
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2501

�

Keywords—Data Compression, Huffman Encoding, LZW,
LZW++, RLL, Size.

Abstract—The purpose of this paper is to show efficiency and
capability LZW++ in data compression. The LZW++ technique is
enhancement from existing LZW technique. The modification the
existing LZW is needed to produce LZW++ technique. LZW read
one by one character at one time. Differ with LZW++ technique,
where the LZW++ read three characters at one time. This paper
focuses on data compression and tested efficiency and capability
LZW++ by different data format such as doc type, pdf type and text
type. Several experiments have been done by different types of data
format. The results shows LZW++ technique is better compared to
existing LZW technique in term of file size.

I. INTRODUCTION

Nowadays, data is important for business organization.
Some organization is needed a good software to compress the
data. Research about existing algorithm is needed to produce
an enhanced algorithm or new algorithm for data compression.
The software for data compression is useful because it can
help to reduce hard disk space or transmission bandwidth. This
software can used to reduce size of data. Suppose original data
is 100Mb, after compression process, a new data size is 70Mb.
In this case, this software can reduce 30% data size from the
original data size.

Data compression also is important for data storage and data
transmissions. The purpose of compression is to reduce
original data size. Smaller data size is very efficient for data
transmission from one location to another location. Time for
transmission also is faster and effective. That way, smart
software for data compression is needed for business
organization to ensure business operation can performed
efficiently and effectively.

In this paper, three existing techniques or algorithms for
data compression have been studied. The purpose of this study
is to find a good algorithm for data compression. After that,
enhancement is made to produce enhanced or new algorithm
for data compression.

II. PREVIOUS METHOD

Huffman encoding is one of the data compression
techniques [1]. The first steps in this technique is read file.
Second steps, characters in data file are converted to a binary

code. Third steps, this technique will assign of keys to source
message based on probabilities in the message. This technique
has been applied for data compression. It is efficient for image
compression such bmp format, tiff format and gif format. The
results shows new data size is smaller compared to original
data size. However, this technique is not suitable for text
compression because it is not stable. Sometimes, the results
shows new size is bigger compared to original size.

Another technique in data compression is Run-Length-
Encoding (RLE) [2][3]. This technique is sometimes knows as
“run-length-encoding”. First steps in this technique is read
file. After that, it will scan through the file and find the
repeating string of characters. After repeating characters is
found, it will store using escape character (ASCII 27) followed
by the character and a binary count of the number of items it is
repeated. Smart compression software is needed to compress
strings of two or more repeated characters. The new size is
bigger compared to original size if software is not smart. This
technique is useful for image especially for solid black picture
bits. This technique also is efficient for repeating of characters.
However, this technique is not efficient and effective if data
file has less repeating of characters. Sometimes, the results
shows new data size is bigger compared to original data size.

Third technique have been studied in data compression are
Lempel Ziv Welch (LZW) [4]. This technique has been
applied for data compression. A first step in this technique is
read data file. After that, it will read one by one character in
file. Then, each character will assign a code. If it is found the
same characters, it not assigned a new code but use the
existing code in data dictionary. LZW algorithm will loop until
characters in data file are null. The LZW algorithm is efficient
for data compression such doc type, pdf type and txt type. The
results also shows LZW technique can reduce original size to
smaller compared to original size.

After studied three techniques for data compression, LZW
technique is better compared to Huffman Encoding and Run-
Length-Encoding in term data size. However, the LZW has a
potential to improve with modification of the algorithm. The
modification of LZW algorithm is needed to produce a better
result in term of data size.

III. THE PROPOSED LZW++ METHOD

In this paper we shall propose a new method for data

Study of Efficiency and Capability LZW++
Technique in Data Compression

Yusof. Mohd Kamir, Mat Deris. Mohd Sufian, and Abidin. Ahmad Faisal Amri

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2502

compression. LZW method is used for platform to produce
LZW++ method. Figure 1 and figure 2 shows proposed
compression and decompression LZW++ algorithm.

