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Percolation Transition with Hidden Variables in
Complex Networks

Zhanli Zhang, Wei Chen, Xin Jiang, Lili Ma, Shaoting Tang and Zhiming Zheng

Abstract—A new class of percolation model in complex networks,
in which nodes are characterized by hidden variables reflecting the
properties of nodes and the occupied probability of each link is
determined by the hidden variables of the end nodes, is studied
in this paper. By the mean field theory, the analytical expressions
for the phase of percolation transition is deduced. It is determined
by the distribution of the hidden variables for the nodes and the
occupied probability between pairs of them. Moreover, the analytical
expressions obtained are checked by means of numerical simulations
on a particular model. Besides, the general model can be applied
to describe and control practical diffusion models, such as disease
diffusion model, scientists cooperation networks, and so on.

Keywords—complex networks, percolation transition, hidden vari-
able, occupied probability.

I. INTRODUCTION

OVER the past years, the study of complex networks
has emerged as an important tool to better understand

many social, technological, and biological real-world systems
ranging from communication networks like the Internet to
cellular networks[1], [2], [3], [4], [5], [6]. An important ques-
tion regarding networks is the percolation phenomenon[7],
[8], [9], [10], [11], [12], [13] which is motivated by many
applications in real networks such as epidemic spreading in
social networks[14], [15], [16].

The theory of percolation applied to random networks has
been proven to be one of the most notorious advances in
complex network science[17], [18], [19], [20], [21], [22]. A
network may undergo a phase transition as nodes or links are
successively occupied[13], [17]. When the fraction of occupied
nodes or links is greater than a threshold value, the occupied
nodes or links form a giant component of the network. By
contraries, the giant component disappears when the fraction
of occupied nodes or links is less than the threshold value.
The statement of the percolation phenomenon[23] is simple: in
node percolation, every node is independently either occupied
with probability p, or not occupied with probability 1 − p.
The occupied nodes form contiguous components which have
some interesting properties in real networks. In particular,
the system shows a continuous phase transition at a finite
value of p which is characterized by the formation of a
component large enough to span the whole system from one
node to the other in the limit of infinite system size or the
scale of the component is almost as the scale of the whole
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system, O(N). We say such a system percolates for this
value of p or the percolation transition takes place in this
system. As the percolation transition is approached from small
values of p, the average component size diverges in a way
reminiscent of the divergence of fluctuations in the approach
to a thermal continuous phase transition, and indeed one can
define correlation functions and a correlation length in the
obvious fashion for percolation models, and hence measure
critical exponents for the transition.

Besides, link percolation is also deeply researched in which
the links of the lattice are occupied (or not) with probability p

(or 1−p). This system shows behavior qualitatively similar to,
though different in some details from node percolation. That is,
the occupied links form a giant component when the occupied
probability p is greater than a threshold value. In the opposite
case, the giant component disappears and all occupied links
disintegrate into small components.

For these examples, the occupied probability is the same
for every node or link. However, it is not necessary the same
for the nodes or links. As an example, in the disease diffusion
processing, the probability of person infected is different for
the immunity of persons, and so on. Then, how to control
the diffusion processing with different occupied probabilities
for different links, which is decided by the properties of
the end nodes of links is outmost important to control the
diffusion processing in real networks, such as to control
disease diffusing in social networks.

In this paper, a new class of percolation model with hidden
variables on nodes in complex networks is investigated. In this
percolation model, according to the various properties of the
nodes, each node is assigned with a hidden variable, which
is independently drawn from some probability distribution,
and each link is occupied with some probability related to the
hidden variables(or the properties) of the end nodes. Armed
with the mean field theory, the analytical expressions for
the phase transition of this percolation model is obtained,
which is determined by the distribution of the hidden variables
of nodes and the occupied probability for the links. In the
end, the theoretical expressions for the phase transition of
this percolation model are checked by means of numerical
simulations on a particular networks.

The paper is organized as follows. In Sec.2, the percola-
tion with hidden variables on nodes in complex networks is
introduced and the theoretical condition for the percolation
transition model is deduced. In Sec.3, this model is simulated
on some special networks and the numerical results which
dovetail into the theoretical results perfectly is achieved. The
conclusion is given in Sec.4.
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Fig. 1. The largest component as a function of the exponent parameter λ is
shown in the main graph, and the subgraph is the details for 0.4 ≤ λ ≤ 1.2.

II. PERCOLATION WITH HIDDEN VARIABLE MODEL ON

COMPLEX NETWORKS

The class of percolation transition model in complex net-
works with hidden variables on nodes is defined as follows.
Let us consider a connected undirected network with N nodes
where N � 1. The percolation model in this network is
generated by the following rules.

