International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

Concurrency without Locking in Parallel Hash
Structures used for Data Processing

Akos Dudéas and Sandor Juh

Abstract—Various mechanisms providing mutual exclusion angontinuously expanded when any unknown field canfiesy)

thread synchronization can be used to support Iphnatocessing
within a single computer. Instead of using locksnaphores, barriers
or other traditional approaches in this paper weigoon alternative
ways for making better use of modern multithreadechitectures
and preparing hash tables for concurrent accestesh structures
will be used to demonstrate and compare two enticifferent
approaches (rule based cooperation and hardwarehsymzation
support) to an efficient parallel implementationings traditional
locks. Comparison includes implementation detagsrformance
ranking and scalability issues. We aim at undedStanthe effects
the parallelization schemes have on the executimir@ment with
special
characteristics.

Keywords—Lock-free synchronization, mutual

parallel hash tables, parallel performance

|. INTRODUCTION

focus on the memory system and memory scc

that was encountered on the input. Any existingidjoinput
content was to be replaced by a (short) outputevéthat was
assigned to the key at the first encounter. Theltred the
process was a new data file more fitting for furthecessing
as it carried the same information content as tiginal web
log, but only had a fraction of its size.

For increased efficiency the lookup table was im@ated
by a custom hash table that only supported insemionew
elements and looking up the values belonging taifpe&eys

Jho entry modification or table reorganizations evezquired).

For this reason in the further part we focus oubréefon

speeding up these two operations, although it igtlwo

exclusion, mentioning that hints for efficient parallel implentations of

the missing operations can be found in [7, 8, 9].
The fact that the hash table is used in data psougss
relevant for two reasons. First of all, the vasibant of data

PARALLELIZATION is becoming the de-facto solution forthat goes through the hash table forms our goakeas few
performance enhancement of all types of a|gorithm'§jdirections in the storage structure as possthis; however,
Large scale data processing is a perfect candidate clashes with the concept of one of the synchroivizat
parallelization, as the most time consuming stepscate Solutions we present. Secondly, the size of thdetabnd
simple transformations on large amounts of datg. (1] Nnamely, the number of buckets in the table makesutie of
claims preprocessing to be responsible for 80% Hu# tlocks unfavorable due to their overhead of consgmin
execution time of data mining process), thus listkace is left memory; memory which could be used in the cachesldta
for algorithmic optimizations. storage instead.

Speeding up an algorithm requires the analysis thied ~ We present and analyze different methods for afigvand

understanding of the factors that determine itfgperance.

speeding up parallel access to hash tables. Tlastigal

Algorithmic step count, data movement costs, mentmygut €xample is used for demonstrating the main idead an

and usage pattern of data structures all play aitant role outlining the performance effects of the differapproaches.

in the runtime behavior of an application. Our mabjective Both the aforementioned issues, namely indirectionshe

is to offer different methods to make better usevinfespread Storage structure, and memory overhead of the Ipzation

state-of-the-art computer architectures that contaultiple solutions will be studied through the performanealeation

processors (and/or processor cores) by identifyirg main of the methods.

performance factors and examining their effectswarious ~ The rest of the paper is organized as follows. ¢atisn I

parallel approaches are applied to solve the saama dwe identify the performance factors of parallel caithms

transformation problem. running on current desktop architectures and pteseme
The motivation of this work comes from a large scakb recent works using locks in concurrent hash tatBestion 11|

log processing project [2] which required the réngdof Presents our arguments against the use of lockgeieral.

multiple large data fields with limited domain to raore Section IV provides the implementation details lo¢ ock-

compact representation format. The essential oftabk was free, non-blocking hash table variants that alloewesal

to build a large lookup table containing up to saléens of threads to cooperate without using traditional syanization

millions of key-value pairs. The code table wasltbon the mechanisms such as locks, semaphores or barmegedtion

fly, that is, the data structure empty in the bagig was V measurement results are presented and analyzahtoate

the different implementation approaches. Section VI

The authors are with the Department of Automatiamd aApplied
Informatics, Budapest University of Technology al@tonomics, 1117
Budapest, Magyar tuddsok krt. 2. QB-207, Hungarymdil: {akos.dudas,
juhasz.sandor}@aut.bme.hu.

summarizes our findings and gives a brief overvigwour
findings.

