
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1506

Towards Self-ware via Swarm-Array Computing

Blesson Varghese and Gerard McKee

Abstract— The work reported in this paper proposes

Swarm-Array computing, a novel technique inspired by swarm

robotics, and built on the foundations of autonomic and parallel

computing. The approach aims to apply autonomic computing

constructs to parallel computing systems and in effect achieve the

self-ware objectives that describe self-managing systems. The

constitution of swarm-array computing comprising four constituents,

namely the computing system, the problem/task, the swarm and the

landscape is considered. Approaches that bind these constituents

together are proposed. Space applications employing FPGAs are

identified as a potential area for applying swarm-array computing for

building reliable systems. The feasibility of a proposed approach is

validated on the SeSAm multi-agent simulator and landscapes are

generated using the MATLAB toolkit.

Keywords—Swarm-Array computing, Autonomic computing,

landscapes.

I. INTRODUCTION

ESEARCHERS in the field of computing are often

inspired by ideas from nature. The approach of abstracting

good design from nature is referred to as biomimetics [1]. In the

context of computing, biomimetics has resulted in the

emergence of relatively new computing paradigms, cited as

biologically-inspired computing [2]. For example, amorphous

computing is inspired from a colony of cells operating to form a

multi-cellular organism based on a genetic program shared by

the members of the colony [3]. Evolutionary computing is

inspired from biological evolution mechanisms on a population

of individuals [4]. Autonomic computing is also one such

biologically-inspired computing paradigm based on human

autonomic nervous system [2] that will be the focus of this

paper.

Autonomic computing is a visionary paradigm for

developing large scale distributed systems [11]. There are

mainly two perspectives, namely business and research

oriented perspectives that provide a bird’s-eye view of the

paradigm. Firstly, from a business oriented perspective,

autonomic computing was proposed by IBM for better

management of increasingly complex computing systems and

reduce the total cost of ownership of systems today [5] [6].

Autonomic computing solutions hence aims to reallocate

management responsibilities from administrators to the

computing systems itself based on high-level policies [7, 8].

With the aim to implement autonomic principles in personal

computing environments, personal autonomic computing, a

subset of autonomic computing has also emerged [9].

Blesson Varghese is a research student with the Active Robotics Laboratory,

School of Systems Engineering, University of Reading, Reading, Berkshire,

United Kingdom, RG6 6AY.(e-mail: hx019035@ reading.ac.uk).

Gerard T. McKee is Senior Lecturer in Networked Robotics, School of

Systems Engineering, University of Reading, Reading, Berkshire, United

Kingdom, RG6 6AY. (e-mail:g.t.mckee@reading.ac.uk).

Secondly, the research oriented perspective primarily

focuses on the worms-eye view, laying necessary foundations

for the newly emerging computing paradigm. There are two

categories of ongoing research in the area of autonomic

computing. Firstly, research describing approaches and

technologies related to autonomic computing [10]. The aim of

the approaches is to achieve autonomy without specifying the

technology to be implemented [11]. Any existing technology

capable of achieving autonomy (in any degree) can be used in

the approaches. Secondly, research attempting to develop

autonomic computing as a unified project [10]. The research

lays emphasis on the means to achieve autonomy and initiatives

are taken to define a set of standard practices and methods as

the path towards autonomy.

The aim of autonomic computing paradigm is to achieve

autonomy in computing systems. The word autonomy has

broad meanings in a philosophical and physiological context.

In general, the autonomy of an entity can be referred to as the

integrated ability of cognition and mobility [12]. Perception

and learning are closely associated with cognition resulting in

planning, inference and decision making. For example, gaining

information from the environment is one such cognitive

capability of an entity resulting in some inference about its

environment. On the other hand, mobility refers to the

capability of an entity to move around in an environment. It is

worthwhile to note that cognition and mobility are

complementing abilities. An entity can achieve higher degree

of mobility in an environment due to its complementing

cognitive capability, and higher degree of cognitive capabilities

due to its complementing mobility.

Autonomy from the research perspective of autonomic

computing is defined by self-management [10], and is

characterized by four objectives and four attributes. The

objectives and attributes that contribute to self-management are

not independent functions. The objectives considered are [13]:

(a) Self-configuration – the capability of a computing system to

automatically adapt to changes in the existing physical

topology and software environment. The system must be also

capable to seamlessly integrate new system components [15].

