

= , 

T

XiziYiXiziYiXi

i ,...}
~

,
~

,
~

,
~

,
~

,
~

,
~

{}
~

{ 32221110

)( φφφφφφφφ = . 

 

mziαφ
~

 is the z component of 
0

)( }
~

{ iφ  in the connecting node 

of 
mα the nonlinear spring and the diaphragm center section. 

Equation (14) has substantially reduced degrees of freedom in 

comparison with (6). 

IV. RESONANCE FREQUENCY AND NORMAL MODES 

Resonant frequencies and normal modes were obtained and 

compared through an eigenvalue analysis. The main results are 

shown in Fig. 3. Modes 1 and 2 are resonant modes of the 

translational motion in the x and y directions. Modes 3–5 are 

the resonant modes of the rotation for the x, y, and z axial center 

of the center section. Mode 6 is the expansion and contraction 

of the nonlinear concentrated spring in the z direction, the main 

resonant mode. Modes 7 and 8 are the resonant modes of the 

saddle-shaped elastic deformation. Mode 9 is the resonant 

mode of the elastic deformation of the plate vibration. Modes 

10 and 11 are the resonant modes of the higher order elastic 

deformation of the plate vibration. Modes 12 and 13 are the 

resonant modes of the relatively high-order saddle-shaped 

elastic deformation. Modes 14 and 15 are the resonant modes of 

the higher order elastic deformation of the plate vibration. 

V.   LINEAR VIBRATION CHARACTERISTICS 

A small external excitation force iP
~

, which is represented 

by a triangular pulse shown in Fig. 4, was applied to the 

excitation point. The spectrum of the response to this small 

input condition, which is a linear frequency response curve, 

shows the basic characteristics of the system. The time history 

of the displacement at an observation point was obtained by the 

fourth-order Runge–Kutta–Gill method. The spectrum shown 

in Fig. 5 was obtained by a Fourier transformation of the time 

history. The horizontal axis denotes the analytic frequency 

ωsp/2π, and the vertical axis denotes the spectral amplitude in 

decibel value A (ωsp/2π). The mode numbers are shown in 

parentheses. From this, it can be seen that nonlinear 

concentrated springs show large amounts of deformation, 

expressed as high peaks in the spectral amplitude, in Modes 4 

and 5 (rotation about the x- and y-axes), Mode 6 (piston 

motion), Mode 9 (elastic deformation of the plate vibration) 

and Modes 10 and 11 (higher order elastic deformation of the 

plate vibration). In addition, Modes 7 and 8 (saddle-shaped 

elastic deformation) and Modes 14 and 15 (higher order elastic 

deformation of the plate vibration) have appeared slightly. 

 

 
Fig. 3 Vibration modes of eigenvalue analysis 

 

 
Fig. 4 Small input of impact load
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Fig. 5 Fourier spectrum of impact response under small input

 

An examination of this small impact revealed that under 

large input forces, a nonlinear response owing to nonlinear 

concentrated springs and various types of nonline

coupling occurs. 

VI. NONLINEAR STEADY-STATE RESPONSE 

INPUT 

A. Nonlinear Transient Response 

Under the condition of large input forces, responses become 

nonlinear, and nonperiodic responses such as chaotic vibrations 

may appear. In such cases, it is necessary to seek a direct 

integration solution. In (14), 
)1(~

ii bb = , and its velocity 

)(

~
ib
ɺ

. Further, a harmonic input of excitation angular frequency 

ω is applied. By using the maximum approximate mode 

number Ic, we convert the following first

ordinary differential equation into a state equation.

