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Towards Self-ware via Swarm-Array Computing
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Abstract— The work reported in this paper proposes 

Swarm-Array computing, a novel technique inspired by swarm 

robotics, and built on the foundations of autonomic and parallel 

computing. The approach aims to apply autonomic computing 

constructs to parallel computing systems and in effect achieve the 

self-ware objectives that describe self-managing systems. The 

constitution of swarm-array computing comprising four constituents, 

namely the computing system, the problem/task, the swarm and the 

landscape is considered. Approaches that bind these constituents 

together are proposed. Space applications employing FPGAs are 

identified as a potential area for applying swarm-array computing for 

building reliable systems. The feasibility of a proposed approach is 

validated on the SeSAm multi-agent simulator and landscapes are 

generated using the MATLAB toolkit. 

Keywords—Swarm-Array computing, Autonomic computing, 

landscapes. 

I. INTRODUCTION

ESEARCHERS in the field of computing are often 

inspired by ideas from nature. The approach of abstracting 

good design from nature is referred to as biomimetics [1]. In the 

context of computing, biomimetics has resulted in the 

emergence of relatively new computing paradigms, cited as 

biologically-inspired computing [2]. For example, amorphous 

computing is inspired from a colony of cells operating to form a 

multi-cellular organism based on a genetic program shared by 

the members of the colony [3]. Evolutionary computing is 

inspired from biological evolution mechanisms on a population 

of individuals [4]. Autonomic computing is also one such 

biologically-inspired computing paradigm based on human 

autonomic nervous system [2] that will be the focus of this 

paper.

Autonomic computing is a visionary paradigm for 

developing large scale distributed systems [11]. There are 

mainly two perspectives, namely business and research 

oriented perspectives that provide a bird’s-eye view of the 

paradigm. Firstly, from a business oriented perspective, 

autonomic computing was proposed by IBM for better 

management of increasingly complex computing systems and 

reduce the total cost of ownership of systems today [5] [6]. 

Autonomic computing solutions hence aims to reallocate 

management responsibilities from administrators to the 

computing systems itself based on high-level policies [7, 8]. 

With the aim to implement autonomic principles in personal 

computing environments, personal autonomic computing, a 

subset of autonomic computing has also emerged [9]. 
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Secondly, the research oriented perspective primarily 

focuses on the worms-eye view, laying necessary foundations 

for the newly emerging computing paradigm. There are two 

categories of ongoing research in the area of autonomic 

computing. Firstly, research describing approaches and 

technologies related to autonomic computing [10]. The aim of 

the approaches is to achieve autonomy without specifying the 

technology to be implemented [11]. Any existing technology 

capable of achieving autonomy (in any degree) can be used in 

the approaches. Secondly, research attempting to develop 

autonomic computing as a unified project [10]. The research 

lays emphasis on the means to achieve autonomy and initiatives 

are taken to define a set of standard practices and methods as 

the path towards autonomy. 

The aim of autonomic computing paradigm is to achieve 

autonomy in computing systems. The word autonomy has 

broad meanings in a philosophical and physiological context. 

In general, the autonomy of an entity can be referred to as the 

integrated ability of cognition and mobility [12]. Perception 

and learning are closely associated with cognition resulting in 

planning, inference and decision making. For example, gaining 

information from the environment is one such cognitive 

capability of an entity resulting in some inference about its 

environment. On the other hand, mobility refers to the 

capability of an entity to move around in an environment. It is 

worthwhile to note that cognition and mobility are 

complementing abilities. An entity can achieve higher degree 

of mobility in an environment due to its complementing 

cognitive capability, and higher degree of cognitive capabilities 

due to its complementing mobility. 

Autonomy from the research perspective of autonomic 

computing is defined by self-management [10], and is 

characterized by four objectives and four attributes. The 

objectives and attributes that contribute to self-management are 

not independent functions. The objectives considered are [13]: 

(a) Self-configuration – the capability of a computing system to 

automatically adapt to changes in the existing physical 

topology and software environment. The system must be also 

capable to seamlessly integrate new system components [15]. 