14

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

Il. RELATED WORKS

A. Performance Factors of Sequential |mplementations

The most important factor that determines the perémce
of an algorithmic its mathematical complexity. Tipiarticular
aspect is not in our scope now, because hash taalesO (1)
complexity for accessing an item. The access timiaga
constant means that it is independent of the sizd aumber
of elements in the hash table, and with the ridimiae of
parameters (size of the hash table, nearly idesth fiznction)
the average access path can be kept nearly assl@asimgle
step [3].

In data- and memory intensive applications the seégnost
important factor is the memory access charactesisif the
algorithm. Lookup tables require low computationweg,
their performance is rather dominated by the mena@gess
times than the number of instructions completedirtd the
element corresponding to the key. Current architestbridge
the performance gap between current CPUs and thain
memory by a multilevel cache, thus in practice th
performance of data intensive application is alwaysasured
in the number of the slow memory accesses (cackses).
[4] was the first to mention the importance of cehlwhen
adjusting the parameters of hash tables, whilepfblide in

good performance in shared memory multiprocessstesys.
More efficient implementation like [8] use a more
sophisticated locking scheme with a smaller nunabdrigher
level locks (allocated for hash table sections udirig
multiple buckets) allowing concurrent searching aesizing
of the hash table.

Locks can be implemented purely by software in theo
however all modern architecture provide hardwangpstt in
form of atomic bitwisetest-and-set and word-sizecompare-
and-swap operations guaranteeing that no interruption,ror a
other bus operation initiated by other processorsbos
controllers will occur between the read and writertpof
operation. Hardware locking can be used directiyhmugh a
wrapping layer provided by the execution environtr@anthe
operating system (providing extra services liketingi queues
or thread state control yielding for other threadtil the
critical section becomes available).
€ The first problem with locks is that since they #re means
of communication between threads and the proceshers
threads execute on, they must always be up-to-detaning
that they cannot be cached. The same memory locdgio
periodically updated by various threads forcingpabicessors

A CASEFORAVOIDING LOCKS

detailed study about the cache performance whengusito purge the particular cache line from their cachighe next

various hash functions along with different coblisiavoidance
methods. [10] proposed a method to combine caclaeemess
and reliability by grouping buckets into cache $neln our
previous work [6] we provided an extensive studplaiing

how the structure (memory layout) and parametethehash
table should be chosen for optimal lookup perforoeamhese
results will be referenced and used during theegmadion of
the implementation details.

B. Parallel Execution and Mutual Exclusion

In parallel environments (such as multi-CPU andtiudre
systems) further speedup can be achieved by tadmgntage
of the execution environment's capabilities. Prempara
sequential algorithm for parallel
approaches. In order to ensure that threads execuh
parallel provide the same result as the sequespptoach, at
some critical points it must be made sure that only thread
has access to certain parts of the data structaresaintain
their integrity. This kind of mutual exclusion issually
enforced by the use of locks.

Several parallel implementations of hash tables a
available that use look based synchronization. rglsi hash
table level look can easily become a bottlenecls theveral
method were developed to overcome this difficuligrson et
al. in [11] use two lock levels, there is one glotadble level
lock, and there is one separate lightweight locKlgg) for
each bucket. The high level lock is just used feftisg the
bucket level flags and released right afterwardiss €nsures a
fine grained mutual exclusion (concurrent operatioon
bucket level), but needs only one real
implementation. It was shown by [12] that in cadenon-
extensible hash tables simple reader-writer loeksprovide a

executing has wnan

lock for th%

time the lock is tested, the data is read from slgstem
memory directly resulting in a cache miss. This am
important consideration when locks are used; they a
expensive to check and modify and the cost is heatiss at
all times.

The second problem is the actual level of paralelunder
the surface. The use of locks does not providellpsm; it
does exactly the opposite. Threads are forced ibifnemother
one is still working the critical section. The thds can wait
actively (i.e. continuously polling the state ofethocks by
spin-waiting) or passively giving up their timecdiuntil the
lock becomes available. Either solution has additiocosts,
such as wasting computing power by active waitiog,
involving the operating system scheduler in theepttase.

