
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3296

Abstract—Modernizing legacy applications is the key issue

facing IT managers today because there's enormous pressure on
organizations to change the way they run their business to meet the
new requirements. The importance of software maintenance and
reengineering is forever increasing. Understanding the architecture of
existing legacy applications is the most critical issue for maintenance
and reengineering. The artifacts recovery can be facilitated with
different recovery approaches, methods and tools. The existing
methods provide static and dynamic set of techniques for extracting
architectural information, but are not suitable for all users in different
domains. This paper presents a simple and lightweight pattern
extraction technique to extract different artifacts from legacy systems
using regular expression pattern specifications with multiple
language support. We used our custom-built tool DRT to recover
artifacts from existing system at different levels of abstractions. In
order to evaluate our approach a case study is conducted.

Keywords—Artifacts recovery, Pattern matching, Reverse
engineering, Program understanding, Regular expressions, Source
code analysis.

I. INTRODUCTION
ECOVERING design information from software is an
active research area in reverse engineering. Reverse

engineering is defined “as a process of analyzing the program
in an effort to create a representation of a program at higher
level of abstraction then source code. Reverse engineering is a
process of design recovery”. [1]. The most important aspect of
a successful reverse engineering in aiding users is to
understand the domain, functional, structural and
implementation of a software system in a particular domain.
The methods and tools available to extract the different
artifacts at different level of abstractions will not be suitable
and sufficient for all users in different domains. The users
should be able to choose techniques and way to recover the
design artifacts according to specific maintenance tasks at
hand at different level of abstractions and integrate other tools
and applications that provide complementary functionality,
and allow developing their own abstract mechanisms for
activities if they require. The primary objective of reverse
engineering is to increase the comprehensibility of the system
both for maintenance and reengineering activities.

Ghulam Rasool is a PhD student in TU Ilmenau Germany from April 2008.

(corresponding author, phone: 0049-017664822342).
Ilka Philippow is working as head in process informatics Group in TU

Ilmeanu (e-mail:ilka.philippow@tu-ilmeanu.de).

The software reverse engineering has many contributions to
program comprehension, reengineering, maintenance and
reusability of existing legacy systems. Understanding software
architecture is important for reuse, maintenance and evolution
of existing software.

Architecture recovery refers to extraction of information
which constitutes architecture elements, styles and patterns.
The architecture recovery of large and complex legacy
systems is a time consuming activity because of very poor,
outdated and inconsistent documentation. Changes are often in
the nature of software and have significant impact on its
architecture. Due to turnover of developers, lot of knowledge
about the system domain is lost. Sometimes the changes that
are made by the developers in source code are not updated in
the documentations which results inconsistency between
source code and documentation. So the only reliable source of
information for the developer is the source code. The use of
different tools is helpful for extracting useful information
from the source code which is further used to analyse the
architecture of existing system. The recovery of different
architecture and design artefacts is not trivial and the manual
search for recovery consumes valuable resources. The
existing tools and techniques are valuable but have limitations
discussed in next section.

The lexical and syntactic tools are used for extracting
different artefacts from source code with their strengths and
limitations. The tools are compared on the basis of their
pattern matching power, programming power, extraction
speed, accuracy and robustness. The major problems with the
tools are their limited language support and information
retrieval capabilities. The legacy systems that were developed
in languages like COBOL, FORTRAN and PASCAL etc,
have no support from majority of tools. Syntactic tools are
more precise and put no burden on the developer but they do
not support the systems with missing header files, having
syntax errors and incomplete codes. . Mostly the UML tools
are able to create the class diagrams only for object oriented
code but these tools are not able to create different type of
associations and even miss sometimes the dependency of
classes [17].