Self-configuring systems are expected to increase resource 

availability [14]. (b) Self-healing - the capability of a 

computing system to recuperate from faults and loss. Constant 

and consistent monitoring of the computing system is required 

to detect faults and loss [14]. (c) Self-optimizing – the 
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capability of a computing system to automatically tune 

resources and balance workloads to improve operational 

efficiency [15]. (d) Self-protecting – the capability of a 

computing system to protect itself from malicious attacks 

originating from within and without the system [14]. 

Self-protection safeguards the system from damages due to 

uncorrected cascading failures [15]. 

The attributes considered are [13]: (a) Self-awareness – the 

capability of a computing system to be aware of its internal 

state and knowledge of the possible states the system can 

transform to from the current state. (b) Self-situated – the 

capability of a computing system to be aware of the external 

operating conditions. (c) Self-monitoring – the capability of a 

computing system to detect the change of internal and external 

circumstances consistently. (d) Self-adjusting – the capability 

of a computing system to adapt to internal and external changes 

reflexively.  

The benefits of autonomy in computing systems are also 

apparent for parallel computing systems, namely reducing cost 

of ownership and reallocating management responsibilities to 

the system itself.  The parallel computing paradigm employs 

the concurrent utilization of multiple processing elements to 

solve a problem [16].  Wide ranges of problems have found 

quicker solutions by utilizing parallel computational power, 

since the processor-memory bottleneck is addressed.  For 

example, parallel computing is useful for developing problem 

solvers that engage in computationally intensive operations and 

voluminous data processing requiring high processing rate. 

The work reported in this paper focuses on the research 

oriented perspective of autonomic computing applied to 

parallel computing and proposes Swarm-Array computing as a 

path to achieve autonomy. The approach is biomimetically 

inspired by the theory of autonomous agents in natural swarms, 

abstracted and implemented in swarm robotics. FPGA cores are 

considered as the parallel computing system and an approach to 

implement swarm-array computing is proposed. The cores of 

the FPGA are considered to be autonomous agents with a high 

degree of self-managing capabilities. Subtasks to be executed 

reside upon a landscape of intelligent cores. The feasibility of 

the proposed approach is validated using SeSAm simulator and 

two dimensional landscapes are generated on the MATLAB 

toolkit. 

A review of swarm computing literature reveals the 

existence of swarm computing and swarm intelligence 

research. Swarm computing [17, 18] considers a large number 

of small independent devices that communicate with each other 

to perform an assigned task. The approach mainly targets the 

realization of distributed miniature computing devices as 

swarm units executing similar swarm programs based on 

primitives. 

Swarm intelligence research focuses on designing 

algorithms and distributed problem solving devices inspired by 

collective behaviour of swarm units that arise from local 

interactions with their environment [19, 20]. The algorithms 

considered are population-based stochastic methods executed 

on distributed processors. 

On the contrary, swarm-array computing is an approach that 

not only considers the computational resource as a swarm of 

resources, but also the task to be executed as a swarm of 

sub-tasks. Hence, the approach considers complex interactions 

between swarms of sub-tasks and swarms of resources. The 

interactions between swarm agents bring about the notion of 

intelligent agents or swarm agents carrying the sub-tasks and 

intelligent cores or swarm of cores executing the sub-task. The 

interactions between different swarms give rise to the notion of 

landscapes. In other words, the approach can be viewed as a 

computational approach emerging from the interaction of 

multi-dimensional arrays of swarm agents. 

The remainder of the paper is organised as follows. Section 

II considers the swarm-array computing constitution and the 

various self-ware properties that are achieved in effect in the 

approach. Section III proposes three different approaches to tie 

together the constituents of swarm-array computing. Section IV 

highlights the impact that swarm-array computing can bring 

about. Experimental studies are described in Section V. Section 

VI concludes and presents future work.  