The amount of time lost at waiting can be reducgd b
creating multiple finer-grained critical regions. dase of hash
tables this means that instead of locking the witalde we
apply the lock on smaller regions of an open hasket or on
bucket or bucket groups of a bucket hash tablenu#aber of
locks increases collisions become less and lesbapte,
[)(?oviding better performance and scalability. Unfoately
using high number of locks is often not supportgdhe run-
time environment (we may just have a few thousanaisj
they have a relatively large memory footprint. Eviewe use
only one bit, we cannot create an array of locksabee of the
effect of “false sharing.” False sharing hints ba shared use
of the same cache line by multiple independentdpakhere
the modification of one lock will not only effedtdt single bit,
but it will purge all other unrelated neighborinigsb(for a 64
yte long cache line 511 other locks) form the eaoh the
concurrent processors. We can solve this probleasbigning
a complete cache line to each lock, or merginglabk with

15

International Journal of Information, Control and Computer Sciences

ISSN:

2517-9942

Vol:6, No:1, 2012

data items (adding one extra byte for each loak$ 8$preading

Another import factor for good performance is stemarch

locks all over the memory resulting in higher meynorpath. This can be guaranteed by a uniform hashtibmand

allocation.

the right choice of the table size. Although thésih table is a

In general all lock-based algorithms suffer frome thkind of bucket hash implementation the average éuskze

drawbacks of blocking synchronization such as dekd,
long and undefined delays and priority inversionsicl is
especially true when using extensible hash taldles [

Using locks is not really convenient: threads candér the
execution of each other, extra memory is requirddta
structure should be reorganized (to place the laok)in cases
of unfortunate implementations the interaction ofltiple
locks can stall the whole processing (deadlockasitns). A
great amount of research efforts has been madehén
literature to develop non-blocking synchronizatioethods.
In the following section we present two ideas thige a kind
of workaround of the lock-based mutual exclusiortipalarly
applicable to hash tables.

IV. IMPLEMENTING A CONCURRENTHASH TABLES

This section presents the concurrent implementstadrihe
hash table. We start from a single threaded, opéthvariant,
which then will be altered according to three diffa
parallelization schemes: traditional mutual exaasiwith
locking, lock-free with hardware atomic operatioasd lock-
free rule-based cooperation.

A. Optimized Hash Table

Parallel performance optimization begins with atirojzed
sequential hash table. As discussed in detail oii@ell the
performance
characteristics. Multiple works as well as our eigreces [5,
6, 10, 11] show that the number cache misses irs¢laech
path should be a primary concern. We have foundh# the
best choice in this case is a hash structure tisas wno
indirections for storing the items if there is nallision (see
Fig.1). This is a bucket hash table using chaifiinrgesolving
collisions. The most important benefit of this sture is that
the first item in each bucket can directly be aseds (This
property will be relevant when discussing the CAigon in
Section IV.C.)

hash tabls bedy
kay | ptr

value |— key | ptr| wvalue

valug |— key | ptr

kay | ptr value _pl kE\,rl ptr | \raluel

key | ptr | wvalue

key | ptr| walus w key | ptr | value

value [key | ptr

key | ptr

value _,.,l kEYl ptr | \raluel

Fig. 1 Memory layout of hash table we use

Each item consists of the key, a pointer to thd item, and
the stored value associated with the particulametd. The
key and the pointer are placed next to each othémndrease
the chance of being in the same cache line beakfidien
following the bucket chain. The hash table bodygadsnpact,
no cache line alignment or padding is used to rednemory
footprint.

should be kept as low as 1, which is achieved lmpsimg the
size of the hash table about 20-40% bigger, thamtimber of
items it should hold. In this working point the cpact

structure functions rather like an open key hadiletavith

special list-based collision avoidance mechanism.

B. Traditional Locking

Little effort is required for a simple locking
implementation. A single table-level lock sufficinsolves
the concurrency problem, but it basically seriadizall
accesses to the table easily resulting in perfoomaloss
instead of gain. On the other hand using too mankd (i.e.
one for each bucket) it is a waste of memory spideee place
a lock to each bucket, than threads only collidemvirying to
access the same bucket at once (practically nebet)we
have to maintain tens of millions of locks in themory.

Based on previous research [8, 11, 12] and verifigadur
experiments region locks are the best choice. selho set
up 1024 locking regions (Fig.3.a) from consecutiash table
items.