The lexical based tools are still the best choice for the
software engineers to understand the software architecture,
and to extract the abstract and required patterns with accuracy
and ease. So we used a lexical based patter matching tool
DRT [2] using regular expression pattern extraction
techniques to extract different artefacts from the legacy
systems. One major problem with the lexical tools is their
limited vocabulary and language support. We used the

Recovering Artifacts from Legacy Systems
using Pattern Matching

Ghulam Rasool, and Ilka Philippow

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3297

abstraction methodology to design the innovative vocabulary
of our tool DRT which is generic in the nature that similar
specifications are used to match desired patterns of source
code written in different programming languages. Although,
there are also certain limitations in our regular expression
pattern matching techniques as mentioned by Paul et. al in [3].

II. ARTIFACTS EXTRACTION METHODOLOGY
The parse based and regular expression based tools are used

to extract different artifacts from the source code and
documents and represent it at higher level of abstractions. We
preferred the regular expression based extraction due to their
simplicity, ease of use, matching power and robustness
features. The regular expression extraction technique uses the
pattern specifications to extract the desired system artifacts.
The hierarchical, nested and abstract specifications are
designed to match the required patterns from source code and
documents. The regular expression technique is flexible in the
sense that it can be applied to different kind of system artifacts
including source code (languages) and data files and only
syntactic knowledge of the subject is required. The engineer
designs the regular expression pattern, match the pattern with
the source code and as a result get valuable information which
is further used for extracting other patterns. For example the
user writes the following regular expression pattern to extract
Java methods from the source code:
(JMethodAccessSpecifier)?\s*(JMethodModifiers)?\s*(JPrim
Types)?\s*(\w+)\s*(\(\s*(aa)?\)\s*((throws)\s*(\w+))?\s*\{)

The above pattern specification is written according to Java
method definition in which JMethodAccess specifier
determine whether the method is
fiendly|public|protected|Private|private|protected. The
JMethodModifiers matches the above pattern with
synchronized|native|final|abstract|static which are possible
Modifers in Java method definition. JPrimTypes determines
the possible return type of method followed by method name,
argument types and exception handling.

Similarly following regular expression pattern specification
is used to extract comments from C/C++ code files. The
documented comments in source code are very valuable
source of information especially if documentation and domain
information is not available.
(//*(.*))|(\/*(.*)\s(.*))

The sample regular expression pattern specifications for
C/C++, Java, Visual Basic, Cobol, and Pascal are presented in
[22]. The regular expression patterns are very simple in syntax
that user can modify the pattern definition according to the
requirements. The architecture of our pattern extraction
methodology is shown in Fig. 1.

The user writes the pattern specification using the available
documents, domain knowledge and system artefacts. The
pattern definition is matched with the source code and we get
different source code views and artefacts as a result. The user
can again use these views for defining new pattern definitions
to extract more artefacts. The pattern view analyser presents
the recovered source code model, architectural views,
architectural artefacts and different metrics. The file, class,
function and variable level of metrics are extracted to analyse

the quality of code and for test case generation. Our pattern
specifications can be used by the other lexical tools for pattern
matching and extracting different artefacts from the source
code and text documents.

III. CASE STUDY
Allegiance is a multiplayer online game shipped by

Microsoft in 2000. Microsoft has released the source code of
Allegiance to the public for research and education purpose.
The source code utilizes 512 MB of memory space and has
multiple type of files. The source code was easily available to
us and has different subsystems and entities. It gave us
oppournity to explore the architectural artifacts from
Allegiance game.

Fig. 1 Pattern Extraction Technique

1) The documentation related information is not available on
the web. So after reviewing the software of Game, we
extracted its source code information of related C, C++, Java,
header and other files for further extracting different type of
artifacts as shown in Table I.