II. SWARM-ARRAY COMPUTING

As discussed in the section above, parallel computing can 

also benefit from the application of the autonomic computing 

paradigm. However, which path should be adopted to achieve 

this autonomy in parallel computing systems? In this context, 

swarm-array computing, a swarm robotics inspired approach is 

proposed as a path to achieve autonomy. The development of 

the swarm-array computing approach from the foundations of 

parallel and autonomic computing is shown in Figure 1. The 

constitution of the swarm-array computing approach can be 

separated into four different constituents, namely the 

computing system, the problem / task, the swarms and the 

landscape as shown in Figure 1. Each constituent is considered 

in the following sub sections.  

A. The Computing System 

The computing systems available for parallel computing are 

multi-core processors, clusters, grids, field programmable gate 

arrays (FPGA), general purpose graphics processing units 

(GPGPU), application-specific integrated circuit (ASIC) and 

vector processors. With the objective of exploring swarm-array 

computing, FPGAs are selected as an experimental platform for 

implementing the proposed approaches.  

FPGAs are a technology under investigation in which the 

cores of the computing system are not geographically 

distributed. The cores in close proximity can be configured to 

achieve a regular grid or a two dimensional lattice structure. 

Another reason of choice to look into FPGAs is its flexibility 

for implementing reconfigurable computing.  

The cores of a parallel computing system can be considered 

as a set of autonomous agents, interacting with each other and 

coordinating the execution of tasks. In this case, a processing 

core is similar to an organism whose function is to execute a 

task. The focus towards autonomy is laid on the parallel 

computing cores abstracted onto intelligent cores. The set of 

intelligent cores hence transform the parallel computing system 
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into an intelligent swarm. The intelligent cores hence form a 

swarm-array. A parallel task to be executed resides within a 

queue and is scheduled onto different cores by the scheduler. 

The swarm of cores collectively executes the task. 

The intelligent cores described above are an abstract view of 

the hardware cores. But then the question on what intelligence 

can be achieved on the set of cores needs to be addressed. 

Intelligence of the cores is achieved in two different ways. 

Firstly, by monitoring local neighbours. Independent of what 

the cores are executing, the cores can monitor each other. Each 

core can ask the question of ‘are you alive’ to its neighbours 

and gain information. Secondly, by adjusting to core failures. If 

a core fails, the process which was executed on the core needs 

to be shifted to another core where resources previously 

accessed can be utilized. Once a process has been shifted, all 

data dependencies need to be re-established. 

To shift a process from one core to another, there is a 

requirement of storing data associated and state of the 

executing process, referred to as checkpointing. This can be 

achieved by a process monitoring each core or by swarm carrier 

agents that can store the state of an executing process. The 

checkpointing method suggested is decentralized and 

distributed across the computing system. Hence, though a core 

failure may occur, a process can seamlessly be transferred onto 

another core. In effect, awareness and optimizing features of 

the self-ware properties are achieved.

B. The Problem / Task 

The task to be executed on the parallel computing cores can 

be considered as a swarm of autonomous agents. To achieve 

this, a single task needs to be decomposed and the sub tasks 

need to be mapped onto swarm agents. The agent and the 

sub-problems are independent of each other or in other words, 

the swarm agents are only carriers of the sub-tasks or are a 

wrapper around the sub-tasks. 

The swarm displaces itself to a goal across the parallel 

computing cores or the environment. The goal would be to find 

an area accessible to resources required for executing the sub 

tasks within the environment. In this case, a swarm agent is 

similar to an organism whose function is to execute on a core. 

The focus towards autonomy is laid on the executing task 

abstracted onto intelligent agents. The intelligent agents hence 

form a swarm-array. 

The intelligent agents described above are an abstract view 

of the sub-tasks to be executed on the hardware cores.  

Intelligence of the carrier agents is demonstrated in two ways. 

Firstly, the capabilities of the carrier swarm agents to identify 

and move to the right location to execute a task. In this case, the 

agents need to be aware of their environments and which cores 

can execute the task. Secondly, the prediction of some type of 

core failures can be inferred by consistent monitoring of power 

consumption and heat dissipation of the cores. If the core on 

which a sub-task being executed is predicted to fail, then the 

carrier agents shift from one core to another gracefully without 

causing an interruption to execution, hence making the system 

more fault-tolerant and reliable. An agent can shift from one 

core to another by being aware of which cores in the nearest 

vicinity of the currently executing core are available. 

