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Abstract—A nonlinear optimal controller with a fuzzy gain 

scheduler has been designed and applied to a Line-Of-Sight (LOS) 
stabilization system. Use of Linear Quadratic Regulator (LQR) 
theory is an optimal and simple manner of solving many control 
engineering problems. However, this method cannot be utilized 
directly for multigimbal LOS systems since they are nonlinear in 
nature. To adapt LQ controllers to nonlinear systems at least a 
linearization of the model plant is required. When the linearized 
model is only valid within the vicinity of an operating point a gain 
scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference 
System gain scheduler has been implemented, which keeps the 
asymptotic stability performance provided by the optimal feedback 
gain approach. The simulation results illustrate that the proposed 
controller is capable of overcoming disturbances and maintaining a 
satisfactory tracking performance. 
 

Keywords—Fuzzy Gain-Scheduling, Gimbal, Line-Of-Sight 
Stabilization, LQR, Optimal Control 

I. INTRODUCTION 
INE-OF-SIGHT (LOS) stabilization systems, also known as 
stabilized platforms, are used in a plurality of applications 

to point sensors, cameras, antennas, instruments or weapons. 
All these applications have in common the use of this kind of 
system vehicle onboard. Vehicles used in such applications are 
ground vehicles, airplanes, helicopters, Unmanned Air 
Vehicles (UAVs), and even space satellites [3]. LOS 
stabilization systems possess the ability to maintain the LOS 
of a sensor or instrument when it is subjected to external 
disturbances caused by the carrier vehicle motion. One of the 
most demanding LOS stabilization system applications are 
electro-optical turrets, which have an optical sensor package 
payload consisting of CCD and/or IR camera, laser telemeter, 
etc. They can be employed in surveillance, target detection 
and tracking in border control, search and rescue or critical 
infrastructure security. The number of axes required by the 
system depends on the application requirements and it 
normally ranges from 2 to 5. 

Electro-optical turrets can be found under different 
electromechanical configurations depending on the 
application. One of the most typical configurations consists of 
a combined structure of rotary actuators. Each rotary axis is 
known as gimbal. Although the requirements of such systems 
are imposed by the application, all of them follow the same 
objective, to hold or control the LOS of one object relative to 
another or to the inertial space. Moreover, they make use of 
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inertial sensors such as accelerometers and gyroscopes, in 
most cases aided by one or several GPS receivers, to measure 
line of sight attitude changes and vehicle position in global 
coordinates. 

Multigimbal electromechanical systems represent a 
complex nonlinear multivariable problem. Some factors, such 
as the mechanical resonance, the random drift of inertial 
sensors or the change of electric parameters among others, 
make the modeling of this kind of system difficult. 
Additionally, high dynamic operation imposed by some kinds 
of vehicles causes the coupling effect between axes to 
influence greatly the system performance, making impossible 
the use of decentralized control architectures. During the last 
decade, several controller design methods have been proposed 
for the stabilization of platforms, however, most of them are 
complex and difficult to implement in practice, and therefore, 
PID controllers keep being widely used in this kind of 
application. 
In this work a nonlinear optimal control scheme of a LOS 
stabilization system by means of Linear Quadratic Regulators 
(LQR) and Fuzzy Gain Scheduler (FGS) is presented. During 
last decade, LQR theory has been widely used in many 
applications. Firstly, it can provide optimal controllers in 
terms of a cost function minimization. Moreover, LQR 
achieves a robust performance against model parameter 
uncertainties and disturbances [1], [2], [8]. In [7] a linear 
controller for the stabilization of a two-axis gimbal based on 
LQG/LTR was presented. A typical control design strategy 
employed to adapt LQ controllers to nonlinear system is Gain-
Scheduling. However, this approach does not guarantee the 
overall stability of the controlled system under all possible 
situations when the system behavior is strongly nonlinear. To 
try to overcome this approximation problem the use of fuzzy 
systems has been investigated by many researchers [5], [11], 
and has been shown to perform well in terms of robustness 
and simplicity.  

The idea of designing an adaptive controller LQR/FGS 
follows the implementation of an affordable controller capable 
of compensating model uncertainties, with proper transient 
response and stabilization performance. The proposed 
controller has been tested in simulations with real data in a 
two-gimbal, four Degrees-Of-Freedom (DOF) LOS 
stabilization system. 