TABLE I
BREAK DOWN OF FILES IN ALLEGIANCE

Folders C++
Files

Cfiles Header
Files

Java
Files

Others

120 589 46 711 0 6283

2) Secondly, we identified the major folders and entities in
order to associate them with each other. The important folders
identified were Utility, AGC, Allguard, AllsrvUI, Club, Edit,
MSRGuard and some others. We mapped the entities to the
source code to associate the entities and sub-entities with them
in order to develop the high level model iteratively. High level
model gave us overview about the structure of the system and
help in building hypothesis for further pattern specifications.
3) Later, we extracted the comments from the source code
because documentation is not available. These comments gave
us further clue to explore the different entities and
functionality of the game. The comments extracted are shown
in Fig. 2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3298

Fig. 2 Extracted Comments

4) Next the mapping was performed using regular
expressions. The mapping associated the entities with the
available source code through mapping iteratively by different
pattern specifications. Fig. 3 shows the results of different
mapped classes and functions.
5) Next we can recover the class diagram and use case
diagrams from the Allegiance Game AGC entity with the help
of DRT and other reverse engineering tools like Rational
Rose. The recovered class diagram is not shown here in this
paper and can be seen in [23].
6) Finally, the other useful artifacts from AGC entity are
extracted which can be used for further pattern definitions
and recovery of other useful artifacts of the Allegiance Game
as shown in Table II.

TABLE II
EXTRACTED ARTIFACTS WITH TIME SPENT ON EXTRACTION

Artifacts C/C++ Files Header files Time Taken
mm:ss

Classes 99 67 0:8
functions 1299 1846 1:16
variables 3109 1818 0:42
statements 33554 6193 2:09
comments 39759 26098 1:0
structures 90 550 0:10
define 330 4315 0:18
Loop st 1230 197 0:13
enum 17 50 0:9

In another study, we extracted different patterns from

Talk2Me which is implemented in Java. The Talk2Me is an
instant messenger developed by Svetoslav Chekanov [24], a
software engineer of India having characteristics like yahoo
and other messengers. Its source code is available free of cost

for the public. We used it for recovering different types of
artifacts as shown in Table III with the Pattern definitions.

TABLE III
ARTIFACTS FROM TALK2MESSANGER WITH PATTERNS

Our regular expression pattern specifications are generic
and tested on source code of different programming languages
to extract different artifacts which are helpful in extracting
other artifacts.

IV. RELATED WORK
Reverse engineering of legacy systems is time consuming

and challenging task which can be assisted by different tools.
Without tool support it is very difficult to understand the
structure of the large and complex systems. Different
researches have used different lexical, syntactic and semantic
analysis tools to support their work in reverse engineering.
The most well known lexical tools like GREP, AWK, MAWK
[4], and LSME [5] are available with their best features and
certain limitations. The syntactic tools like REFINE [6],
SCRUPLE [7], A*[8], GENOA [9], TAWK [4] are used to
analyze the different software systems. The active research
groups are developing new tools and extending functionality
of their existing tools. Information about number of tools used
by engineers is available on Web in [10]. The major problem
with these tools is their limited language support and
vocabulary.

The selection of the tools depends upon the requirements of
the users and characteristics of the tool. The commercial tools
are very expensive and open source are not best suited to the
requirements of user. The usability of open source tools is also
an issue. So this gave us motivation for developing and using
our own custom built tool DRT. The Imagix 4D [11], Rigi

Artifacts Pattern Specification Matched

results

LOSC ^(.*) 4972

Comments (/*[\d\D]*?*/)|(//+) 160

Classes (JClasModifiers)?\s*((Class)((extend
s)\s*(\w)+)?\s*((implements)\s*(\w)
+)?(\s*(,)\s*(\w+))*\s*\{)

23

methods (JMethodAccessSpecifier)?\s*(JMet
hodModifiers)?\s*(JPrimTypes)?\s*(
\w+)\s*(\(\s*(aa)?\)\s*((throws)\s*(\
w+))?\s*\{)

156

Jinterface ((public)|(abstract))?\s*interface\s*(\
w+)\s*(extends)\s*(\w+)\s*\{

0

Blank

Line

^[\s]*$ 561

Assign st (JPrimTypes)?\s*(VrNam)\s*(COP)?
(=)\s*((VrNam)|(\d+))|(Expression)/;

340

Variables (CTypes)\s*(VrNam)(\s*(=)\s*((\d+)

|(\w+)))?((\,)(VrNam)(\s*(=)\s*((\d+)

|(\w+)))?)*\;)

116

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3299

Fig. 1 Mapped entities

[12], Alborz.[13], PBS[14],Bauhaus[15], Dali Workbench
[16] are similar to our tool DRT but differ in numerous
features as mentioned in [25].

