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Global Existence of Periodic Solutions in a Delayed
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Abstract—In this paper, a tri–neuron network model with time
delay is investigated. By using the Bendixson’s criterion for high–
dimensional ordinary differential equations and global Hopf bifurca-
tion theory for functional differential equations, sufficient conditions
for existence of periodic solutions when the time delay is sufficiently
large are established.
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I. INTRODUCTION

IN the past decade, dynamical behaviors of delayed neural
networks have been extensively investigated. For instance,

Hopf bifurcation in delayed differential equations modeling
three–neuron was explicitly studied in [1–2]. The global
asymptotic stability of Hopfield neural networks with delays
was considered by utilizing Lyapunov functionals [3–4]. Ex-
istence and exponential stability of periodic solutions and
almost periodic solutions for cellular neural networks were
established by using the fixed point theorem and differential
inequality techniques [5–6]. Moreover, the Hopf bifurcation in
discrete cases of Hopfield–type n−dimension neural network
model was proved in [7]. However, there are still a lot more
work to do on the bifurcation of these models, especially the
global continuation of local Hopf bifurcation.

In this paper, we consider the following tri–neuron network
with a delay:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇1(t) = −a1u1(t) + w11f(u1(t)) + w12f(u2(t))
+w13f(u3(t − τ)),

u̇2(t) = −a2u2(t) + w21f(u1(t)) + w22f(u2(t))
+w23f(u3(t)),

u̇3(t) = −a3u3(t) + w32f(u2(t)) + w33f(u3(t)),

(1)

where ui(i = 1, 2, 3) is the activation of neuron i. ai > 0(i =
1, 2, 3) is the decay rate of neurons, wij is the weight of
synaptic connections from neuron j to neuron i, τ > 0 is the
synaptic transmission delay and f(·) is the activation function.
Liu et al. [1] discussed the necessary and sufficient conditions
for Hopf bifurcation from the nonzero equilibrium of (1) by
taking the time delay as a bifurcation parameter.

The purpose is to establish the global existence of Hopf
bifurcating periodic solutions for (1) based on the Bendixson’s
criterion for high–dimensional ordinary differential equations
[8] and the global bifurcation theory due to Wu [9].
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The rest of this paper is organized as follows: in next
section, the existence of local Hopf bifurcation is stated. In
Section 3, global continuation of local existence of periodic
solutions is obtained.

II. PRELIMINARIES

For convenience, we first elaborate the stability and bifur-
cation structure for system (1), which can be found in [1].

Let E∗ = (u∗
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3
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corresponding characteristic equation at E∗ is in the form
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If λ = ±iω(ω > 0) are characteristic roots, then we can
rewrite (2) in terms of

ω6 + (b2
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Lemma 2.1. Let d1 = b2
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and make the following assumptions:
(H1) d1 < 0, d2 ≥ 0, d2
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> 3d2, Δ < 0;

(H2) d2 < 0, Δ < 0;
(H3) 3d3 > d2
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(H4) 3d2 = d2

1
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> 3d2, Δ > 0;

(H6) d2

1
> 3d2, Δ ≤ 0, d1 > 0, d2 > 0.

If either (H1) or (H2) holds, then (2) has a pair of purely imag-
inary roots ±iω0 when τ = τj = 1

ω0

[
arccos

b3−b1ω2

0

A + 2jπ
]
,

j = 0, 1, 2, . . .. If one of (H3), (H4), (H5) and (H6) is satisfied,
then equation (2) has no purely imaginary root.

Lemma 2.2. dReλ(τ)

dτ

∣∣∣
τ=τj

> 0.