II. LOS STABILIZATION SYSTEM ARCHITECTURE 
The LOS stabilization system architecture used in this paper is 
made up of two gimbals, one is considered as the inner gimbal 
while the other one is the outer. Each gimbal provides two 
DOF (Pan and Tilt). Figure 1 shows a schematic diagram of 
the system. 
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Fig. 1 LOS stabilization system architecture schematic diagram 
 
The two outer gimbal axes are actuated by dc motors. The 

inner gimbal has attached to it the system payload (optical 
sensors and the inertial measurement unit, IMU) and it is 
mounted onto the outer gimbal. Its axes have a very limited 
range of angular movement because the inner gimbal is 
devoted to prevent sensor performance degradation caused by 
high frequency rotational vibrations. A magnet actuator 
provides the centering force to keep inner and outer axes 
aligned. 

A. Forward Kinematics 
To define the forward kinematics of the system the Denavit-

Hartenberg convention has been used. The related parameters 
can be seen in Table 1. 
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The homogenous transformation from the base of the 

system to the sensors coordinate frame is defined by the 
matrix 4

0T . 
As the joint coordinates angles 3θ  and 4θ  in (1) are small, 

4,3θs  has been approximated by 4,3θ  and 4,3θc  by 1.  

B. Differential Kinematics 
Differential kinematics is used to find the relationship 

between the joint velocities and the end-effector linear and 
angular velocities. This relationship depends on the system 
geometry and it is expressed by the nonlinear matrix known as 
Jacobian, 
 

qqJv &)(=   (2) 
 

where v   represents the end-effector velocity, q  is the joint 
velocities vector, and )(qJ  is the Jacobian.  

In a generic multigimbal system all joints are rotations. 
Then the Jacobian can be expressed as 
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where p  represents the end-effector position and iz  is 

obtained with the following expression: 
 

z
i
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In (4) the vector [ ]Tzr 100=  represents the rotation axis 

and iR0  the rotation matrix from the base to the joint i . 
The Jacobian for the presented architecture is: 
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III. DYNAMICS 
The dynamics of the LOS stabilization system can be derived 
from the Euler-Lagrange formulation, which describes the 
behavior of a mechanical system subject to holonomic 
constraints. 

The Lagrangian of a mechanical system is defined as the 
difference between the kinetic energy K  and the potential 
energy V . 
 

TABLE I 
DENAVIT-HARTENBERG PARAMETERS 

Joint 
i 

iα  
[rad] 

ia  
[m] 

iθ  
[rad] 

id  
[m] 

 
R/P 

1 2Π−  0 1θ  0 R 
2  2Π  0 2θ  0 R 
3 2Π−  0 3θ  0 R 

4  2Π  0 4θ  0 R 
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VKL −=   (6) 
 

Before formulating the Euler-Lagrange equation, the 
expressions of the kinetic and potential energies will be 
derived. 

A. Kinetic Energy 
The kinetic energy of a rigid body can be considered as the 

addition of two energy terms, the translational energy, 
considering the mass of the body concentrated in its mass 
center, and the rotation energy. 

The kinetic energy of a rigid body can be obtained from the 
following expression.  
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In (7), m  is the total mass of the body, v  and w  are the 

translational and rotation velocities respectively, and I  is the 
inertia tensor. 

In our case, the kinetic energy of an n-joint robotic system 
can be expressed making use of the Jacobian defined in (5) in 
the following way. 
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Then, it can be derived from (7) and (8)  
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where [ ]Tnqqq ...1=  is a vector which contains the joint 

variables. 
Finally, a matrix expression for the kinetic energy can be 

obtained (10). 
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( )qD  is a symmetric positive definite matrix known as 
inertial matrix. 

B. Potential Energy 
The potential energy of a robot manipulator can be 

expressed by summing up all the potential energies of its 
elements. For an n-joint robot the potential energy is 
expressed in (11). 

 

∑
=

=
n

i
iVV

1

 (11) 

 
iV  represents the potential energy of the element i . If all 

the elements in the system are rigid, then the potential energy 
is caused exclusively by the gravity. In these circumstances 
the potential energy of each element can be expressed as 
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In (12) g  is the gravity acceleration vector, ir  is the 

position vector of each particle with mass dm  and cir  is the 
position vector of the mass center for the element i . 

As it can be seen, the potential energy will depend only on 
the angular joint coordinates, q . 