C.CAS Based I mplementation
Lock free parallel implementations usually use atom

compare-and-swap (CAS) operations instead of ekplic

locking. This method is founded on the fact thatnabdern

is significantly affected by the memorgomputer architectures provide hardware supportatomic
the CMPXCHG

combined read-write operations (e.g.
instruction in thex86architecture) that allow theonn
destructive manipulation of a single machine wone. basic
idea is that we should construct algorithms whereisi
sufficient to manipulate a single machine word ¢biave the
necessary result. In practice the manipulated vialaepointer
(which has the length of one machine word), thuthin first
step we create the composite data structure inntemory
according to the current situation, than we trymove it in
place with the conditional CAS operation. If thengmare
condition does not hold true anymore (the memonation
has been modified by another thread) than the ywapations
fails. We adapt the structure to the new condiaod we try
the insertion again.

With this method complete lock-free data structuassl
algorithms can be build, as it was done with linkist by

Michael in [12], whose works was further extendesl t

resizable hash tables by in [9].When creating a ®aSed
implementation (see Fig. 3.b) the data structureipudation

consist of a series of pointer adjustments. F® thason we
have to modify the data structure we use (see EigThis

works exactly the same way as the previous vadaoept for
the data items not being embedded into the bodhehash
table.This extra indirection in the structure clksiwith our
goal to store the items accessible without indioecfrom the

table body, and is expected to be accountablerfon@eased
number of cache misses.

16

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:1, 2012

hash tablz body
ptr |—s| key | ptr| value
ptr (—»| key | ptr| value —)-| kE‘,l'l ptrl valug |
ptr
ptr (—3| key | ptr| value
ptr |—| key | ptr | wvalus _,.i kE\,rl ptrl value |

Fig. 2 Memory layout of hash table adopted to betlugith CAS

The main advantage of this approach is high sdaiabi
using hardware supported optimistic concurrencydhag,
while its price is the development effort put idileding and
implementing an algorithm which produces the rigigults
with applying the pointer manipulations one by dnethe
right order. When using this approach we exped leaiting
due to the omission of locks, but at a cost ofeased cache
misses that originate from the memory layout madiion
required.

D. Rule-Based Cooperation

The last method for implementing a lock-free heddld is
what we callrule-based cooperation. The main idea is to do a
kind a reverse work allocation compared to theiti@uhl lock
based scenario where each thread is capable ofitag@any
task and while doing so they protect their workarga with
lock to avoid the interference with other taskstte reverse
case we specialize our threads by assigning ina@igvork
areas to them that do not overlap (separate fumtipipeline
stages, spatial domains or graph branches). In dhge a
specific service requests can be served by justioead, and
it is up to the right selection of domains to pdwvithe load
balancing.

The selection rules are usually based on data daesition
as functional decomposition generally does not igeree
scalability and we easily reface the problem diaal sections
on the level of organizing the control. According our
knowledge this kind of cooperation is never mergin the
literature of shared memory algorithms, but theaide not
unknown in distributed systems, where there lowt sbsired
memory synchronization is not available, thus tloarser
grained cooperation between the nodes is maintaimed
directed point-to-point messages or implicit wollogation
rules (e.g. distributed file servers, horizontagibyrtitioned data
bases, documents groups allocated to separateemalrs).

s

s B
B

o Baaaaas

g R

B]

o
]

Fig. 3 Concurrent hash table implementation: ahhakle with
section locks, b) CAS based cooperation, and e}waked task
separation

The threads share a common input and output regioch
can be addressed directly (with the index of thmuiror the
output element). Each threads reads each inputeele(mo
locking is needed, this is just a read only acéesgveryone)
and based on a rule they decide whether to protests
specific element or to move to the next one (FiRi®. The
rule is constructed in such a way that it choosexty one
thread for processing the element, and that thréad
responsible for creating the output (no lockinguieed as
writing as each element is written by one singteah).

In practice withn threads the original hash table is divided In the case of lookup tables the rule should besttooted

into n regions (sub-hash tables, see Fig. 3.c) where thaeghd
is responsible for exactly one region. As the ttréa the
owner of its region no locking is required, as mbpelse is
allowed to reach the data inside.

in a way that ensures the elements with the samelkeays
go to the same thread. In our implementation wel asgmple
modulo n rule, which was applied the hash functbthe key
(the same hash function is used as the one usiele ithe sub-
hash tables for placing the elements). That ihafthreads are
numbered between 0 amdl then threadn (0 <m<n) selects
itself for processing ifhash (key) mod n equals tom. We
should use complex hash functions in both the pater
decision and the internal placement as we seefirfniding a
highly uniform load distribution between the threadnd
between the table slots as well. The advantagdafrgy the

17

International Journal of Information, Control and Computer Sciences

ISSN:
Vol:6,

same hash function is that it needs to be calalilatdy once

2517-9942
No:1, 2012

What we are interested in is on one hand the peeoce

when handling an item. The complex external degisiowhich is measured in terms of operations (lookwg®it) per

function has its disadvantage as well as all thseasgled to
calculate it for each item just to find out whethebelongs to
their scope or not. We expect to see higher ingtmicount
on behalf of this approach.