A. Compression Algorithm
Figure 1 shows proposed LZW++ algorithm for compress

data.

filename = frmMain.dlgOpenFile.FileTitle
filelen = Len(filename)
fileformat = Right(filename, 4)
tfilename = cdlg.FileTitle
tfilelen = Len(tfilename)
tfileformat = Right(tfilename, 4)

If txtOut.Text = "" Then
MsgBox "Select location and file to be
saved.", vbInformation, "Save file is
missing."
txtOut.SetFocus
ElseIf txtOut.Text <> "" Then
If FileExists(txtOut.Text) Then
If MsgBox("File with this name is already in
use. Overwrite existing file?", vbYesNo,
"Overwrite existing file?") = vbYes Then
Kill txtOut.Text
Else
Exit Sub
End If
End If

If fileformat = ".lzw" Then
MsgBox "File is already compressed.",
vbInformation, "File compressed."
Exit Sub
End If

Dim i, sz, nf As Long
nf = List1.ListCount - 1
ReDim Files(nf) As String

For i = 0 To nf
Files(i) = List1.List(i)
Next i
lblInfo.Caption = "Status :" + vbCrLf +
"Compressing " & (nf + 1) & " file(s)..."
TimeStart = GetTickCount
sz = PackageFile(Files, txtOut.Text)
TimeEnd = GetTickCount
time = TimeEnd - TimeStart
lblInfo.Caption = "Status :" + vbCrLf +
"File(s) compressed successfully. File Size:
" & sz & " bytes." + vbCrLf + "Compression
took " & time & "ms."
pbStatus.Value = 0

Fig. 1 Propose LZW++ Algorithm for Compress Data

Figure 1 show how LZW++ worked. The LZW++ technique
read the data file and compress data into LZW++ format. First,
the LZW++ algorithm read the data file. Then, read three
characters at one time. Differ with existing LZW technique,
where the LZW read one by one character at one time. After
that, it will assign code for each three characters and store into
data dictionary. Finally, a new data size will calculated to
ensure new size is smaller compared to original size.

Example 1:

1. Suppose data file contains character: SASBDSAQP
2. Read three characters at one time.
3. Loop until characters in data file are null.

TABLE 1 Data Dictionary
Characters Code

SAS 1
BDS 2
AQP 3

Original size: X = number of characters
Suppose size for one character is Y = 2kb.

� = x * y

New size: X = number of characters
Suppose size for one characters is Y = 2kb

� = x * y

There result shows,

�����

As conclusion, LZW++ technique can reduce size of data.
Based on formula 3, new size is smaller compared to original
size.

(1)

(2)

(3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2503

B. Decompress Algorithm

Figure 2 shows proposed LZW++ algorithm for decompress
data.

Dim c As Long
Dim TimeStart, TimeEnd, time, sz As Long
Dim filename As String
Dim filelen As Integer
Dim fileformat As String

filename = cDlg.FileTitle
'filename = frmMain.dlgOpenFile.filetitle
filelen = Len(filename)
fileformat = Right(filename, 4)
If txtLZW.Text = "" Then
MsgBox "There is no file to be extracted.",
vbInformation, "File is required."
txtLZW.SetFocus
ElseIf txtLZW.Text <> "" Then
If fileformat <> ".lzw" Then
MsgBox "Invalid type of file" + vbCrLf +
"File " & filename & " cannot be extracted.",
vbInformation
ElseIf fileformat = ".lzw" And txtPath.Text
<> "" Then
lblInfo.Caption = "Status :" + vbCrLf +
"Extracting files..."
TimeStart = GetTickCount
c = ExtractFiles(txtLZW.Text, txtPath.Text)
TimeEnd = GetTickCount
time = TimeEnd - TimeStart
If c <> -1 Then
lblInfo.Caption = "Status :" + vbCrLf + "" &
c & " files extracted." + vbCrLf +
"Extracting of file took " & time & "ms."
Else
lblInfo.Caption = "Status :" + vbCrLf +
"Invalid file format or an internal error has
occured."
End If
ElseIf txtPath.Text = "" Then
MsgBox "Location where the file to be
extracted is required.", vbInformation,
"Location is required."
txtPath.SetFocus
End If
pbStatus.Value = 0
End If

Fig. 2 Proposed LZW++ Algorithm for Decompress Data

Figure 2 shows the proposed LZW++ algorithm for
decompress data. This algorithm will decompress new size to
original size by referring data dictionary.

Example 2:
TABLE 2 Data Dictionary

Characters Code
SAS 1
BDS 2
AQP 3

Table 2 shows data dictionary after compression process. This
proposed algorithm will refer data dictionary to convert new
size of data to original size of data.