Self-configuring systems are expected to increase resource

availability [14]. (b) Self-healing - the capability of a

computing system to recuperate from faults and loss. Constant

and consistent monitoring of the computing system is required

to detect faults and loss [14]. (c) Self-optimizing – the

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1507

capability of a computing system to automatically tune

resources and balance workloads to improve operational

efficiency [15]. (d) Self-protecting – the capability of a

computing system to protect itself from malicious attacks

originating from within and without the system [14].

Self-protection safeguards the system from damages due to

uncorrected cascading failures [15].

The attributes considered are [13]: (a) Self-awareness – the

capability of a computing system to be aware of its internal

state and knowledge of the possible states the system can

transform to from the current state. (b) Self-situated – the

capability of a computing system to be aware of the external

operating conditions. (c) Self-monitoring – the capability of a

computing system to detect the change of internal and external

circumstances consistently. (d) Self-adjusting – the capability

of a computing system to adapt to internal and external changes

reflexively.

The benefits of autonomy in computing systems are also

apparent for parallel computing systems, namely reducing cost

of ownership and reallocating management responsibilities to

the system itself. The parallel computing paradigm employs

the concurrent utilization of multiple processing elements to

solve a problem [16]. Wide ranges of problems have found

quicker solutions by utilizing parallel computational power,

since the processor-memory bottleneck is addressed. For

example, parallel computing is useful for developing problem

solvers that engage in computationally intensive operations and

voluminous data processing requiring high processing rate.

The work reported in this paper focuses on the research

oriented perspective of autonomic computing applied to

parallel computing and proposes Swarm-Array computing as a

path to achieve autonomy. The approach is biomimetically

inspired by the theory of autonomous agents in natural swarms,

abstracted and implemented in swarm robotics. FPGA cores are

considered as the parallel computing system and an approach to

implement swarm-array computing is proposed. The cores of

the FPGA are considered to be autonomous agents with a high

degree of self-managing capabilities. Subtasks to be executed

reside upon a landscape of intelligent cores. The feasibility of

the proposed approach is validated using SeSAm simulator and

two dimensional landscapes are generated on the MATLAB

toolkit.

A review of swarm computing literature reveals the

existence of swarm computing and swarm intelligence

research. Swarm computing [17, 18] considers a large number

of small independent devices that communicate with each other

to perform an assigned task. The approach mainly targets the

realization of distributed miniature computing devices as

swarm units executing similar swarm programs based on

primitives.

Swarm intelligence research focuses on designing

algorithms and distributed problem solving devices inspired by

collective behaviour of swarm units that arise from local

interactions with their environment [19, 20]. The algorithms

considered are population-based stochastic methods executed

on distributed processors.

On the contrary, swarm-array computing is an approach that

not only considers the computational resource as a swarm of

resources, but also the task to be executed as a swarm of

sub-tasks. Hence, the approach considers complex interactions

between swarms of sub-tasks and swarms of resources. The

interactions between swarm agents bring about the notion of

intelligent agents or swarm agents carrying the sub-tasks and

intelligent cores or swarm of cores executing the sub-task. The

interactions between different swarms give rise to the notion of

landscapes. In other words, the approach can be viewed as a

computational approach emerging from the interaction of

multi-dimensional arrays of swarm agents.

The remainder of the paper is organised as follows. Section

II considers the swarm-array computing constitution and the

various self-ware properties that are achieved in effect in the

approach. Section III proposes three different approaches to tie

together the constituents of swarm-array computing. Section IV

highlights the impact that swarm-array computing can bring

about. Experimental studies are described in Section V. Section

VI concludes and presents future work.

II. SWARM-ARRAY COMPUTING

As discussed in the section above, parallel computing can

also benefit from the application of the autonomic computing

paradigm. However, which path should be adopted to achieve

this autonomy in parallel computing systems? In this context,

swarm-array computing, a swarm robotics inspired approach is

proposed as a path to achieve autonomy. The development of

the swarm-array computing approach from the foundations of

parallel and autonomic computing is shown in Figure 1. The

constitution of the swarm-array computing approach can be

separated into four different constituents, namely the

computing system, the problem / task, the swarms and the

landscape as shown in Figure 1. Each constituent is considered

in the following sub sections.