In the case of rule based workload distributiorrehis no
need for locking neither at software nor at harawlawel, no
special instruction are required, no additional heaenisses
appear and implementation is relatively simple.SEheenefits
come at the cost of increased computation as @athhas to
apply the rule to all
synchronization overhead forl out of then threads.

V. MEASUREMENTSAND RESULTS

millisecond (the higher the better) and the readsehind the
performance differences. We measure the number
operations per 1000 CPU instructions and number
operations for each dozen cache misses. The sasesf
practical choice for the visibility. Both are bettehen higher
(i.e. more lookups completed by the same numbe€CRE
instructions).

of

The lock-based solution and the CAS method havée the

peak performance at 8 threads achieving 2.9 anét.2%

items which is just a kind ofspeedup over the baseline while the cooperatiomadeis at

its the best with 7 threads with a speedup of 253-2
The lock-based solution dominates the lock-freeutimhs
up to about 8 concurrent threads, which is exabynumber

In this section we compare the performance of abovg (virtual) cores in the CPU.

mentioned three implementation types (high-levettiea
lock, CAS, rule-based co-operation) consideringfedént
number of threads and various workload types.

The measurements were executed on an Intel Cd260@-

The CAS solution has mostly the same performance. W

also see that it increased cache miss count (theatipns per
10 cache misses is lower) which is due to the erttaiection
in the data structure. It also has the best inStmiccount

CPU (3.6 GHz, 4 core and Hyper Threading) with 8 GBjocks do spin-waiting consuming instructions, cexgion
system memory and Windows 7 operating system. Hsh h cajculates more hash functions). The biggest gainthie
tables and every locking mechanism were implemerted gcgjapility.

C++ with careful manual optimization and compiley b The cooperation solution behaves unevenly witheckfit

Microsoft Visual Studio 2010 in default releaselthunode.

Each test scenario reports the average of 5 exasutiVe
measured the execution time, the number of lasl lesche
misses (8 MB L3 cache shared by all cores) andtimber of
executed instructions.

The first type of workload (see Figure 4) has 50%eit and
50% lookup operations, while the second (see Fidtjre
consists of 10% insert and 90% lookup operatioRéease

number of threads, which is due to the implicitddzlancing

of the chosen hash function which performs the data

decomposition. It has the worst utilization of CRiStructions
(lowest count of lookups/inserts completed by treme
amount of CPU instructions). Since the hash fumctis
calculated by all threads, it goes to waste forbali one of
them. It also seems that this solution is not yealhche
friendly. Since the threads are not controlled yorchronized

note thatoperations in this context are searches/inserts in thg seems that they have uneven loads and work ferelit

table, while thenstructions are executed by the CPU).

baseline section lock e== CAS e=mmcooperation

operations

per msec
30000
27000
24000

21000
18000
15000
12000
9000
6000 -
3000

0 T T T
1 2 3 4 5 6 7 8 9 10 11 12

threads

Fig. 4 Operations per millisecond for various numtifethreads using the four different schemes)(leftd the same for 2 and 8 threads with

operations

regions of the system memory, which puts more rstoai the
system.

M operations/msec M op/instruction M op/cache miss

operation / 1000 instruction
operation /10 cache miss
10

per msec
30000

27000 9
24000 8
21000 7
18000 6
15000 5
12000 4
9000 3
6000 2
3000 1
0 - 0
Q) Q » Q) Q) Q)
R v°’\ S o v‘j\ &
O (@ X Y & >
xS g Q& g
@0 QQ» &0 QQ»
& & & &

the corresponding number of operations per insomstand cache misses (right). The workload con$iS0% insert and 50% lookup
operations

18

International Journal of Information,

Control and Computer Sciences

ISSN: 2517-9942
Vol:6, No:1, 2012

operations baseline section lock == CAS cooperation M operations/msec M op/instruction M op/cache miss
per msec operations operation / 1000 instruction
per msec operation /10 cache miss
30000 30000 10
27000 27000 9
24000 24000 3
21000 21000 ’
18000 6
18000 15000 >
15000 12000 4
12000 9000 3
9000 6000 2
3000 1
6000
0 0
3000 Qo @ @ @& @
0 © W Q' @ } .S
T T T O (@] & O C R
1 2 3 4 5 6 7 8 9 10 11 12 & & 0 &
& S & o
threads ° © ° ©