In architecture recovery much work has been on techniques
which combine top-down and bottom-up approaches. In
bottom-up reverse engineering tools are used to extract source
models and in top-down queries are applied to extract
expected patterns [17]. Harris et al. [18] outlined a framework
that integrates reverse engineering technology and architecture
style representation. Guo et al. [19] used an iterative and semi-
automated architecture recovery method called ARM. Startipi
et al. [20] outlined Alborz which use source model and
queries as basic inputs for architecture recovery. Pinzger et al.
[17] used simple string pattern matching techniques for
extracting different artefacts but without support of action and
analysis pattern definitions. Phillipow et al. [21] used design
patterns for extracting information from source code by using
different tools.

The [17, 18, 19, 20, 21] approaches are similar to our
approach that all use patterns for architecture recovery. Our
approach is different from these approaches in pattern
definitions, abstraction and extraction. The above mentioned
techniques use reverse engineering tools which extract
patterns containing architecture elements. These reverse
engineering tools are not easily available, have many
limitations and are sometimes time consuming for first stage
of architecture recovery. So we used our own custom build
simple tool DRT [2] using abstract regular expression pattern
definitions. We start pattern definitions at low level and refine
the patterns iteratively to extract the desired architecture and
design information. Our tool will be integrated with the other
tools which are under development to represent the extracted
artifacts at different levels of abstractions.

V. CONCLUSION AND FUTURE WORK
The pattern matching and processing tools help the

programmer to understand the existing code and make
appropriate changes. The selection of pattern matching tools
depends on the key properties of expressive power, flexibility,
scalability, performance, versatility, speed, accuracy and
robustness etc. It is very difficult to achieve the effective
balance between all the above mentioned properties in any
tool. We used the lexical based pattern matching technique
using Extended Regular Expressions to extract the desired
artefacts from source code of different languages with speed
and accuracy. We designed the creative and innovative
vocabulary of our tool to obtain more precision in our pattern
matching technique. Our technique has successfully recovered
the architectural artifacts from the legacy system architecture.
In future, research is focussed to the following areas.

 Extension of vocabulary of our tool to support larger
and mix coded systems.

 Recovery of dynamic view of the system.
 Specification of our pattern language so that it can

handle all type of design patterns (Creational,
Structural and behavioural).

 Integration of automata theory and formal methods
for artifacts recovery.

REFERENCES

[1] Pressman, Roger S., Software Engineering: A Practitioner’s Approach,
McGraw Hill, 1997.

[2] Ghulam Rasool, Nadim Asif, “ A Design Recovery Tool”, International
Journal of Software Engineering, ISSN(1815-4875), Vol 1, pages 67-
72, May 2007

[3] Paul, S. and Prakash, “A framework for Source Code Search using
Program Patterns”. IEEE Transactions on Software Engineering, vol 20,
pp 463-475, 1994.

[4] Tony Abou-Assalaeh and Wei Ai, “Survey of Global,Regular
Expression Print(GREP) Tools”, March 02, 2004.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3300

[5] Darren C. Atkinson, William G. Griswold, “Effective pattern matching
of source code using abstract syntax patterns”, SP&E, pp 413-447,
December, 2005 (www.interscience.wiley.com). DOI: 10.1002/spe.704.

[6] Burson S, Kotik GB, Markosian LZ, “A program transformation
approach to automating software re-engineering”, IEEE Computer
Society Press: pp 314–322, Los Alamitos, CA, 1990.

[7] Paul S, Prakash A. “A Query Algebra for Program Databases”. IEEE
Transactions on Software Engineering 1996; vol 2 pp 202-217.