Theorem 2.3. If one of (H3), (H4), (H5) and (H6) is satisfied,
then equilibrium E∗ of (1) is stable for any τ > 0. If either
(H1) or (H2) holds, then E∗ is locally asymptotically stable
when τ ∈ [0, τ0) and unstable when τ > τ0, Hopf bifurcation
occurs as τ passes through τ0.
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III. GLOBAL EXISTENCE OF PERIODIC SOLUTIONS

In this section, we shall show the global continuation of
positive periodic solutions bifurcating from the equilibrium
E∗. Throughout this section, we closely follow the notation in
[9] and make the following definitions

X = C([−τ, 0],R3),
Σ = Cl{(x, τ, p) : (x, τ, p) ∈ X × R+ × R+, x is a p −

periodic solutions of (1)},
Δ = λ3 + b1λ

2 + b2λ + b3 − Ae−λτ ,
and let C(x∗, τj , 2π/ω0) denote the connected component of
(x∗, τj , 2π/ω0) in Σ, where ω0 and τj are defined in Lemma
2.1.
Lemma 3.1. If f(·) is bounded, then all periodic solutions of
(1) are uniformly bounded.
Proof. Let a = min{a1, a2, a3}, f(·) < L, M ≥
max{1, 3L(w1+w2+w3)/a}, w1 = max{|w11|, |w12|, |w13|},
w2 = max{|w21|, |w22|, |w23|}, w3 = max{|w32|, |w33|} and
r(t) =

√
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If there exists t0 > 0 such that r(t0) = A > M and from
the inequality w1|u1| + w2|u2| + w3|u3| ≤ (w1 + w2 +
w3)
√
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1
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3
, then we get

ṙ(t0) ≤ 1

A
[−aA2 + 3AL(w1 + w2 + w3)]

= −aA + 3L(w1 + w2 + w3)

< 0.

It follows that if u(t) = (u1(t), u2(t), u3(t)) is a periodic
solution of (1), then r(t) < M for any t > 0. Hence, the
periodic solutions of (1) are uniformly bounded.

For simplicity, we make the assumption as follows:
(H7) There exist positive constants α and β, such
that supx∈R {−(a1 + a2) + w11|f ′(u1)| + w22|f ′(u2)|+
α
β w23|f ′(u3)| + αw13|f ′(u3)|, −a1 + w11|f ′(u1)| +

w22|f ′(u2)| + β
αw32|f ′(u2)| + w22|f ′(u2)|,−(a2 + a3) +

w22|f ′(u2)| + w33|f ′(u3)| + 1

β w21|f ′(u1)
}

< 0.
Lemma 3.2. If (H7) is satisfied, then (1) has no nonconstant
τ−periodic solution.
Proof. For contradiction, we suppose that system (1) has
nonconstant τ−periodic solutions, then the following ordinary
differential system has nonconstant periodic solutions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇1(t) = −a1u1(t) + w11f(u1(t)) + w12f(u2(t))
+w13f(u3(t)),

u̇2(t) = −a2u2(t) + w21f(u1(t)) + w22f(u2(t))
+w23f(u3(t)),

u̇3(t) = −a3u3(t) + w32f(u2(t)) + w33f(u3(t)).

(3)

Denote u = (u1, u2, u3)
T , F (u1, u2, u3) = (−a1u1 +

w11f(u1) + w12f(u2) + w13f(u3),−a2u2 + w21f(u1) +
w22f(u2)+w23f(u3),−a3u3 +w32f(u2)+w33f(u3))

T . We
have the second additive compound matrix [8] as follows
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⎞
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The second compound system takes the form⎛
⎝ ż1

ż2

ż3

⎞
⎠ =

∂F [2]

∂u

⎛
⎝ z1

z2

z3

⎞
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Let W (z) = max{α|z1|, β|z2|, |z3|}, α > 0, β > 0. Direct
calculation leads to the following inequalities

d+

dt
α|z1(t)| ≤ −(a1 + a2)α|z1| + (w11|f ′(u1)|

+w22|f ′(u2)|)α|z1| + α

β
w23|f ′(u3)|β|z2|

+αw13|f ′(u3)||z3|.