)2()1(~
ii bb =

ɺ
                                                                    

∑∑−−−=
j k

iiii

i

tot Dbbb )1(2)1()()2( ~~~~~~
ωωη

ɺɺ

tPbbbE di

j k l

lkjijkl ωcos
~~~~ )1()1()1(

+− ∑∑∑      

The integration of (16) directly with the fourth

Runge–Kutta–Gill method solves the problem of the time 

history of the response and calculates 

solution in the phase. 

B. Computational Conditions 

This section examines the mode coupling of the coupled 

chaotic vibration behavior of the main mode (Mode

deformation of the nonlinear concentrated springs in the z 

direction with Modes 4,5 and Modes 7,8. Computations were 

carried out under the following condition: changing the 

excitation force under a fixed excitation frequency. As an 

excitation condition, the diaphragm can be 

because the lead wire adheres to the diaphragm; hence, the fact 

that the input may easily become uneven was considered. A 

load, within a suitable width range, was added to the node on 

the electric conductor where the lead wire was glued. The 

response reference point was set in the central 

diaphragm. 

 

 
Fourier spectrum of impact response under small input 

An examination of this small impact revealed that under 

large input forces, a nonlinear response owing to nonlinear 

concentrated springs and various types of nonlinear mode 

ESPONSE TO HARMONIC 

Under the condition of large input forces, responses become 

nonlinear, and nonperiodic responses such as chaotic vibrations 

t is necessary to seek a direct 

, and its velocity 
)2(

ib  is 

. Further, a harmonic input of excitation angular frequency 

is applied. By using the maximum approximate mode 

, we convert the following first-order simultaneous 

ordinary differential equation into a state equation. 

                                                                         (15) 

kjijk bbD
)1()1( ~~~

               

                             (16) 

The integration of (16) directly with the fourth-order 

Gill method solves the problem of the time 

the behavior of the 

This section examines the mode coupling of the coupled 

chaotic vibration behavior of the main mode (Mode 6) of the 

deformation of the nonlinear concentrated springs in the z 

8. Computations were 

condition: changing the 

excitation force under a fixed excitation frequency. As an 

excitation condition, the diaphragm can be easily inclined 

he diaphragm; hence, the fact 

that the input may easily become uneven was considered. A 

load, within a suitable width range, was added to the node on 

the electric conductor where the lead wire was glued. The 

response reference point was set in the central vicinity of the 

C. Nonlinear Chaotic Vibration Response

A nonlinear chaotic vibration response, with a varying 

excitation force at an excitation frequency fixed at the natural 

frequency 632.6 Hz of Mode 

the nonlinear concentrated spring, was computed. Fig. 6 shows 

the results, with time histories on the left

spectrums on the right-hand side. The vertical axis, u (mm), of 

the time histories represents displacement, and the horizontal 

axis, t (s), denotes time. The horizontal axis of the Fourier 

spectrums denotes the analytic frequency ω

vertical axis denotes A (ωsp/2π) dB of the spectrum amplitude.

In the case of a small exciting force p

history shows a linear periodic response that approximately 

corresponds to the excitation frequency. In the Fourier 

spectrum, only the component of excitation frequency exists. 

When the excitation force becomes p

spectrum, the component of excitat

harmonic components of integer times (ω

excited to a component six 

When the excitation force becomes p

history, a beating phenomenon occurs and a non

response is generated. In the Fourier spectrum, the component 

of excitation frequency and the harmonic components (ω

2ω
(6)

, 3ω
(6)

, …) of integer times are observed.

nonlinear coupling, Mode 9(ω

and Modes 7 and 8(ω
(7)

,ω
(8)

) are excited, and a harmonic wave 

response with the components of the fractions of the excitation 

frequency, 1/n (n: integer), (ω

ω
(7)

/3, ω
(8)

/3, ω
(9)

/3, …) is also excited.

comparatively large peaks in the spectrum, with the internal 

resonance occurring around 

( 2/33 )8()7()6( ωωωω ≅≅≅
new peaks occurring in zones different from the excitation 

frequency and the linear resonance frequencies. Further, from 