Fig. 1. The development of Swarm-Array Computing 

C. The Swarms 

A combination of the intelligent cores and intelligent swarm 

agents leads to intelligent swarms. The intelligent cores and 

intelligent agents form a multi-dimensional swarm-array. The 

arena in which the swarms interact with each other is 

considered in the next sub-section.  

D. The landscape 

The landscape is a representation of the arena of cores and 

agents that are interacting with each other in the parallel 

computing system. At any given instance, the landscape can 

define the current state of the computing system. Computing 

cores that have failed and are predicted to fail are holes in the 

environment and obstacles to be avoided by the swarms. 

A landscape is modelled from three different perspectives 

which is the basis for the swarm-array computing approaches 

discussed in the next section.  Firstly, a landscape comprising 

dynamic cores (are autonomous) and static agents (are not 

autonomous) can be considered. In this case, the landscape is 

affected by the intelligent cores. Secondly, a landscape 

comprising of static cores and dynamic agents can be 

considered. In this case, the landscape is affected by the 

mobility of the intelligent agents. Thirdly, a landscape 

comprising of dynamic cores and dynamic agents can be 

considered. In this case, the landscape is affected by the 

intelligent cores and mobility of the carrier agents. 

III. APPROACHES

At this point it is appropriate to consider how the constitution 

of swarm-array computing fits together? To answer this 

question, three approaches that combine the constituents of 

swarm-array computing are proposed.  
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In the first approach, only the intelligent cores are considered 

to be autonomous swarm agents and form the landscape. A 

parallel task to be executed resides within a queue and is 

scheduled onto the cores by a scheduler. The intelligent cores 

interact with each other as considered in section II A to transfer 

tasks from one core to another at the event of a hardware failure. 

Figure 2 describes the approach diagrammatically.  

In the second approach, only the intelligent swarm agents are 

considered to be autonomous and form the landscape. A 

parallel task to be executed resides in a queue, which is mapped 

onto carrier swarm agents by the scheduler. The carrier swarm 

displace through the cores to find an appropriate area to cluster 

and execute the task. The intelligent agents interact with each 

other as considered in Section II B to achieve mobility and 

successful execution of a task. 

In the third approach, both the intelligent cores and 

intelligent agents are considered to form the landscape. Hence, 

the approach is called a combinative approach. A parallel task 

to be executed resides in a queue, which is mapped onto swarm 

agents by a scheduler. The swarm agents can shift through the 

landscape utilizing their own intelligence, or the swarm of 

cores could transfer tasks from core to core in the landscape. 

The landscape is affected by the mobility of intelligent agents 

on the cores and intelligent cores collectively executing a task 

by accommodating the intelligent agent.

However, in this paper the major focus is the first approach 

and is only considered for experimental studies.  

IV. IMPACT

Will the emergence of swarm-array computing have an 

impact over parallel and autonomic computing? This question 

can be answered by taking into account the industrial or 

business perspective and research perspective. From the 

industrial viewpoint, achieving autonomy in parallel 

computing systems is productive. The path towards autonomy 

can be equated to increasing reliability of geographically 

dispersed systems and hence reduction in total cost for 

maintenance. 

From the research perspective, achieving mobility of swarm 

agents in a heterogeneous parallel computing environment 

opens a new avenue to be explored. Decentralized 

checkpointing accomplished by the aid of swarm carrier agents 

is another interesting area of research. With these objectives, 

swarm-array computing can hence be proposed as a new 

approach for closer examination and investigation. 

Swarm-array computing can be more assuring for 

applications that demand reliability. Potential applications that 

can be influenced include space applications and cloud 

computing. Space crafts employ FPGAs, a special purpose 

parallel computing system that are subject to malfunctioning or 

failures of hardware due to ‘Single Event Upsets’ (SEUs), 

caused by radiation on moving out of the protection of the 

atmosphere [21] - [23]. One solution to overcome this problem 

is to employ reconfigurable FPGAs. However, there are many 

overheads in using such technology and hardware 

reconfiguration is challenging in space environments. In other 

words, replacement or servicing of hardware is an extremely 

limited option in space environments. On the other hand 

software changes can be accomplished. In such cases, the 

swarm-array computing approach can provide solutions based 

on agent mobility within the abstracted landscape and hence 

minimize overheads in software uploading and exclude 

requirement to reconfigure hardware. 