A. The Computing System

The computing systems available for parallel computing are

multi-core processors, clusters, grids, field programmable gate

arrays (FPGA), general purpose graphics processing units

(GPGPU), application-specific integrated circuit (ASIC) and

vector processors. With the objective of exploring swarm-array

computing, FPGAs are selected as an experimental platform for

implementing the proposed approaches.

FPGAs are a technology under investigation in which the

cores of the computing system are not geographically

distributed. The cores in close proximity can be configured to

achieve a regular grid or a two dimensional lattice structure.

Another reason of choice to look into FPGAs is its flexibility

for implementing reconfigurable computing.

The cores of a parallel computing system can be considered

as a set of autonomous agents, interacting with each other and

coordinating the execution of tasks. In this case, a processing

core is similar to an organism whose function is to execute a

task. The focus towards autonomy is laid on the parallel

computing cores abstracted onto intelligent cores. The set of

intelligent cores hence transform the parallel computing system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1508

into an intelligent swarm. The intelligent cores hence form a

swarm-array. A parallel task to be executed resides within a

queue and is scheduled onto different cores by the scheduler.

The swarm of cores collectively executes the task.

The intelligent cores described above are an abstract view of

the hardware cores. But then the question on what intelligence

can be achieved on the set of cores needs to be addressed.

Intelligence of the cores is achieved in two different ways.

Firstly, by monitoring local neighbours. Independent of what

the cores are executing, the cores can monitor each other. Each

core can ask the question of ‘are you alive’ to its neighbours

and gain information. Secondly, by adjusting to core failures. If

a core fails, the process which was executed on the core needs

to be shifted to another core where resources previously

accessed can be utilized. Once a process has been shifted, all

data dependencies need to be re-established.

To shift a process from one core to another, there is a

requirement of storing data associated and state of the

executing process, referred to as checkpointing. This can be

achieved by a process monitoring each core or by swarm carrier

agents that can store the state of an executing process. The

checkpointing method suggested is decentralized and

distributed across the computing system. Hence, though a core

failure may occur, a process can seamlessly be transferred onto

another core. In effect, awareness and optimizing features of

the self-ware properties are achieved.

B. The Problem / Task

The task to be executed on the parallel computing cores can

be considered as a swarm of autonomous agents. To achieve

this, a single task needs to be decomposed and the sub tasks

need to be mapped onto swarm agents. The agent and the

sub-problems are independent of each other or in other words,

the swarm agents are only carriers of the sub-tasks or are a

wrapper around the sub-tasks.

The swarm displaces itself to a goal across the parallel

computing cores or the environment. The goal would be to find

an area accessible to resources required for executing the sub

tasks within the environment. In this case, a swarm agent is

similar to an organism whose function is to execute on a core.

The focus towards autonomy is laid on the executing task

abstracted onto intelligent agents. The intelligent agents hence

form a swarm-array.

The intelligent agents described above are an abstract view

of the sub-tasks to be executed on the hardware cores.

Intelligence of the carrier agents is demonstrated in two ways.

Firstly, the capabilities of the carrier swarm agents to identify

and move to the right location to execute a task. In this case, the

agents need to be aware of their environments and which cores

can execute the task. Secondly, the prediction of some type of

core failures can be inferred by consistent monitoring of power

consumption and heat dissipation of the cores. If the core on

which a sub-task being executed is predicted to fail, then the

carrier agents shift from one core to another gracefully without

causing an interruption to execution, hence making the system

more fault-tolerant and reliable. An agent can shift from one

core to another by being aware of which cores in the nearest

vicinity of the currently executing core are available.

Fig. 1. The development of Swarm-Array Computing

C. The Swarms

A combination of the intelligent cores and intelligent swarm

agents leads to intelligent swarms. The intelligent cores and

intelligent agents form a multi-dimensional swarm-array. The

arena in which the swarms interact with each other is

considered in the next sub-section.

D. The landscape

The landscape is a representation of the arena of cores and

agents that are interacting with each other in the parallel

computing system. At any given instance, the landscape can

define the current state of the computing system. Computing

cores that have failed and are predicted to fail are holes in the

environment and obstacles to be avoided by the swarms.