the internal resonance, a discontinuous rotation with the 

vibration modes of revolution about the x

and 5) is also induced. As a result,

vibrating components (side band) is clearly visible.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear Chaotic Vibration Response 

A nonlinear chaotic vibration response, with a varying 

excitation force at an excitation frequency fixed at the natural 

 6, which is a large deformation of 

ear concentrated spring, was computed. Fig. 6 shows 

the results, with time histories on the left-hand side and Fourier 

hand side. The vertical axis, u (mm), of 

the time histories represents displacement, and the horizontal 

), denotes time. The horizontal axis of the Fourier 

spectrums denotes the analytic frequency ωsp/2π Hz, and the 

/2π) dB of the spectrum amplitude. 

exciting force pdi = 6.76e-7, the time 

ear periodic response that approximately 

corresponds to the excitation frequency. In the Fourier 

spectrum, only the component of excitation frequency exists. 

When the excitation force becomes pdi = 6.76e-3, in the Fourier 

spectrum, the component of excitation frequency and the 

harmonic components of integer times (ω
(6)

, 2ω
(6)

, 3ω
(6)

, …) are 

 times the excitation frequency. 

When the excitation force becomes pdi = 6.76e-2, in the time 

history, a beating phenomenon occurs and a non-steady-state 

response is generated. In the Fourier spectrum, the component 

of excitation frequency and the harmonic components (ω
(6)

, 

, …) of integer times are observed. Furthermore, in 

(ω
(9)

), Modes 10 and 11(ω
(10)

,ω
(11)

), 

) are excited, and a harmonic wave 

response with the components of the fractions of the excitation 

frequency, 1/n (n: integer), (ω
(7)

/2, ω
(8)

/2, ω
(9)

/2, ω
(10)

/2, ω
(11)

/2, 

, …) is also excited. The result shows several 

comparatively large peaks in the spectrum, with the internal 

resonance occurring around 2,000 Hz 

⋯2/ ) with multiple peaks and 

zones different from the excitation 

frequency and the linear resonance frequencies. Further, from 

the internal resonance, a discontinuous rotation with the 

vibration modes of revolution about the x- and y-axes (Modes 4 

and 5) is also induced. As a result, the width of the small 

vibrating components (side band) is clearly visible. 
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Fig. 6 Time response curve and Fourier spectrum

 

Based on this characteristic, the transient vibration is likely 

to be a chaotic vibration. The nonlinear mode 

the diaphragm center section and the nonlinear spring was 

inspected, and the following results were obtained:

(1) The vibration mode of rotation about the x

y-axis had a 1:1 internal resonance relationship.

(2) The two vibration modes of the saddle

deformation had a 1:1 internal resonance relationship.

(3) The two vibration modes of the 

deformation of the plate vibration had a 1:1 internal resonance 

relationship. 

The chaotic vibration was attributed to the coupling of 

multiple internal resonances. Furthermore, based on the 

simulation model, the piston motion vibration mode, in which 

the deformation of the nonlinear concentrated springs was 

large, and the vibration mode of saddle

deformation had a 1:7 internal resonance relationship. 

Moreover, with respect to the vibration modes of rotation about 

the x- and y-axes, the vibration modes of the saddle

elastic deformation had a 1:8 internal resonance relationship.

Moreover, the piston motion vibration mode and 

deformation of the plate vibration of the cent

1:10 internal resonance relationship. Thus,

coupled with the internal resonances (1), (2)

in the preceding paragraph, become chaotic vibrations.

 

D. Vibration Analysis by Lyapunov Exponent

Using Wolf’s method [9], we calculated 

Lyapunov exponent from the non-steady

under the analytical condition of pdi = 6.76e

the non-steady-state response appears. The result is shown in 

 

 
Time response curve and Fourier spectrum 

Based on this characteristic, the transient vibration is likely 

he nonlinear mode coupling between 

the diaphragm center section and the nonlinear spring was 

inspected, and the following results were obtained: 

(1) The vibration mode of rotation about the x-axis and the 

axis had a 1:1 internal resonance relationship. 

vibration modes of the saddle-shaped elastic 

deformation had a 1:1 internal resonance relationship. 