(1) Each node is assigned with a hidden variable hi, which
is independently drawn from a probability distribution ρ(h)
with h ≥ 0.

(2) For each pair of nodes (i, j) whose hidden variables
are hi and hj , the edge (i, j) is occupied with probability
r(hi, hj) (the occupied probability), where r(hi, hj) ≥ 0 is a
symmetric function of hi and hj .

That is, given a probability distribution ρ(h) and the sym-
metric occupied probability function r(x, y), the percolation
transition model with hidden variables is determined.

For the generated mechanism, the average number of occu-
pied edges incident on a node with hidden variable h is[24]

k(h) = N

∫

∞

0

ρ(h′)r(h, h′)dh′, (1)

and the average number of occupied edged incident on a node
globally is

〈k〉 =
∫

∞

0

k(h)ρ(h)dh = N

∫

∞

0

∫

∞

0

ρ(h)ρ(h′)r(h, h′)dh′dh

(2)
which illustrates that the average degree is directly determined
by the probability distribution of hidden variables on nodes
and the occupied probability for each link.

To reveal the size distribution of the occupied component,
start with a single occupied vertex, reveal its occupied neigh-
bors following occupied edges, then their neighbors, etc.[25].
Let nt be the number of nodes exposed for the first time in
step t of this revealing process. Given the previous numbers
n0 = 1, n1, · · · , nt−1, the distribution of nt is

P (nt) =
(

N −
∑t−1

l=0 nl

nt

)

(1−qnt−1 )nt(qnt−1)N−

∑

t

l=0
nl ,

(3)
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Fig. 2. The average degree as a function of the exponent parameterλ is
shown in the main graph, and the subgraph is the details for 0.4 ≤ λ ≤ 1.2.

where q is the probability that a node is disconnected to the
nt−1 nodes which are exposed in step t − 1 on average, and
that

q = p(x is disconnected to y| the hidden variables of
node in nt, nt−1 is x, y respectivelly)

=
∫ ∫

ρ(x)ρ(y)(1 − r(x, y))dxdy

=
∫ ∫

ρ(x)ρ(y)dxdy −
∫ ∫

ρ(x)ρ(y)r(x, y)dxdy

= 1 − 〈k〉

N
(4)

In the large N limit with fixed 〈k〉, p(nt) tends to
e−nt−1〈t〉(nt−1〈k〉)nt/nt!. Thus the revealing process reduces
to a Poisson branching tree model, with each node indepen-
dently branching to a number of new nodes, where this number
is a Poisson random variable with average 〈k〉. The distribution
pn over the order n of the resulting tree is conveniently
analyzed by the generating function F (z) =

∑

n pnzn, which
satisfies

F (z) = zexp [〈k〉(F (z) − 1)] . (5)

For ref. [25], the transition point for this model is

〈k〉 = 1 (6)

Thus, when 〈k〉 > 1, the occupied links and nodes form a
giant component of the network, while when 〈k〉 < 1, the
giant component disappears.

For

〈k〉 = N

∫

∞

0

∫

∞

0

ρ(h)ρ(h′)r(h, h′)dh′dh,

thus

N

∫

∞

0

∫

∞

0

ρ(h)ρ(h′)r(h, h′)dh′dh = 1 (7)

So if N
∫

∞

0

∫

∞

0 ρ(h)ρ(h′)r(h, h′)dh′dh > 1, the giant
component of the occupied edge takes place and the percola-
tion happens; while if N

∫

∞

0

∫

∞

0 ρ(h)ρ(h′)r(h, h′)dh′dh < 1,
the occupied edge are all small clusters whose scales are far
smaller than the size of the whole network.
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Fig. 3. The largest component as a function of the window parameter c is
shown in the main graph, and the subgraph is the details for 8 ≤ c ≤ 14.

III. NUMERICAL SIMULATIONS ON NETWORKS

For applications, the model is simulated on a network with
N = 5000 nodes. In this model, each node is assigned
with a hidden variable h, which is independently drawn from
the probability distribution ρ(h) = λe−λh with exponent
parameter λ for h ≥ 0. For each pair of nodes (i, j) whose
hidden variables are hi and hj respectively, the edge (i, j) is
occupied with probability r(hi, hj) = Θ(hi + hj − c) where

Θ(x) =
{

1, x > 0,

0, otherwise.

In this model, the degree distribution p(k) is[26]

p(k) = Ne−λc 1
k2

θk(Ne−λc, N) + e−λcδ(k − N),

where δ(x) is the Dirac function and the function θx(a, b) is

θx(a, b) =
{

1, a ≤ x ≤ b,

0, otherwise
.