A landscape is modelled from three different perspectives

which is the basis for the swarm-array computing approaches

discussed in the next section. Firstly, a landscape comprising

dynamic cores (are autonomous) and static agents (are not

autonomous) can be considered. In this case, the landscape is

affected by the intelligent cores. Secondly, a landscape

comprising of static cores and dynamic agents can be

considered. In this case, the landscape is affected by the

mobility of the intelligent agents. Thirdly, a landscape

comprising of dynamic cores and dynamic agents can be

considered. In this case, the landscape is affected by the

intelligent cores and mobility of the carrier agents.

III. APPROACHES

At this point it is appropriate to consider how the constitution

of swarm-array computing fits together? To answer this

question, three approaches that combine the constituents of

swarm-array computing are proposed.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1509

In the first approach, only the intelligent cores are considered

to be autonomous swarm agents and form the landscape. A

parallel task to be executed resides within a queue and is

scheduled onto the cores by a scheduler. The intelligent cores

interact with each other as considered in section II A to transfer

tasks from one core to another at the event of a hardware failure.

Figure 2 describes the approach diagrammatically.

In the second approach, only the intelligent swarm agents are

considered to be autonomous and form the landscape. A

parallel task to be executed resides in a queue, which is mapped

onto carrier swarm agents by the scheduler. The carrier swarm

displace through the cores to find an appropriate area to cluster

and execute the task. The intelligent agents interact with each

other as considered in Section II B to achieve mobility and

successful execution of a task.

In the third approach, both the intelligent cores and

intelligent agents are considered to form the landscape. Hence,

the approach is called a combinative approach. A parallel task

to be executed resides in a queue, which is mapped onto swarm

agents by a scheduler. The swarm agents can shift through the

landscape utilizing their own intelligence, or the swarm of

cores could transfer tasks from core to core in the landscape.

The landscape is affected by the mobility of intelligent agents

on the cores and intelligent cores collectively executing a task

by accommodating the intelligent agent.

However, in this paper the major focus is the first approach

and is only considered for experimental studies.

IV. IMPACT

Will the emergence of swarm-array computing have an

impact over parallel and autonomic computing? This question

can be answered by taking into account the industrial or

business perspective and research perspective. From the

industrial viewpoint, achieving autonomy in parallel

computing systems is productive. The path towards autonomy

can be equated to increasing reliability of geographically

dispersed systems and hence reduction in total cost for

maintenance.

From the research perspective, achieving mobility of swarm

agents in a heterogeneous parallel computing environment

opens a new avenue to be explored. Decentralized

checkpointing accomplished by the aid of swarm carrier agents

is another interesting area of research. With these objectives,

swarm-array computing can hence be proposed as a new

approach for closer examination and investigation.

Swarm-array computing can be more assuring for

applications that demand reliability. Potential applications that

can be influenced include space applications and cloud

computing. Space crafts employ FPGAs, a special purpose

parallel computing system that are subject to malfunctioning or

failures of hardware due to ‘Single Event Upsets’ (SEUs),

caused by radiation on moving out of the protection of the

atmosphere [21] - [23]. One solution to overcome this problem

is to employ reconfigurable FPGAs. However, there are many

overheads in using such technology and hardware

reconfiguration is challenging in space environments. In other

words, replacement or servicing of hardware is an extremely

limited option in space environments. On the other hand

software changes can be accomplished. In such cases, the

swarm-array computing approach can provide solutions based

on agent mobility within the abstracted landscape and hence

minimize overheads in software uploading and exclude

requirement to reconfigure hardware.

V. EXPERIMENTAL STUDIES

Simulation studies were pursued to validate and visualize the

proposed approach in Swarm-Array Computing. Various

simulation platforms were considered, namely network

simulators, which could predict behaviours of data packets in

networks, and multi-agent simulators, that could model agents

and their behaviours in an environment. Since FPGA cores are

considered in this paper, network simulators were not an

appropriate choice. The first approach proposed in this paper

considers executing cores as agents; hence a multi-agent

simulator is employed. The remainder of this section is

organized into describing the experimental environment,

modelling the experiment and generating landscapes of

intelligent cores.