V. EXPERIMENTAL STUDIES

Simulation studies were pursued to validate and visualize the 

proposed approach in Swarm-Array Computing. Various 

simulation platforms were considered, namely network 

simulators, which could predict behaviours of data packets in 

networks, and multi-agent simulators, that could model agents 

and their behaviours in an environment. Since FPGA cores are 

considered in this paper, network simulators were not an 

appropriate choice. The first approach proposed in this paper 

considers executing cores as agents; hence a multi-agent 

simulator is employed. The remainder of this section is 

organized into describing the experimental environment, 

modelling the experiment and generating landscapes of 

intelligent cores. 

A. Experimental Environment 

The feasibility of the proposed swarm-array computing 

approach was validated on the SeSAm (Shell for Simulated 

Agent Systems) simulator. The SeSAm simulator environment 

supports the modelling of complex agent-based models and 

their visualization [24] [25].  

The environment has provisions for modelling agents, the 

world and simulation runs. Agents are characterized by a 

reasoning engine and a set of state variables. The reasoning 

engine defines the behaviour of the agent, and is implemented 

in the form of an activity diagram, similar to a UML-based 

activity diagram. The state variables of the agent specify the 

Fig. 2. First Approach in swarm-array computing 
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state of an agent. Rules that define activities and conditions can 

be visually modelled without the knowledge of a programming 

language. The building block of such rules is primitives that are 

pre-defined. Complex constructs such as functions and 

data-types can be user-defined. 

The world provides knowledge about the surroundings the 

agent is thriving. A world is also characterized by variables and 

behaviours. The modelling of the world defines the external 

influences that can affect the agent. Hence, variables associated 

with a world class can be used as parameters that define global 

behaviours. This in turn leads to the control over agent 

generation, distribution and destruction.  

Simulation runs are defined by simulation elements that 

contribute to the agent-based model being constructed. The 

simulation elements include situations, analysis lists, 

simulations and experiments. Situations are configurations of 

the world with pre-positioned agents to start a simulation run. 

Analysis lists define means to study agents and their behaviour 

with respect to time. Simulations are combinations of a 

situation, a set of analysis items and a simulation run; or in 

other words a complete definition of a single simulation run. 

Experiments are used when a combination of single simulation 

runs are required to be defined. 

B. Modelling 

As considered in Section II, the swarm-array computing 

approach needs to consider the computing platform, the 

problem/task and the landscapes. The parallel computing 

platform considered in the studies reported in this paper is 

FPGAs. The cores of the FPGA are modelled as agents in 

SeSAm, in accordance with the swarm-array computing 

approach reported in this paper. The intelligent cores are an 

abstraction of the hardware cores arranged in a 5 X 5 regular 

grid structure. The model assumes serial bus connectivity 

between individual cores. Hence, a task scheduled on a core 

can be transferred onto any other core in the regular grid 

abstraction.

The breakdown of any given task to subtasks is not 

considered within the problem domain of swarm-array 

computing. The simulation is initialized with sub-tasks 

scheduled to a few cores in the grid. Each core maintains a 

record of the subtasks it is executing and can monitor cores in 

the regular grid to which the subtasks can be assigned in the 

event of a predicted failure. The behaviour of the individual 

cores varies randomly in the simulation. For example, the 

temperature of the FPGA core changes during simulation. If the 

temperature of a core exceeds a predefined threshold, the 

subtask executed on the core requires reassignment to another 

available core that is not predicted to fail. During the event of a 

transfer or reassignment, the record of the subtask maintained 

by the core is also transferred to the new core. If more than one 

sub-task is executed on a core predicted to fail, each sub-task 

may be reassigned to different cores.  