That is, the networks simulated by this model exhibit a scale-
free degree distribution, with degree exponent γ = 2, for
degrees in the range Ne−λc ≤ k ≤ N , with an accumulation
point at k = N , given by the δ function, with weight e−λc.

Submitting ρ(h) and r(h, h′) into equation (6), then

N

∫

∞

0

∫

∞

0

λe−λhλe−λh′

Θ(h + h′ − c)dh′dh = 1,

that is

〈k〉 = N

∫

∞

0

∫

∞

0

λe−λhλe−λh′

Θ(h + h′ − c)dh′dh.

After the integral,

〈k〉 = Ne−λc(1 + λc).

The transition point for this model is

〈k〉 = Ne−λc(1 + λc) = 1,

and then the relationship between the exponential distribution
parameter λ and the window parameter c is achieved.

The numerical simulations of this model is in the following.
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Fig. 4. The average degree 〈k〉 as a function of the window parameter c is
shown in the main graph, and the subgraph is the details for 8 ≤ c ≤ 14.

Especially, given c = lnN , the percolation transition point
for λ satisfies

〈k〉 = Ne−λ ln N (1 + λ ln N) = 1.

That is
N1−λ(1 + λ ln N) = 1

In Fig. 1, with c = lnN , the scale of the largest component
as a function of the mean value 1

λ
of the exponent distribution

ρ(h) = λe−λh is shown. It indicates that percolation takes
place in the network when the average value 1

λ
of the exponent

distribution ρ(h) exceeds a certain value. For the fixed window
parameter c = lnN , as the increase mean value of the hidden
variables for nodes, the occupied probability for each link
is increasing, and then the number of nodes in the largest
component is increasing. Besides, as the mean value exceeds
a threshold value, the giant component takes place, as the
subgraph shown in Fig. 1. From the detail in the subgraph
of Fig. 1, the result shows that the percolation transition point
λt is λt ∈ [0.6, 0.9] in this model.

In Fig. 2, with c = lnN , the average degree 〈k〉 as a
function of the mean value 1

λ
of the exponent distribution

ρ(h) = λe−λh is given. It shows that the average degree 〈k〉
is increasing with the increase of the mean value 1

λ
of the

exponent distribution. It is because that the increase of mean
value of the hidden variables for nodes results in the increase
of the average degree of the network. Furthermore, from the
subgraph in Fig. 2, the result shows that the transition point
is 〈k〉 = 1 with λt ∈ [0.6, 0.9], which matches the numerical
simulations in Fig. 1 perfectly.

Actually, because

N1−λ(1 + λ ln(N)) = 1,

then λ < 1 must be satisfied.
In Fig. 3, fixing λ = 1, the scale of the largest component

as a function of the window parameter c is given. For the
distribution of node hidden variable is fixed, with the increase
of the parameter c, the occupied probability for each link
is decreasing, and then the number of nodes in the largest
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component is decreasing. Besides, as the window parameter
c exceeds a threshold value, the giant component disappears,
which is shown in the subgraph of Fig. 3. From the detail in
the subgraph of Fig. 3, the result shows that the percolation
transition point ct is ct ∈ [8, 14].

In Fig. 4, for λ = 1, the average degree 〈k〉 as a function of
parameter c is given. As increase of the window parameter c

results in the decrease of the occupied probability according to
r(hi, hj) = Θ(hi + hj − c), the average degree 〈k〉 decreases
with increases of c. Furthermore, from the subgraph in Fig.
4, the results shows that the transition point is 〈k〉 = 1 with
ct ∈ [8, 14], which matches the numerical simulations in Fig.
3 perfectly.

From the above numerical simulations which matches the
theoretical expressions perfectly, the results show that the per-
colation transition takes place in our new class of percolation
model.

IV. CONCLUSION

In summary, a new class of percolation model in complex
networks with hidden variables on nodes is studied. In this
model, each node is assigned with hidden variable which
represents the property of the node, and each link is occu-
pied with some probability based on the hidden variables of
the end nodes. With the mean field theory, the theoretical
condition for the appearance percolation transition for this
model is derived, above which the occupied edges forms a
giant component of the network, while below which, the giant
component disappears and all occupied links disintegrate into
small components. As applications, a special hidden variable
distribution and a special occupied function are taken as an
example to check our model, which matches the theoretical
results perfectly. However, the hidden variables for nodes can
be changed with the variety environment of the network, which
has been not considered in our current work but will be in our
future work.
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[10] A. Zen, A. Kabakçıoǧlu, and A. L. Stella, Phys. Rev. E 76, 016110

(2007).
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