New size of Data = 123
= 6kb

Original Size = SASBDSAQP
= 18kb

IV. PERFORMANCE RESULTS LZW++ METHOD

Performance of LZW++ method is measured in term file
size. Table 2 shows input parameters are used for experiments.

TABLE 2 Input Parameters
Data Type Data Format
Text doc format, pdf format

and txt format.

The same data format and data size are used for experiments.
This is important must be considered to ensure accuracy and
correctness of the results.

Experiments are tested LZW++ method using doc format, pdf
format and txt format. The comparison between LZW and
LZW++ is measured in term of file size.

Fig. 3 LZW vs. LZW++ (Doc Format)

Fig. 4 LZW vs. LZW++ (Pdf Format)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2504

Fig. 5 LZW vs. LZW++ (Txt Format)

Based on figure 3, figure 4 and figure 5 the results shows
LZW++ technique is better compared to LZW technique. The
efficiency and capability of LZW++ technique is proved by
three experiments. A new file size is smaller compared to
original size after compression process.

The LZW++ is efficient and effective for data compression
especially for doc type, pdf type and txt type.

V. CONCLUSION AND FUTURE WORK

This work demonstrates a methodology for compress and
decompresses data using LZW++ technique. The modification
of LZW algorithm is needed to produce LZW++ technique.
The purpose of the modification is to ensure new algorithm or
LZW++ able to produce better results compared to existing
LZW algorithm. Several experiments are needed to execute in
measuring performance and capability of LZW++ technique.

As a conclusion, the results shows LZW++ technique is
efficient for data compression. This technique has a potential
to use in real environment especially in business organization.
Besides that, LZW++ also has a potential to implement for
image compression.

ACKNOWLEDGMENT

Thanks in advance for the entire worker in this project, and
the people who support in any way, also I want thank
Universiti Darul Iman Malaysia (UDM) for the support they
offered.

REFERENCES

[1] Snowbirh, U. (2000). Data Compression Conference (DD’00.
[2] Mohammad Al-Laham and Ibrahim M.M. EL Emary. (2007).

Comparative Study between Various Algorithm of Data Compression
Technique. 284-290.

[3] Gilbert, H. (1996). Data Image Compression Tools and Technique.
WILEY : 68-343.

[4] Grawthrop, J. and W. Liuping. (2005). Data Compression for
Estimation of The Stable and Unstable Linear Systems. Automica, 41:
1313-1321.

[5] Blelloch, E. (2002). Introduction to data Compression. Computer
Science Department, Garnegie Mellon University.

[6] Grawthrop, J. and Luiping W. (2005). Data Compression for estimation
of the physical parameters of stable and unstable linear system.
Automatice, 41: 1313 – 1321.

[7] Ian, H.H. Witten, Moffat, a. and Bell, T.C. (1999). Managing
Gigabytes: Compressing and Indexing Documents and images.

[8] Bentley, J.L., Sleator, D.D., Tarjan, R.E., and Wei, V.K. (1986). A
Locally Adaptive Data Compression Scheme. Commun. ACM 29, 4
(Apr.), 320-330.

[9] Ngoc, V. and Alistair, M. (2006). Improved wordaligned binary
compression for text indexing. IEEE Trans. Knowledge & Data
Engineering, 18: 857-861.

Mohd Kamir Yusof obtained
her Master of Computer
Science from Faculty of
Computer Science and
Information System, Universiti
Teknologi Malaysia in 2008.
Currently, he is a Lecturer at
Department of Computer
Science, Faculty of Infomatics,
Universiti Darul Iman
Malaysia (UDM), Terengganu,

Malaysia.

Mohd Sufian Mat Deris
obtained her Master of
Education (educational
technology) from Faculty of
Education, Universiti
Teknologi Malaysia in 2006.
Currently, he is a Lecturer at
Department of Multimedia,
Faculty of Infomatics,
Universiti Darul Iman
Malaysia (UDM), Terengganu,
Malaysia.

Ahmad Faisal Amri Abidin
obtained her Master of
Computer Science from
Faculty of Computer Science
and Information Technology,
Universiti Putra Malaysia in
2008. Currently, he is a
Lecturer at Department of
Computer Science, Faculty of
Infomatics, Universiti Darul
Iman Malaysia (UDM),
Terengganu, Malaysia.