Fig.3. Screenshots of the simulation on SeSAm multi-agent simulator for eight consecutive time steps 

C. Generating Landscapes 

Figure 3 is a series of screenshots of a random simulation run 

developed on SeSAm for eight consecutive time steps from 

initialization. The figure shows the executing cores as 

rectangular blocks in pale yellow colour. When a core is 

predicted to fail, i.e., temperature increases beyond a threshold, 

the core is displayed in red. The subtasks are shown as blue 

filled circles that occupy a random position on a core. As 

discussed above, when a core is predicted to fail, the subtask 

executing on the core predicted to fail gets seamlessly 

transferred to a core capable of processing at that instant.
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A log was recorded of the temperature of individual cores of 

the FPGA during a simulation. A 3D plot of the multi-core 

landscape during an arbitrary time step, where the z-axis 

represents the temperature was generated on the MATLAB 

toolkit. Figure 4 (left) shows the 3D representation of the 

landscape. Since the landscape is uneven, a contour plot was 

also generated for better visualization. Figure 4 (right) shows 

the contour plot of the landscape. Since figure 4 is the 

representation of the landscape of a 5 X 5 regular grid, the 

landscape has less resolution. Hence higher resolution contour 

plots were generated. Figure 5 (left) shows the contour plot for 

a 25X 25 regular grid during an arbitrary time step of the 

simulation run and figure 5 (right) shows the contour plot for a 

100X100 regular grid during an arbitrary time step of the 

simulation run.  

The generated landscape provides a pictorial view of the 

computing space and the problem. According to the colour bar 

provided in the legend of the plots, a light shade on the contour 

plot represents cores of higher temperature while the dark 

shaded regions represent safe cores of the FPGA. From the 3D 

plot it is understood that the peaks of the landscape are cores 

predicted to fail while the valleys and lower elevations on the 

landscape represent safe cores of the FPGA. In the approach 

considered in this paper, the sub task always resides on the safe 

cores of the FPGA. In other words, within the landscape sub 

tasks thrive in valleys and lower elevations.  

From a different perspective, the peaks in the landscape can 

be considered as obstacles for the executing sub tasks. Hence, 

the sub tasks avoid the peaks by being autonomously and 

seamlessly transferred to safer regions within the landscape. 

The notion of obstacles in a landscape is also seen within the 

domain of swarm robotics, where a swarm of mobile 

autonomous agents on a landscape avoids obstacles to reach a 

goal.  The landscape in the approach presented in this paper is 

dynamic (subject to change every time step) and hence makes 

the computing space and problem much more complex than a 

static landscape usually considered in swarm robotics. 

Eventually, the problem of applying autonomic computing 

constructs to parallel computing platforms is funnelled to a 

classic, yet a complex swarm robotics problem of obstacle 

avoidance.  

The simulation studies are in accordance with the 

expectation and hence are a preliminary confirmation of the 

feasibility of the proposed approach in swarm-array computing. 

Fig. 4. 3D surface plot (left) and contour map (right) of landscape for a 5 X 5 regular grid FPGA  

Fig. 5. Contour map of landscape for a 25 X 25 regular grid FPGA (left) and 100 X 100 regular grid FPGA (right) 
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Though some assumptions and minor approximations are made, 

the approach is an opening for applying autonomic constructs 

to parallel computing platforms.  

VI. CONCLUSIONS

In this paper, swarm-array computing, a novel technique to 

apply autonomic computing constructs in parallel computing is 

proposed. The foundation and inspiration of the approach is 

introduced. The constitution of swarm-array computing and 

how the constituents can be utilized to achieve autonomic 

properties are described. Three approaches that bind the 

constitution of swarm-array computing are proposed. The 

impact of swarm-array computing on emerging as a new 

avenue for research is pointed out. Space applications 

employing FPGAs are identified as an area that can be 

influenced by swarm-array computing. The feasibility of one 

among the three proposed approaches is presented in this paper.  

Future work will include identifying the major challenges 

that need to be addressed in swarm-array computing. Emphasis 

will be laid on how the swarm-computing approaches can be 

steered into real time implementation. Further effort will be 

made to explore the concepts of abstraction, decentralized 

checkpointing, intelligent cores and intelligent agents. 
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