d+

dt
β|z2(t)| ≤ −(a1 + a2)β|z2| + (w11|f ′(u1)|
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α
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d+

dt
|z3(t)| ≤ −(a2 + a3)|z3| + (w22|f ′(u2)| + w33|f ′(u3)|)|z3|

+
1

β
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Therefore,

d+

dt
W (z(t)) ≤ μ(t)W (z(t)),

where μ(t) = max{−(a1 +a2)+w11|f ′(u1)|+w22|f ′(u2)|+
α
β w23|f ′(u3)| + αw13|f ′(u3)|,−a1 + w11|f ′(u1)| +

w22|f ′(u2)| + β
αw32|f ′(u2)| + w22|f ′(u2)|,−(a2 + a3) +

w22|f ′(u2)| + w33|f ′(u3)| + 1

β w21|f ′(u1)}. By (H7),
there exists δ > 0 such that μ(t) ≤ −δ < 0. Hence
W (z(t)) ≤ W (z(s))e−δ(t−s) when t ≥ s > 0. This
establishes the equiuniform asymptotic stability of the second
compound system. This completes the proof.
Theorem 3.3. If f(·) is bounded and (H7) holds, either (H1)
or (H2) holds, then periodic solutions bifurcating from positive
equilibrium of (1) still exist for τ > τj , j = 0, 1, 2, . . . .
Proof. It is only need to prove that the projection of
C(x∗, τj , 2π/ω0) onto τ−space includes [τj ,∞) for each
j ≥ 0.

From Lemma 2.1 and 2.2, there exist ε > 0, δ > 0 and a
smooth curve λ : (τj − δ, τj + δ) → C, such that

Δ(λ(τ)) = 0, |λ(τ) − iω0| < ε,

for all τ ∈ [τj − δ, τj + δ] and

λ(τj) = iω0,
dRe(λ(τ))

dτ
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Define Ωε = {(u, p) : 0 < u < ε, |p − 2π/ω0| < ε}. It is not
difficult to show that if |τ − τj | ≤ δ and (u, p) ∈ Ωε, then
Δ(x∗, τ, p) (u + 2imπ/p) = 0 if and only if u = 0, τ =
τj , p = 2π/ω0. This verifies the assumptions (A1)–(A4) in
[9] for m = 1.

Moreover, putting

H±
(

x∗, τj ,
2π

ω0

)
(u, p) = Δ(x∗, τj ± δ, p)

(
u + i

2π

p

)
,

then we can compute the crossing number of the isolated
center (x∗, τj , 2π/ω0) as follows

γ
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2π

ω0

)
= degB

(
H−

(
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2π
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)
, Ωε

)

−degB

(
H+

(
x∗, τj ,

2π

ω0

)
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)
= −1,

where degB denotes the Brouwer degree. Then we have∑
(x̂,τ,p)∈C(x∗,τj ,2π/ω0)

γ(x̂, τ, p) < 0.

Therefore, from Theorem 3.3 in [9], the connected component
C(x∗, τj , 2π/ω0) in Σ is unbounded.

Lemma 3.1 implies that the projection of C(x∗, τj , 2π/ω0)
onto x−space is bounded. From the definition of τj , we know
that 0 < 2π/ω0 < τj when j > 0. Then the projection onto
p−space is also bounded.

Besides, the projection of C(x∗, τj , 2π/ω0) onto τ−space
is bounded below due to Lemma 3.2. This means that the pro-
jection of C(x∗, τj , 2π/ω0) onto τ−space must be unbounded
and includes [τj ,∞). As a result, bifurcating periodic solutions
of (1) still exist when τ is far away from the first critical value
τ0.

IV. CONCLUSION

This paper proves the global existence of Hopf bifurcation
for a tri–neuron network with time delay. The main theorem
shows that local bifurcation may mean the global bifurcation
under certain condition. Moreover, the activation function in
neural network is usually hyperbolic tangent and the condi-
tions of Theorem 3.3 can be satisfied. Thus, the results are
new and complement previously known results.
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