Fig. 5 Operations per millisecond for various numtifethreads using the four different schemes)(leftd the same for 2 and 8 threads with
the corresponding number of operations per insomstand cache misses (right). The workload con$i0% insert and 90% lookup

operations

VI. CONCLUSION

This paper presented two lock-free implementatwfisash [
tables. Our hypothesis is that locking solutiong arot
practical, since they have limited applicabilityostraint on 2]
the number of locks), require invasive modificatioh the
algorithms (placement of the locks, memory con@erns[gl
threads can hinder each other's performance, astty,lat is
prone to faulty or crashed threads.

It can be said that really good performance caadigeved [4]
with locks, but it must also be taken into consadien that the [5]
locks we used are implemented as assembly levgbdtiand-
set based solutions allowing for very low overheand
unlimited number of locks. The use of locks alseeptally
hinders executing, while lock-free solutions areajable of
causing deadlocks. [7]

The lock-free solutions this paper examined inctude
well-known technique of using the CAS primitive, iain
provides a good alternative to locking, but reqdiiceanges in (8]
the storage structure, which causes more cachessniasd
results in more complex algorithm where extra mataizor
was put into the implementation and verificatiomeTbiggest [9]
advantage of this approach is its scalability.

The rule-based cooperation with data decomposisoan
idea borrowed from distributed systems and appleshared [11]
memory parallel algorithms. The performance of #pproach
is limited by the increased amount of instructiatisthreads ;5
need to perform redundantly, but has a nice feabfireeing
applicable without any modification to the algonith and data
structures.

(6]

[10]

ACKNOWLEDGMENT

This project is supported by the New Hungary Depelent
Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002)

REFERENCES

S. Ansari, R. Kohavi, L. Mason, and Z. Zheng, “bring E-
Commerce and Data Mining: Architecture and Chaklexiyin IEEE
International Conference on Data Mining, 2001,2f34.

S. Juhasz, and R. Ivancsy,“Tracking Activity of Reaividuals in Web
Logs,"International Journal of Computer Science, Vol. 2, No. 3, pp.
172-177, 2007.

W. Litwin,“Linear hashing: A new tool for file anible addressing,” In
Proceedings of the Sixth International Conference/ery Large Data
Bases, New York, pp. 212-223, 1980.

M. Mitzenmacher,“Good Hash Tables & Multiple HasinEtions,” Dr.
Dobbs Journal, No. 336, pp. 28-32, May 2002.

G. L. Heileman and W. Luo,“How caching affects hagti In
Proceedings of the 7th Workshop on Algorithm Engiiveg and
Experiments, Vancouver, Canada, pp. 141-154, 2005.

S. Juhasz and A. Dudas, “Optimising Large Hash &alfibr Lookup
Performance,” In proceedings of the IADIS Interoatil Conference
Informatics 2008, Amsterdam, The Netherlands, p@-114, 2008.

M. Greenwald, “Two-handed emulation: How to buildnrblocking
implementations of complex data-structures using ABC In
Proceedings of the 21st ACM Symposium on PrincipieBistributed
Computing. ACM, New York, pp. 260-269, 2002.

D. Lea, “Hash table util.concurrent.ConcurrentHaslplrevision 1.3, in
JSR-166, the proposed Java Concurrency Package™03, 20
http://gee.cs.oswego.edu/cgi-
bin/viewcvs.cgi/jsr166/src/main/java/util/concurten

0. Shalev and N. Shavit, “Split-ordered lists: Ldoke extensible hash
tables,Journal of the ACM 53(3): pp. 379-405, 2006.

A. Sachedina, M. A. Huras and K. K. Romanufa,“Resie cache
sensitive hash table,” US Patent number: 70859103 2

P.-A. Larson, M. R. Krishnan,and G. V. Reilly, “Seable hash table for
shared-memory multiprocessor system,” US Patentbeun6578131,
2003.

M. M. Michael, “High performance dynamic lock-frésash tables and
list-based sets,” In Proceedings of the 14th An#@il Symposium on
Parallel Algorithms and Architectures, ACM, New ¥pmpp. 73-82,
2002.

19