C. Euler-Lagrange Equation 
Once the expressions for the kinetic and potential energy 

have been obtained it is possible to rewrite the Lagrangian as 
follows. 
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The expression of the Euler-Lagrange equation is as follows 
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Where iF  is the generalized force related to the generalized 

coordinate iλ . In our case, the generalized coordinates can be 
chosen to be the angular joint coordinates. 
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Then, from (13), (14) and (15) the two terms of the Euler-

Lagrange equation can be derived. 
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The mathematical process to reach the expression of the 

system dynamics shown in (18) can be found in [6]. 
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The ijkc  terms are known as the Christoffel symbols 
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and )(qgi  is: 
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Matrix equation (21) shows the dynamical model of the 

system. 
 

τ=++ )(),()( qgqqqCqqD &&&&   (21) 
 
In (21) τ  is the torque. 
Finally, the effects of non conservative forces can be added 

to the model. One of the main contributions to these forces are 
those caused by the static and viscous friction. The expression 
of the total torque considering the friction effects is as follows: 
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D. Passive Actuators 
While the outer gimbal is actuated by dc motors, the inner 

gimbal posses a passive magnetic actuator, whose mission is 
to keep the inner gimbal centered with respect to the outer 
gimbal, damping high frequency rotational vibrations.  

This kind of actuator can be modeled as a torsion spring 
where the potential energy can be expressed as follows, 
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Where α  is the spring constant. 
In [9] this kind of actuator is modeled by taking into 

account the additional effect of mechanical limits. Then, the 
potential energy is defined by (24), where β  and nf  are 
constant parameters. 

 
12

4
2
3

2
4

2
3 )(

1
1

2
1

2
1

2
1 ++

+Π
++= nf

s qqqqV βαα  (24) 

 

E. Model Parameters 
After formulating the dynamic equations of the system, the 

parameters of the system were introduced. Inertia tensors 
expressed in (25.1, 25.2, 25.3 and 25.4) are diagonal matrices. 

Because of the geometric characteristics of the system the 
inertia tensor 3I  can be neglected. 
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Since only two control inputs for two dc motors exist, the 

response of the system has been approximated by: 
 

31 θθ +=Pan      42 θθ +=Tilt  (26) 
 
Moreover, the effect of the static friction sF  is supposed to 

be small enough to be neglected. 

IV. CONTROL SYSTEM 
The design of a controller capable of performing vehicle-

mounted LOS stabilization must satisfy demanding 
operational specifications. Controller specifications must be 
established to provide the required isolation from carrier 
vehicle disturbances demanded by the payload. Usually, they 
are imposed by the resolution and the integration period of the 
optical sensors [3]. 
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Fig. 2 Stabilized Platform block diagram 

 
Two different control strategies exist to measure the attitude 

changes. These two approaches are known as direct and 
indirect LOS stabilization. The direct approach uses angular 
rate sensors (gyros) mounted together with the payload on the 
stabilized part of the system, to measure the LOS angular 
rates. On the other hand, in indirect LOS stabilization the 
gyros are mounted on the base of the system, measuring the 
vehicle angular rates. When the system is intended to perform 
LOS stabilization in high dynamic conditions, the direct 
approach is more appropriate. As the gyros are attached to the 
stabilized part of the system, angular rate measurements are 
less affected by nonlinearities and errors associated to the 
scale factor of the sensor, because the measured angular rates 
are close to zero [4]. The typical block diagram of an inertially 
stabilized platform control system is shown in figure 2. As can 
be seen, gyros are the sensors which measure the LOS angular 
rate.Stabilized platform control system design implies the 
implementation of two separated control loops, the pointing 
loop and the rate loop. The pointing loop generates rate 
commands to point the sensors towards the target, while the 
rate loop isolates the sensors from platform motion and 
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disturbances [3].The successful design of sophisticated 
controllers for LOS stabilization has been reported within the 
existing literature by several authors [6], [9], [10]. However, 
most of the related control designs imply an accurate modeling 
of the plant, and the implementation of complex controllers. 
Moreover, the model of the plant is commonly assumed to be 
time invariant. On the contrary, changes in the operation 
conditions such as temperature or humidity variations affect 
the parameters of the model. A kind of controller which 
combines robustness against model uncertainties and external 
disturbances and simplicity is the LQ. Moreover, it provides 
an optimal solution in terms of minimization of a designed 
cost function [1]. Although, this approach presents some 
disadvantages, (e.g. its formulation is only valid for linear 
systems, or the regulator tuning usually requires an iterative 
process to be carried out) is a good alternative to other 
advanced control strategies. 