A. Experimental Environment

The feasibility of the proposed swarm-array computing

approach was validated on the SeSAm (Shell for Simulated

Agent Systems) simulator. The SeSAm simulator environment

supports the modelling of complex agent-based models and

their visualization [24] [25].

The environment has provisions for modelling agents, the

world and simulation runs. Agents are characterized by a

reasoning engine and a set of state variables. The reasoning

engine defines the behaviour of the agent, and is implemented

in the form of an activity diagram, similar to a UML-based

activity diagram. The state variables of the agent specify the

Fig. 2. First Approach in swarm-array computing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1510

state of an agent. Rules that define activities and conditions can

be visually modelled without the knowledge of a programming

language. The building block of such rules is primitives that are

pre-defined. Complex constructs such as functions and

data-types can be user-defined.

The world provides knowledge about the surroundings the

agent is thriving. A world is also characterized by variables and

behaviours. The modelling of the world defines the external

influences that can affect the agent. Hence, variables associated

with a world class can be used as parameters that define global

behaviours. This in turn leads to the control over agent

generation, distribution and destruction.

Simulation runs are defined by simulation elements that

contribute to the agent-based model being constructed. The

simulation elements include situations, analysis lists,

simulations and experiments. Situations are configurations of

the world with pre-positioned agents to start a simulation run.

Analysis lists define means to study agents and their behaviour

with respect to time. Simulations are combinations of a

situation, a set of analysis items and a simulation run; or in

other words a complete definition of a single simulation run.

Experiments are used when a combination of single simulation

runs are required to be defined.

B. Modelling

As considered in Section II, the swarm-array computing

approach needs to consider the computing platform, the

problem/task and the landscapes. The parallel computing

platform considered in the studies reported in this paper is

FPGAs. The cores of the FPGA are modelled as agents in

SeSAm, in accordance with the swarm-array computing

approach reported in this paper. The intelligent cores are an

abstraction of the hardware cores arranged in a 5 X 5 regular

grid structure. The model assumes serial bus connectivity

between individual cores. Hence, a task scheduled on a core

can be transferred onto any other core in the regular grid

abstraction.

The breakdown of any given task to subtasks is not

considered within the problem domain of swarm-array

computing. The simulation is initialized with sub-tasks

scheduled to a few cores in the grid. Each core maintains a

record of the subtasks it is executing and can monitor cores in

the regular grid to which the subtasks can be assigned in the

event of a predicted failure. The behaviour of the individual

cores varies randomly in the simulation. For example, the

temperature of the FPGA core changes during simulation. If the

temperature of a core exceeds a predefined threshold, the

subtask executed on the core requires reassignment to another

available core that is not predicted to fail. During the event of a

transfer or reassignment, the record of the subtask maintained

by the core is also transferred to the new core. If more than one

sub-task is executed on a core predicted to fail, each sub-task

may be reassigned to different cores.

Fig.3. Screenshots of the simulation on SeSAm multi-agent simulator for eight consecutive time steps

C. Generating Landscapes

Figure 3 is a series of screenshots of a random simulation run

developed on SeSAm for eight consecutive time steps from

initialization. The figure shows the executing cores as

rectangular blocks in pale yellow colour. When a core is

predicted to fail, i.e., temperature increases beyond a threshold,

the core is displayed in red. The subtasks are shown as blue

filled circles that occupy a random position on a core. As

discussed above, when a core is predicted to fail, the subtask

executing on the core predicted to fail gets seamlessly

transferred to a core capable of processing at that instant.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1511

A log was recorded of the temperature of individual cores of

the FPGA during a simulation. A 3D plot of the multi-core

landscape during an arbitrary time step, where the z-axis

represents the temperature was generated on the MATLAB

toolkit. Figure 4 (left) shows the 3D representation of the

landscape. Since the landscape is uneven, a contour plot was

also generated for better visualization. Figure 4 (right) shows

the contour plot of the landscape. Since figure 4 is the

representation of the landscape of a 5 X 5 regular grid, the

landscape has less resolution. Hence higher resolution contour

plots were generated. Figure 5 (left) shows the contour plot for

a 25X 25 regular grid during an arbitrary time step of the

simulation run and figure 5 (right) shows the contour plot for a

100X100 regular grid during an arbitrary time step of the

simulation run.