[8] Ladd DA, Ramming JC. “ A* A language for implementing language
processors” IEEE Proc on Software Engineering, vol 21, pp894–
901,1995

[9] Devanbu P.T. GENOA—“A customizable, language- and front-end
independent code analyzer”, Procs of the 14th International Conference
on Software Engineering”, Melbourne, Australia, ACM Press New
York, pp 307–317, 1992.

[10] [http://kilana.unibe.ch:8080/SCG/370 [Accessed on 10th June 2007].
[11] Imagix4D,UR=http://www.imagix.comImagix Corp. [Accessed 10th

march, 2007].
[12] Rigi,URL=http://www.rigi.csc.univ.ca/rigi/rigiindex.html [Accessed 5th

march, 2007].
[13] Kamran Sartipi, Lingdong Ye and Hossein Safyallah, An Interactive

Toolkit to Extract Static and Dynamic Views of a Software System,
Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC’06)0-7695-2601-2/06.

[14] P.J. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, et al. The
software bookshelf. IBM Systems Journal, 36(4):564–593, November
1997.

[15] Meena Jha1, Piyush Maheshwari, Thi Khoi Anh Phan, A technical
Report On, “A Comparison of Four Software Architecture
Reconstruction Toolkits”, UNSW-CSE-TR- 0435, October 2004.

[16] Bauhaus group, “Tour de Bauhaus”, http://www.Bauhaus-
stuttgart.de/demo/index.html, version 4.7.2, December 2003.

[17] Martin Pinzger, Harald Gall, Pattern supported architecture recovery, In
proceeding of 10th International Workshop on program comprehension
(IWPC’02).

[18] D. R. Harris, H. B. Reubenstein, and A. S. Yeh. Reverse engineering to
the architectural level. In Proc. of the 17thInternational Conference on
Software Engineering, pages 186–195, Seattle, Washington, April 1995.
ACM Press.

[19] G. Guo, J. Atlee, and R. Kazman. A software architecture reconstruction
method. In Proc. of the 1st Working IFIPConference on Software
Architecture, pages 225–243, San Antonio, Texas, February 1999.
Kluwer Academic Publishers.

[20] K. Sartipi, K. Kontogiannis, and F. Mavaddat. A pattern matching
framework for software architecture recovery andrestructuring. In Proc.
of the 8th International Workshop on Program Comprehension, pages
37–47, Limerick, Ireland,June 2000.

[21] Ilka Philippow, Detlef Streitferdt, Matthias Riebisch, Sebastian
Naumann, An approach for reverse engineering of design patterns,
Accepted: 29 January 2004/Published online: 29 April 2004 – Springer-
Verlag 2004.

[22] Ghulam Rasool, Nadim Asif, “Software Artifacts Recovery Using
Abstract Regular Expressions”, In Proc of 11th IEEE Multitopic
Conference, 28-30 December 2007 , Comsats Institute of IT Lahore
Campus.

[23] Nadim Asif, “Software Revere Engineering”, ISBN 969-9062-00-2
Pakistan.

[24] http://www.codeproject.com/useritems/talk2me.asp [Accessed on 22th
April 2008].

[25] G. Rasool, N. Asif” International Journal of Software Engineering of
software Engineering”, Vol 1, No.1. pp. 67-71, May 2007.

Ghulam Rasool is a PhD student at TU Ilmenau Germany. He did his Masters
in Computer Science from Bahauddin Zakariya University, (A public sector
University) in Multan, Pakistan. Mr Rasool is doing extensive research in the
area of software reverse engineering, architecture recovery and reengineering.

Ilka Philippow is a full Professor for Process Informatics at the Ilmenau
Technical University since 1992. In the eighties she was working in the field
of software development for technical and embedded systems. She received

the PhD in Computer Science in 1981 and finished her habilitation in 1989 at
the Technical University of Ilmenau, Germany. She is doing research in the
area of pattern recognition, architecture recovery and traceability link
management.