) The two vibration modes of the higher order elastic 

had a 1:1 internal resonance 

was attributed to the coupling of 

multiple internal resonances. Furthermore, based on the 

simulation model, the piston motion vibration mode, in which 

the deformation of the nonlinear concentrated springs was 

large, and the vibration mode of saddle-shaped elastic 

internal resonance relationship. 

Moreover, with respect to the vibration modes of rotation about 

axes, the vibration modes of the saddle-shaped 

internal resonance relationship. 

the piston motion vibration mode and the elastic 

deformation of the plate vibration of the center section had a 

Thus, these vibrations, 

(2), and (3) described 

become chaotic vibrations. 

xponent 

we calculated the largest 

steady-state time history 

= 6.76e-2 in Fig. 6, where 

state response appears. The result is shown in 

Fig. 7. The horizontal axis represents the embedded dimension 

e, and the vertical axis represents the largest Lyapunov 

exponent λmax. The largest Lyapunov exponent λ

positive value of approximately 0.0

transient vibration can be determined as a chaotic vibration. 

The largest Lyapunov λmax exponent became almost constant at 

12 dimensions. Hence, the number of high modes contributing 

to the chaotic vibration was presumed to be six.

analytical result under these conditions and, for comparison 

purposes, the animation data output of the time change in the 

displacement amplitude of the finite element model, under the 

analytical conditions of ω/2π=632.6Hz, verified the 

circumstances that led to the nonlinear vibration response. 

 

 

 

 

 

 

 

 

 

Fig. 7 Largest Lyapunov exponent against embedded dimension

 

Furthermore, snapshots were taken from the animation, which 

extracted pictures of features of the vibration modes that were 

thought to have occurred, as shown in Fig. 8. From the 

animation data in the case of p

only Mode 6 appeared, but from the case of p

possible to observe six modes a

VII. CONCLUSION

Using a finite element method, we carried out an analysis of 

a nonlinear vibration response for a system of a diaphragm 

center section connected to nonlinear springs. 

discretization equations were converted to equations of

using normal coordinates corresponding to 

mode. Further, the degrees of freedom were reduced, and the 

response of a large-scale degree of freedom problem was 

analyzed at high speed. As an analytical condition, the 

nonlinear vibration and the chaotic vibration were calculated 

under special conditions for large external forces

 

 

 

 

Fig. 7. The horizontal axis represents the embedded dimension 

e, and the vertical axis represents the largest Lyapunov 

. The largest Lyapunov exponent λmax with a 

positive value of approximately 0.04 was obtained. Hence, the 

transient vibration can be determined as a chaotic vibration. 

exponent became almost constant at 

dimensions. Hence, the number of high modes contributing 

o the chaotic vibration was presumed to be six. Further, the 

analytical result under these conditions and, for comparison 

purposes, the animation data output of the time change in the 

displacement amplitude of the finite element model, under the 

conditions of ω/2π=632.6Hz, verified the 

circumstances that led to the nonlinear vibration response.  

nov exponent against embedded dimension 

Furthermore, snapshots were taken from the animation, which 

features of the vibration modes that were 

thought to have occurred, as shown in Fig. 8. From the 

animation data in the case of pdi = 6.76e-7, we concluded that 

only Mode 6 appeared, but from the case of pdi = 6.76e-2, it was 

modes appeared. 

ONCLUSION 

Using a finite element method, we carried out an analysis of 

a nonlinear vibration response for a system of a diaphragm 

center section connected to nonlinear springs. The nonlinear 

discretization equations were converted to equations of motion 

corresponding to the linear vibration 

mode. Further, the degrees of freedom were reduced, and the 

scale degree of freedom problem was 

As an analytical condition, the 

ration and the chaotic vibration were calculated 

under special conditions for large external forces. 
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Fig. 8 Instantaneous distribution of deformation in chaotic motion 
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