The generated landscape provides a pictorial view of the

computing space and the problem. According to the colour bar

provided in the legend of the plots, a light shade on the contour

plot represents cores of higher temperature while the dark

shaded regions represent safe cores of the FPGA. From the 3D

plot it is understood that the peaks of the landscape are cores

predicted to fail while the valleys and lower elevations on the

landscape represent safe cores of the FPGA. In the approach

considered in this paper, the sub task always resides on the safe

cores of the FPGA. In other words, within the landscape sub

tasks thrive in valleys and lower elevations.

From a different perspective, the peaks in the landscape can

be considered as obstacles for the executing sub tasks. Hence,

the sub tasks avoid the peaks by being autonomously and

seamlessly transferred to safer regions within the landscape.

The notion of obstacles in a landscape is also seen within the

domain of swarm robotics, where a swarm of mobile

autonomous agents on a landscape avoids obstacles to reach a

goal. The landscape in the approach presented in this paper is

dynamic (subject to change every time step) and hence makes

the computing space and problem much more complex than a

static landscape usually considered in swarm robotics.

Eventually, the problem of applying autonomic computing

constructs to parallel computing platforms is funnelled to a

classic, yet a complex swarm robotics problem of obstacle

avoidance.

The simulation studies are in accordance with the

expectation and hence are a preliminary confirmation of the

feasibility of the proposed approach in swarm-array computing.

Fig. 4. 3D surface plot (left) and contour map (right) of landscape for a 5 X 5 regular grid FPGA

Fig. 5. Contour map of landscape for a 25 X 25 regular grid FPGA (left) and 100 X 100 regular grid FPGA (right)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:6, 2009

1512

Though some assumptions and minor approximations are made,

the approach is an opening for applying autonomic constructs

to parallel computing platforms.

VI. CONCLUSIONS

In this paper, swarm-array computing, a novel technique to

apply autonomic computing constructs in parallel computing is

proposed. The foundation and inspiration of the approach is

introduced. The constitution of swarm-array computing and

how the constituents can be utilized to achieve autonomic

properties are described. Three approaches that bind the

constitution of swarm-array computing are proposed. The

impact of swarm-array computing on emerging as a new

avenue for research is pointed out. Space applications

employing FPGAs are identified as an area that can be

influenced by swarm-array computing. The feasibility of one

among the three proposed approaches is presented in this paper.

Future work will include identifying the major challenges

that need to be addressed in swarm-array computing. Emphasis

will be laid on how the swarm-computing approaches can be

steered into real time implementation. Further effort will be

made to explore the concepts of abstraction, decentralized

checkpointing, intelligent cores and intelligent agents.

REFERENCES

[1] M. K. Habib, K. Watanabe, and K. Izumi, "Biomimetics Robots from

Bio-inspiration to Implementation” in the Proceedings of the 33rd Annual

Conference of the IEEE Industrial Electronics Society, 2007.

[2] M. G. Hinchey and R. Sterritt, “99% (Biological) Inspiration” in the

Proceedings of the 4th IEEE International Workshop on Engineering of

Autonomic and Autonomous Systems, 2007, pp. 187 – 195.

[3] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R.

Nagpal, E. Rauch, G. Sussman, and R. Weiss, “Amorphous computing”,

Communications of the ACM, 43(5), May 2000.

[4] S. R. Hedberg, “Evolutionary Computing: the spawning of a new

generation” in the IEEE Intelligent Systems and their Applications, May –

June 2008, Vol. 13, Issue 3, pp. 79 – 81.

[5] R. Sterritt and M. Hinchey, “Autonomic Computing – Panacea or

Poppycock?” in the 12th IEEE International Conference and Workshops

on the Engineering of Computer-Based Systems, 2005, pp. 535 – 539.

[6] R. Sterritt and D. Bustard, “Autonomic Computing – a Means of

Achieving Dependability?” in the Proceedings of the 10th IEEE

International Conference and Workshop on the Engineering of

Computer-Based Systems, 2003, pp. 247 – 251.

[7] M. R. Nami and M. Sharifi, “Autonomic Computing a New Approach” in

the First Asia International Conference on Modelling and Simulation,

2007, pp. 352 – 357.