A. LQR Design  
The main goal is to design a state feedback controller able 

to minimize the energy consumption. Within the development 
of this task a state-space model of the system is required. The 
expression (27) represents the state-space model of the system 
dynamics. 
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Figure 3 shows the typical block diagram of a state-

feedback LQR with setpoint input when states are fully 
observable. 

 
 

F K

N

+
++

‐

r u

*u

z

x

*x BuAxx +=&
HuGxz +=

 
Fig. 3 State Feedback LQ controller with setpoint input 

 
In figure 3, r  and z  represent the setpoint input and the 

output respectively. Vectors *x  and *u  are formed with the 
desired values of the state vector and the inputs of the plant. 
Both vectors can be determined from (28). The block K  
represents the optimal regulator, while F  and N  can be 
derived from the expressions in (29), 
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and 
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If the process has the same number of inputs and outputs, 
the system in (28) can be solved as shown in (30). 
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The input of the plant generated by the optimal regulator K  

is presented in (31), and the associated cost function it 
minimizes is shown in (32). 
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The term )(tz  in (32) corresponds to the energy of the 

controlled output and the term )(tu  to the energy of the control 
signal. Finally, ρ  is a constant parameter used to balance the 
weight of both energy terms. Lower energy consumption in 
the controlled output implies higher energy consumption in 
the control signal and vice versa. Moreover, ρ  can be used in 
loop-shaping to tune the controller in order to satisfy specific 
requirements in the frequency domain.The mathematic 
explanation to the presented optimization problem can be 
found in [2]. Equation (33) shows the solution expression 
for K , where P  is the unique positive-definite solution of (34), 
known as the Algebraic Riccati Equation (ARE). 
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Matrices Q and R can be designed according to the 
Bryson’s rule. Then these matrices can be formed as follows 
(35.1 and 35.2). 
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B. Linearization 
LQR theory is developed according to the assumption of a 

Linear Time Invariant (LTI) plant. However, the multigimbal 
architecture of the LOS stabilization system, represented by 
the function f  in (36) and presented in (27), is clearly non 
linear.  
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),( uxfx =&  (36) 
 
To apply the Gain-Scheduling control methodology to our 

system, the design of a linearization procedure is required. The 
linearization will be applied to the nonlinear system at a set of 
selected operating points. Then, the resulting linear models 
will be used to design the associated LQ controllers.  

The local linearized model is represented in (37), where 
0xxxl −=  and 0uuul −= , being 0x  and 0u  the state and input 

vectors which define the operating point. 
 

lll BuAxx +=&  (37) 
 
Matrices A  and B  in (37) can be obtained applying partial 

derivatives to f  at each operating point. 
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C. Fuzzy Gain-Scheduling  
Gain-Scheduling is a control mechanism that enables the 

use of linear controllers in complex nonlinear systems. Since a 
nonlinear system can be approximated at given operating 
points by local linearization, the stable operation of linear 
controllers around these points is possible. A gain scheduler 
provides the continuation of use of the linear control scheme 
to all the possible operation points achieving the intended 
performance. However, classical Gain-Scheduling based on 
linear interpolation does not guarantee the overall stability of 
the system, because it is not able to model nonlinearities 
between two operation points. To overcome this problem FGS 
can be used, which can approximate the in-between regions in 
a more accurate way [11]. 

A FGS can be implemented as a Takagi-Sugeno fuzzy 
controller. If  linearized models associated to the operating 
points is , li ...,2,1=  are considered, the system can be 
approximated by the fuzzy rule base as 
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where iR  denotes the thi  fuzzy inference rule. Each fuzzy 

rule expresses the local dynamics by a linear system model. 
The optimal feedback controller for the linearized system is of 
the following form: 
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iF  is the fuzzy set of each rule, and i

Fμ  is the associated 
fuzzy membership function. It can be interpreted as the grade 
of membership of s  in iF . 

In order to achieve a more adaptable solution the fuzzy 

membership function can be chosen as  
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where both the operating point is  and iσ  can be tuned to 

get a robust and satisfactory performance. Fuzzy membership 
function parameters and the set of operating points can be 
optimally determined in an automatic fashion by using the 
evolutionary technique presented in [11].Finally, the FGS can 
be derived by considering an average weighting as follows 
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The effectiveness of the controller presented in (45) relies 

on the selected set of operating points and the tuning of both 
the LQ regulator and the fuzzy membership function 
parameters. 