[8] M. Jarrett and R. Seviora, “Constructing an Autonomic Computing

Infrastructure using Cougaar” in the Proceedings of the 3rd IEEE

International Workshop on Engineering of Autonomic and Autonomous

Systems, 2006, pp. 119 – 128.

[9] R. Sterritt and D. F. Bantz, “Personal Autonomic Computing reflex

reactions and healing” in the IEEE Transactions on Systems, Man and

Cybernetics, Part C: Applications and Reviews, 2006, pp. 304 – 314.

[10] M. R. Nami and K. Bertels, “A Survey of Autonomic Computing

Systems” in the Third International Conference on Autonomic and

Autonomous Systems, 2007, pp. 26 – 30.

[11] P. Lin, A. MacArthur and J. Leaney, “Defining Autonomic Computing: A

Software Engineering Perspective” in the Proceedings of the Australian

Software Engineering Conference, 2005, pp. 88 – 97.

[12] A. Peddemors, I. Niemegeers, H. Eertink and J. de Heer, “A System

Perspective on Cognition for Autonomic Computing and

Communication” in the Proceedings of the 16th International Workshop

on Database and Expert Systems Applications, 2005, pp. 181 – 185.

[13] M. G. Hinchey and R. Sterritt, “99% (Biological) Inspiration” in the

Proceedings of the 4th IEEE International Workshop on Engineering of

Autonomic and Autonomous Systems, 2007, pp. 187 – 195.

[14] T. Marshall and Y. S. Dai, “Reliability Improvement and Models in

Autonomic Computing” in the Proceedings of the 11th International

Conference on Parallel and Distributed Systems, 2005, pp. 468 – 472.

[15] T. M. King, D. Babich, J. Alava, P. J. Clarke and R. Stevens, “Towards

Self-Testing in Autonomic Computing Systems” in the Proceedings of the

8th International Symposium on Autonomous Decentralized Systems,

2007, pp. 51 – 58.

[16] G. S. Almasi and A. Gottlieb, “Highly Parallel Computing,”

Benjamin-Cummings Publishers, 1989.

[17] R. K. Persaud, “Investigating the Fundamentals of Swarm Computing,” a

Bachelor of Science in Computer Science thesis, University of Virginia,

2001.

[18] A. Seth, “Scalability and Communication within Swarm Computing,” a

Bachelor of Science in Computer Science thesis, University of Virginia,

2003.

[19] M. G. Hinchey, R. Sterritt and C. Rouff, "Swarms and Swarm Intelligence

" in IEEE Computer, Vol. 40, No. 4, IEEE Computer Society, April 2007,

pp. 111-113.

[20] J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm intelligence”, Morgan

Kaufmann Publishers, 2001.

[21] M. V. O’Bryan, C. Poivey, S. D. Kniffin, S. P. Buchner, R. L. Ladbury, T.

R. Oldham, J. W. Howard Jr., K. A. LaBel, A. B. Sanders, M. Berg, C. J.

Marshall, P. W. Marshall, H. S. Km, A. M. Dung-Phan, D. K. Hawkins,

M. A. Carts, J. D. Forney, T. Irwin, .C. M. Seidleck, S. R. Cox, M.

Friendlich, R. J. Flanigan, D. Petrick, W. Powell, J. Karsh and M. Baze,

“Compendium of Single Event Effects Results for Candidate Spacecraft

Electronics for NASA” in the Proceedings of the IEEE Radiation Effects

Data Workshop, 2006, pp. 19 – 25.

[22] E. Johnson, M. J. Wirthlin and M. Caffrey, “Single-Event Upset

Simulation on an FPGA” in the Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algorithms,

USA, 2002.

[23] S. Habinc, “Suitability of Reprogrammable FPGAs in Space

Applications” a feasibility Report for the European Space Agency by

Gaisler Research under ESA contract No. 15102/01/NL/FM(SC) CCN-3,

September 2002.

[24] F. Klugl, R. Herrler and M. Fehler, “SeSAm: Implementation of

Agent-Based Simulation Using Visual Programming” in the Proceedings

of the Fifth International Joint Conference on Autonomous Agents and

Multi-Agent Systems, Japan, 2006, pp. 1439 – 1440.

[25] SeSAm website: http://www.simsesam.de