D. Nonlinear Optimal Controller 
From the analysis of the dynamical model formulated in 

section 3 it can be deduced that joint coordinate 2θ  has the 
strongest influence on the nonlinear behavior of the system. 
Therefore, this joint coordinate has to be chosen as the input to 
the fuzzy system to be able to model the nonlinearities of the 
plant.By making use of simulations and after an iterative 
process, a set of four operating points were selected ( 2θ = 0, 

6Π , 3Π , 2Π ). At the same time, the related linearized 
models and their optimal LQ controllers were obtained. Figure 
4 shows the simulation results for the stabilization error 
obtained in the Tilt angle considering two different sets of 
membership functions. 
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Fig. 4 Error in Tilt angle considering two different sets of 

membership functions. 
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The fuzzy membership functions defined after this process 

are shown in figure 5. 
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Fig. 5 Fuzzy membership functions 

 
The parameter iσ  affects the overlap between the 

membership functions. It was adjusted to 0.22.  
Matrices Q and R presented in (35) were defined as follows. 

 
( )
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⎥
⎦
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Π
Π= 2

2

5.010
021Q [ ]21 rad  (46.1) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 2

2

8.110
021Q [ ]2)(1 Nm  (46.2) 

 
Finally, in order to tune the transient response of the 

system, several parameterizations of the LQ controllers with 
different values for ρ were required. These controllers were 
also tested using simulations and finally ρ parameters were 
established.  

In figures 6 and 7 can be seen how the ρ  parameter 
influences the transient step response of the system. By 
reducing the value of ρ  the response becomes faster and 
therefore the bandwidth of the system results increased. On 
the other hand the overshoot is slightly increased. 
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Fig. 6 Pan angle step response for different values of ρ  
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Figure 7: Tilt angle step response for different values of ρ  

V. SIMULATIONS RESULTS 
In order to prove the stability and satisfactory performance of 
the designed controller, several simulations under real carrier 
vehicle disturbances were carried out. The applied attitude 
disturbances were obtained from measurements taken with an 
inertial navigation system (INS) mounted on a car, while 
travelling through urban areas. The INS was configured to 
provide 100 Hz data output rate. The LOS coordinates were 
determined to point at a far away target defined by its global 
coordinates. Therefore, the system aim was to stabilize the 
LOS to keep on tracking the mentioned static target. 

Figure 8 shows the simulated system response for the Pan 
angle, while the car was going through two roundabouts. 

For the same 125-second period of time, figure 9 shows the 
simulation results for the Tilt angle. 

Figure 10 shows the stabilization error along the simulation 
where peaks of error can be seen. These peaks of error are due 
to abrupt changes in the heading angle estimated by the IMU, 
caused by internal Kalman Filter divergences under high 
accelerations. Figure 11 shows this effect in more detail.  

Finally, figure 12 and 13 show the weighting values applied 
to the fuzzy membership functions to compute the interpolated 
controllers. In figure 13 weight variations can be observed 
during a shorter period of time when Tilt angle suffered a fast 
change. 
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Fig. 8 System response for the Pan angle through two roundabouts 
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Fig. 9 System response for the Tilt angle through two roundabouts 
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Fig. 10 Stabilization error (Pan and Tilt) obtained along the 

simulation. 
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Fig. 11 Detail of the setpoint and response during an abrupt change in 

the heading angle provided by the IMU. 
 

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

w
i

 

w4
w2
w3
w1

 
Fig. 12 Weighting values for the four fuzzy membership functions 
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Fig. 13 Weighting values for the four fuzzy membership functions in 

greater detail 

VI. CONCLUSIONS 
A nonlinear optimal controller for LOS stabilization systems 
based on Linear Quadratic Regulators (LQR) and a Fuzzy 
Gain-Scheduling (FGS) has been designed. Firstly, the 
kinematic and dynamic models of a 2-gimbal 4-DOF LOS 
stabilization system were obtained. Then, the LQR design and 
the linearization procedures were presented. Furthermore, a 
FGS control methodology was designed which is able to 
improve the approximation between the operating points. In 
order to prove the stability and satisfactory performance of the 
designed controller, several simulations under real carrier 
vehicle attitude disturbances were carried out. The attitude 
disturbances were formed from measurements taken with an 
Inertial Navigation System mounted on a car, while travelling 
through urban areas. A static target defined by its global 
coordinates was employed, in such a way that the system aim 
was to stabilize the LOS. The obtained results prove the 
stability of the system under the imposed high dynamic 
conditions. Moreover, the controller provides a satisfactory 
dynamic response achieving admissible pointing errors during 
the performed simulations. 
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